of 15
High-energy neutrino follow-up search of gravitational wave event
GW150914 with ANTARES and IceCube
S. Adrián-Martínez
etal.
*
(
A
NTARES
Collaboration, IceCube Collaboration, LIGO Scientific Collaboration, and Virgo Collaboration)
(Received 21 February 2016; published 23 June 2016)
We present the high-energy-neutrino follow-up observations of the first gravitational wave transient
GW150914 observed by the Advanced LIGO detectors on September 14, 2015. We search for coincident
neutrino candidates within the data recorded by the IceCube and A
NTARES
neutrino detectors. A possible
joint detection could be used in targeted electromagnetic follow-up observations, given the significantly
better angular resolution of neutrino events compared to gravitational waves. We find no neutrino
candidates in both temporal and spatial coincidence with the gravitational wave event. Within

500
sof
the gravitational wave event, the number of neutrino candidates detected by IceCube and A
NTARES
were
three and zero, respectively. This is consistent with the expected atmospheric background, and none of the
neutrino candidates were directionally coincident with GW150914. We use this nondetection to constrain
neutrino emission from the gravitational-wave event.
DOI:
10.1103/PhysRevD.93.122010
I. INTRODUCTION
Advanced LIGO
s first observation periods
[1,2]
represent a major step in probing the dynamical origin
of high-energy emission from cosmic transients
[3]
.
The significant improvement in gravitational wave
(GW) search sensitivity enables a comprehensive multi-
messenger observational effort i
nvolving partner electro-
magnetic observatories from radio to gamma-rays, as
well as neutrino detectors. The goals of multimessenger
observations are to gain a more complete understanding
of cosmic processes through a combination of informa-
tion from different probes, and to increase search
sensitivity over an analysis using a single messenger
[4
6]
.
The merger of neutron stars and black holes, and
potentially massive stellar core collapse with rapidly
rotating cores, are expected to be significant sources of
GWs
[3]
. These events can result in a black hole plus
accretion disk system that drives a relativistic outflow
[7,8]
. Energy dissipation in the outflow produces non-
thermal, high-energy radiation that is observed as gamma-
ray bursts (GRBs), and may have a
GeV neutrino
component at comparable luminosities.
Multiple detectors have been built that can search
for this high-energy neutrino signature, including the
IceCube Neutrino Observatory
a cubic-kilometer facility
at the South Pole
[9
11]
,andA
NTARES
[12
14]
in the
Mediterranean sea. The construction of the KM3NeT cubic-
kilometer scale neutrino detector in the Mediterranean
Sea has started in December 2015 with the successful
deployment of the first detection string
[15]
. IceCube is
planning a substantial increase in sensitivity with near-
future upgrades
[16,17]
. Another facility, the Baikal
Neutrino Telescope is also planning an upgrade to cubic-
kilometer volume
[18]
. An astrophysical high-energy neu-
trino flux has recently been discovered by IceCube
[19
22]
,
demonstrating the production of nonthermal high-energy
neutrinos. The specific origin of this neutrino flux is
currently unknown. Multimessenger analyses constraining
the common sources of high-energy neutrinos and GWs
have been carried out in the past with both A
NTARES
and
IceCube
[23
25]
.
On September 14, 2015 at 09:50:45 UTC, a highly signi-
ficant GW signal was recorded by the LIGO Hanford,
WA and Livingston, LA detectors
[26]
. The event, labeled
GW150914, was produced by a stellar-mass binary black
hole merger at redshift
z
¼
0
.
09
þ
0
.
03
0
.
04
. The reconstructed mass
of each black hole is
30
M
. Such a system may produce
electromagnetic emission and emit neutrinos if the merger
happens in a sufficiently baryon-dense environment, and a
black hole plus accretion disk system is formed
[27]
. Current
consensus is that such a scenario is unlikely, nevertheless,
there are no significant observational constraints.
Here we report the results of a neutrino follow-up
search of GW150914 using A
NTARES
and IceCube. After
brief descriptions of the GW search (Sec.
II
) and the neutrino
follow-up (Sec.
III
), we present the joint analysis, results of
the search and source constraints, and conclusions (Sec.
IV
).
II. GRAVITATIONAL WAVE DATA ANALYSIS
AND DISCOVERY
GW150914 was initially identified by low-latency
searches for generic GW transients
[28
30]
. Subsequent
*
Full author list given at end of the article.
PHYSICAL REVIEW D
93,
122010 (2016)
2470-0010
=
2016
=
93(12)
=
122010(15)
122010-1
© 2016 American Physical Society
analysis with three independent matched-filter analyses
using models of compact binary coalescence waveforms
[31,32]
confirmed that the event was produced by the
merger of two black holes. The analyses established
a false alarm rate of less than 1 event per 203000 years,
equivalent to a significance
>
5
.
1
σ
[26]
. Source parameters
were reconstructed using the LALI
NFERENCE
package
[32
34]
, finding black-hole masses
36
þ
5
4
M
and
29
þ
4
4
M
and luminosity distance
D
gw
¼
410
þ
160
180
Mpc, where the
error ranges correspond to the range of the 90% credible
interval. The duration of the signal within LIGO
s sensitive
band was 0.2 s.
The directional point spread function (sky map)
of the GW event was computed through the full
parameter estimation of the signal, carried out using the
LALI
NFERENCE
package
[33,34]
. The LALI
NFERENCE
results presented here account for calibration uncertainty
in the GW strain signal. The sky map is shown in Fig.
1
.
At 90% (50%) credible level (CL), the sky map covers
610 deg
2
(
150
deg
2
).
III. HIGH-ENERGY NEUTRINO
COINCIDENCE SEARCH
High-energy neutrino observatories are primarily sensi-
tive to neutrinos with
GeV energies. IceCube and
A
NTARES
are both sensitive to through-going muons (called
track events), produced by neutrinos near the detector,
above
100
GeV. In this analysis, A
NTARES
data include
only up-going tracks for events originating from the
Southern hemisphere, while IceCube data include both
up-going tracks (from the Northern hemisphere) as well as
down-going tracks (from the Southern hemisphere). The
energy threshold of neutrino candidates increases in the
Southern hemisphere for IceCube, since downward-going
atmospheric muons are not filtered by the Earth, greatly
increasing the background at lower energies. Neutrino
times of arrival are determined at
μ
s precision.
Since neutrino telescopes continuously take data observ-
ing the whole sky, it is possible to look back and search for
neutrino counterparts to an interesting GW signal at any
time around the GW observation.
To search for neutrinos coincident with GW150914, we
used a time window of

500
s around the GW transient.
This search window, which was used in previous GW-
neutrino searches, is a conservative, observation-based
upper limit on the plausible emission of GWs and high-
energy neutrinos in the case of GRBs, which are thought
to be driven by a stellar-mass black hole
accretion disk
system
[35]
. While the relative time of arrival of GWs
and neutrinos can be informative
[36
38]
, here we do not
use detailed temporal information beyond the

500
s time
window.
The search for high-energy neutrino candidates recorded
by IceCube within

500
s of GW150914 used IceCube
s
online event stream. The online event stream implements
an event selection similar to the event selection used for
neutrino point source searches
[39]
, but optimized for real-
time performance at the South Pole. This event selection
consists primarily of cosmic-ray-induced background
events, with an expectation per 1000 seconds of 2.2 events
in the Northern sky (atmospheric neutrinos), and 2.2 events
in the Southern sky (high-energy atmospheric muons). In
the search window of

500
s centered on the GWalert time
(see below), one event was found in the Southern sky
and two in the Northern sky, which is consistent with the
background expectation. The properties of these events are
listed in Table
I
. The neutrino candidates
directions are
shown in Fig.
1
.
The muon energy in Table
I
is reconstructed assuming a
single muon is producing the event. While the event from
the Southern hemisphere has a significantly greater recon-
structed energy
[41]
than the other two events, 12.5% of the
background events in the same declination range in the
Southern hemisphere have energies in excess of the one
observed. The intense flux of atmospheric muons and
bundles of muons that constitute the background for
FIG. 1. GW skymap in equatorial coordinates, showing the
reconstructed probability density contours of the GW event at
50%, 90% and 99% CL, and the reconstructed directions of high-
energy neutrino candidates detected by IceCube (crosses) during
a

500
s time window around the GW event. The neutrino
directional uncertainties are
<
1
° and are not shown. GW shading
indicates the reconstructed probability density of the GW event,
darker regions corresponding to higher probability. Neutrino
numbers refer to the first column of Table
I
.
TABLE I. Parameters of neutrino candidates identified by
IceCube within the

500
s time window around GW150914.
Δ
T
is the time of arrival of the neutrino candidates relative to that
of GW150914. E
rec
μ
is the reconstructed muon energy.
σ
rec
μ
is the
angular uncertainty of the reconstructed track direction
[40]
. The
last column shows the fraction of background neutrino candidates
with higher reconstructed energy at the same declination (

5
°).
No.
Δ
T
[s] RA [h] Dec [°]
σ
rec
μ
[°] E
rec
μ
[TeV] Fraction
1
þ
37
.
2
8.84
16
.
6
0.35
175
12.5%
2
þ
163
.
2
11.13 12.0
1.95
1.22
26.5%
3
þ
311
.
4
7
.
23
8.4
0.47
0.33
98.4%
S. ADRIÁN-MARTÍNEZ
et al.
PHYSICAL REVIEW D
93,
122010 (2016)
122010-2
IceCube in the Southern hemisphere gradually falls as
the cosmic ray flux declines with energy
[42]
. The use of
energy cuts to remove most of this background is the reason
that IceCube
s sensitivity in the Southern sky is shifted to
higher energies.
An additional search was performed using the high-
energy starting event selection described in
[19]
. No events
were found in coincidence with GW150914.
The IceCube detector also has sensitivity to outbursts
of MeV neutrinos (as occur for example in core-collapse
supernovae) via a sudden increase in the photomultiplier
rates
[43]
. The global photomultiplier noise rate is moni-
tored continuously, and deviations sufficient to trigger
the lowest-level of alert occur roughly once per hour.
No alert was triggered during the

500
second time-
window around the GW candidate event.
The search for coincident neutrinos for A
NTARES
within

500
s of GW150914 used A
NTARES
s online
reconstruction pipeline
[44]
. A fast and robust algorithm
[45]
selected up-going neutrino candidates with
mHz
rate, with atmospheric muon contamination less than 10%.
In addition, to reduce the background of atmospheric
neutrinos
[46]
, a requirement of a minimum reconstructed
energy reduced the online event rate to 1.2 events/day.
Consequently, for A
NTARES
the expected number of neu-
trino candidates from the Southern sky in a 1000 s window
in the Southern sky is 0.015. We found no neutrino events
from A
NTARES
that were temporally coincident with
GW150914. This is consistent with the expected back-
ground event rate.
IV. RESULTS
A. Joint analysis
We carried out the joint GW and neutrino search
following the analysis developed for previous GW and
neutrino data sets using initial GW detectors
[23,25,35,47]
.
After identifying the GW event GW150914 with the cWB
pipeline, we used reconstructed neutrino candidates to
search for temporal and directional coincidences between
GW150914 and neutrinos. We assumed that the
a priori
source directional distribution is uniform. For temporal
coincidence, we searched within a

500
s time window
around GW150914.
The relative difference in propagation time for
GeV
neutrinos and GWs (which travel at the speed of light in
general relativity) traveling to Earth from the source is
expected to be
1
s. The relative propagation time
between neutrinos and GWs may change in alternative
gravity models
[48,49]
. However, discrepancies from
general relativity could in principle be probed with a joint
GW-neutrino detection by comparing the arrival times
against the expected time frame of emission.
Directionally, we searched for overlap between the
GW sky map and the neutrino point spread functions,
assumed to be Gaussian with standard deviation
σ
rec
μ
(see Table
I
).
The search identified no A
NTARES
neutrino candidates
that were temporally coincident with GW150914.
For IceCube, none of the three neutrino candidates
temporally coincident with GW150914 were compatible
with the GW direction at 90% CL. Additionally, the
reconstructed energy of the neutrino candidates with
respect to the expected background does not make them
significant. See Fig.
1
for the directional relation of
GW150914 and the IceCube neutrino candidates
detected within the

500
s window. This nondetection
is consistent with our expectation from a binary black hole
merger.
To better understand the probability that the
detected neutrino candidates are consistent with back-
ground, we briefly consider different aspects of the data
separately. First, the number of detected neutrino candi-
dates, i.e. 3 and 0 for IceCube and A
NTARES
, respectively,
is fully consistent with the expected background rate
of 4.4 and
1
for the two detectors, with p-value
1
F
pois
ð
N
observed
2
;N
expected
¼
4
.
4
Þ¼
0
.
81
, where
F
pois
is the Poisson cumulative distribution function. Second,
for the most significant reconstructed muon energy
(Table
I
), 12.5% of background events will have greater
muon energy. The probability that at least one neutrino
candidate, out of 3 detected events, has an energy high
enough to make it appear even less background-like,
is
1
ð
1
0
.
125
Þ
3
0
.
33
. Third, with the GW sky area
90% CL of
Ω
gw
¼
610
deg
2
, the probability of a back-
ground neutrino candidate being directionally coincident
is
Ω
gw
=
Ω
all
0
.
015
. We expect
3
Ω
gw
=
Ω
all
directionally
coincident neutrinos, given 3 temporal coincidences.
Therefore, the probability that at least one of the 3 neutrino
candidates is directionally coincident with the 90% CL
skymap of GW150914 is
1
ð
1
0
.
015
Þ
3
0
.
04
.
B. Constraints on the source
We used the nondetection of coincident neutrino
candidates by A
NTARES
and IceCube to derive a standard
frequentist neutrino spectral fluence upper limit for
GW150914 at 90% CL. Considering no spatially and
temporally coincident neutrino candidates, we calculated
the source fluence that on average would produce 2.3
detected neutrino candidates. We carried out this analysis
as a function of source direction, and independently for
A
NTARES
and IceCube.
The obtained spectral fluence upper limits as a function
of source direction are shown in Fig.
2
. We considered
a standard
dN=dE
E
2
source model, as well as a
model with a spectral cutoff at high energies:
dN=dE
E
2
exp
½
ffiffi
ð
p
E=
100
TeV
Þ
. The latter model is expected
for sources with exponential cutoff in the primary proton
spectrum
[50]
. This is expected for some galactic sources,
and is also adopted here for comparison to previous
HIGH-ENERGY NEUTRINO FOLLOW-UP SEARCH OF
...
PHYSICAL REVIEW D
93,
122010 (2016)
122010-3
analyses
[51]
. For each spectral model, the upper limit
shown in each direction of the sky is the more stringent
limit provided by one or the other detector. We see in Fig.
2
that the constraint strongly depends on the source direction,
and is mostly within
E
2
dN=dE
10
1
10
GeV cm
2
.
Furthermore, the upper limits by A
NTARES
and IceCube
constrain different energy ranges in the region of the sky
close to the GW candidate. For an
E
2
power-law source
spectrum, 90% of A
NTARES
signal neutrinos are in the
energy range from 3 TeV to 1 PeV, whereas for IceCube
at this southern declination the corresponding energy range
is 200 TeV to 100 PeV.
To characterize the dependence of neutrino spectral
fluence limits on source direction, we calculate these
limits separately for the two distinct areas in the 90%
credible region of the GW skymap. For the larger region
farther South (hereafter
South region
), we find upper
limits
E
2
dN=dE
¼
1
.
2
þ
0
.
25
0
.
36
GeV cm
2
and
E
2
dN=dE
¼
7
.
0
þ
3
.
2
2
.
0
GeV cm
2
for our two spectral models without
and with a cutoff, respectively. The error bars define the
90% confidence interval of the upper limit, showing the
level of variation within each region. The average values
were obtained as geometric averages, which better re-
present the upper limit values as they are distributed over a
wide numerical range. For the smaller region farther North
(hereafter
North region
), we find upper limits
E
2
dN=dE
¼
0
.
10
þ
0
.
12
0
.
06
GeV cm
2
and
E
2
dN=dE
¼
0
.
55
þ
1
.
79
0
.
44
GeVcm
2
.
As expected, we see that the limits are much more
constraining for the North region, given the stronger limits
at the Northern hemisphere due to IceCube
s greatly
improved sensitivity there. Additionally, we see that the
90% confidence intervals for the South region, which is
much more likely to contain the real source direction than
the North region, are fairly small around the average, with
the lower and higher limits only differing by about a factor
of 2. The upper limits within this area can be considered
essentially uniform. We observe a much greater variation
in the North region.
To provide a more detailed picture of our constraints
on neutrino emission, we additionally calculated neutrino
fluence upper limits for different energy bands. For these
limits, we assume
dN=dE
E
2
within each energy band.
We focus on Dec
¼
70
°, which is consistent with the most
likely source direction, and also with most of the GW sky
area
s credible region. For each energy range, we use the
limit from the most sensitive detector within that range. The
obtained limits are given in Table
II
.
We now convert our fluence upper limits into a constraint
on the total energy emitted in neutrinos by the source.
To obtain this constraint, we integrate emission within
[100 GeV, 100 PeV] for each source model. The obtained
constraint will vary with respect to source direction as we
saw above. It will also depend on the uncertain source
distance. To account for these uncertainties, we provide the
range of values from the lowest to the highest possible
within the 90% confidence intervals with respect to source
direction and the 90% credible interval with respect
to source distance. For simplicity, we treat the estimated
source distance and its uncertainty independent of the
source direction. We consider both of the distinct sky
regions to provide an inclusive range. For our two spectral
FIG. 2. Upper limit on the high-energy neutrino spectral
fluence (
ν
μ
þ
̄
ν
μ
) from GW150914 as a function of source
direction, assuming
dN=dE
E
2
(top) and
dN=dE
E
2
exp
½
ffiffi
ð
p
E=
100
TeV
Þ
(bottom) neutrino spectra. The region
surrounded by a white line shows the part of the sky in which
ANTARES
is more sensitive (close to nadir), while on the rest of the
sky, IceCube is more sensitive. For comparison, the 50% CL and
90% CL contours of the GW sky map are also shown.
TABLE II. Upper limits on neutrino spectral fluence (
ν
μ
þ
̄
ν
μ
)
from GW150914, separately for different spectral ranges, at
Dec
¼
70
°. We assume
dN=dE
E
2
within each energy band.
Energy range
Limit [GeV cm
2
]
100 GeV
1 TeV
150
1TeV
10 TeV
18
10 TeV
100 TeV
5.1
100 TeV
1 PeV
5.5
1 PeV
10 PeV
2.8
10 PeV
100 PeV
6.5
100 PeV
1 EeV
28
S. ADRIÁN-MARTÍNEZ
et al.
PHYSICAL REVIEW D
93,
122010 (2016)
122010-4
models, we obtain the following upper limit on the total
energy radiated in neutrinos:
E
ul
ν
;
tot
¼
5
.
4
×
10
51
1
.
3
×
10
54
erg
ð
1
Þ
E
ul
ð
cutoff
Þ
ν
;
tot
¼
6
.
6
×
10
51
3
.
7
×
10
54
erg
ð
2
Þ
with the first and second lines of the equation correspond-
ing to the spectral models without and with cutoff,
respectively. For comparison, the total energy radiated in
GWs from the source is
5
×
10
54
erg. This value can
also be compared to high-energy emission expected in
some scenarios for accreting stellar-mass black holes.
For example, typical GRB isotropic-equivalent energies
are
10
51
erg for long and
10
49
erg for short GRBs
[52]
.
The total energy radiated in high-energy neutrinos in the
case of GRBs can be comparable
[53
57]
or in some cases
much greater
[58,59]
than the high-energy electromagnetic
emission. There is little reason, however, to expect an
associated GRB for a binary black hole merger (see,
nevertheless,
[60]
).
V. CONCLUSION
The results above represent the first concrete limit on
neutrino emission from this GW source type, and the first
neutrino follow-up of a significant GW event. With the
continued increase of Advanced LIGO-Virgo sensitivities
for the next observation periods, and the implied source rate
of
2
400
Gpc
3
yr
1
in the comoving frame based on this
first detection
[61]
, we can expect to detect a significant
number of GW sources, allowing for stacked neutrino
analyses and significantly improved constraints. Similar
analyses for the upcoming observation periods of
Advanced LIGO-Virgo will be important to provide con-
straints on or to detect other joint GWand neutrino sources.
Joint GW and neutrino searches will also be used to
improve the efficiency of electromagnetic follow-up obser-
vations over GW-only triggers. Given the significantly more
accurate direction reconstruction of neutrinos (
1
deg
2
for
track events in IceCube
[40,41]
and
0
.
2
deg
2
in A
NTARES
[62]
)comparedtoGWs(
100
deg
2
), a joint event candidate
provides a greatly reduced sky area for follow-up observa-
tories
[63]
. The delay induced by the event filtering
and reconstruction after the recorded trigger time is typically
3
5sforA
NTARES
[44]
,20
30 s for IceCube
[64]
,
and
O
ð
1
min
Þ
for LIGO-Virgo, making data available for
rapid analyses.
ACKNOWLEDGMENTS
The authors acknowledge the financial support of the
funding agencies: Centre National de la Recherche
Scientifique (CNRS), Commissariat à l
énergie atomique
et aux énergies alternatives (CEA), Commission
Européenne (FEDER fund and Marie Curie Program),
Institut Universitaire de France (IUF), IdEx program and
UnivEarthS Labex program at Sorbonne Paris Cité (ANR-
10-LABX-0023 and ANR-11-IDEX-0005-02), Région Île-
de-France (DIM-ACAV), Région Alsace (contrat CPER),
Région Provence-Alpes-Côte d
Azur, Département du Var
and Ville de La Seyne-sur-Mer, France; Bundesministerium
für Bildung und Forschung (BMBF), Germany; Istituto
Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor
Fundamenteel Onderzoek der Materie (FOM), Nederlandse
organisatie voor Wetenschappelijk Onderzoek (NWO), the
Netherlands; Council of the President of the Russian
Federation for young scientists and leading scientific
schools supporting grants, Russia; National Authority for
Scientific Research (ANCS), Romania; Ministerio de
Economía y Competitividad (MINECO), Prometeo and
Grisolía programs of Generalitat Valenciana and
MultiDark, Spain; Agence de l
Oriental and CNRST,
Morocco. We also acknowledge the technical support of
Ifremer, AIM and Foselev Marine for the sea operation and
the CC-IN2P3 for the computing facilities. We acknowl-
edge the support from the following agencies: U.S.
National Science Foundation-Office of Polar Programs,
U.S. National Science Foundation-Physics Division,
University of Wisconsin Alumni Research Foundation,
the Grid Laboratory Of Wisconsin (GLOW) grid infra-
structure at the University of Wisconsin - Madison, the
Open Science Grid (OSG) grid infrastructure; U.S.
Department of Energy, and National Energy Research
Scientific Computing Center, the Louisiana Optical
Network Initiative (LONI) grid computing resources;
Natural Sciences and Engineering Research Council of
Canada, WestGrid and Compute/Calcul Canada; Swedish
Research Council, Swedish Polar Research Secretariat,
Swedish National Infrastructure for Computing (SNIC),
and Knut and Alice Wallenberg Foundation, Sweden;
German Ministry for Education and Research (BMBF),
Deutsche Forschungsgemeinschaft (DFG), Helmholtz
Alliance for Astroparticle Physics (HAP), Research
Department of Plasmas with Complex Interactions
(Bochum), Germany; Fund for Scientific Research
(FNRS-FWO), FWO Odysseus programme, Flanders
Institute to encourage scientific and technological research
in industry (IWT), Belgian Federal Science Policy Office
(Belspo); University of Oxford, United Kingdom; Marsden
Fund, New Zealand; Australian Research Council;
Japan Society for Promotion of Science (JSPS); the
Swiss National Science Foundation (SNSF), Switzerland;
National Research Foundation of Korea (NRF); Danish
National Research Foundation, Denmark (DNRF). The
authors gratefully acknowledge the support of the United
States National Science Foundation (NSF) for the con-
struction and operation of the LIGO Laboratory and
Advanced LIGO as well as the Science and Technology
Facilities Council (STFC) of the United Kingdom,
the Max-Planck-Society (MPS), and the State of
HIGH-ENERGY NEUTRINO FOLLOW-UP SEARCH OF
...
PHYSICAL REVIEW D
93,
122010 (2016)
122010-5
Niedersachsen/Germany for support of the construction
of Advanced LIGO and construction and operation of
the GEO600 detector. Additional support for Advanced
LIGO was provided by the Australian Research Council.
The authors gratefully acknowledge the Italian Istituto
Nazionale di Fisica Nucleare (INFN), the French Centre
National de la Recherche Scientifique (CNRS) and the
Foundation for Fundamental Research on Matter supported
by the Netherlands Organisation for Scientific Research,
for the construction and operation of the Virgo detector and
the creation and support of the EGO consortium. The
authors also gratefully acknowledge research support from
these agencies as well as by the Council of Scientific and
Industrial Research of India, Department of Science and
Technology, India, Science & Engineering Research
Board (SERB), India, Ministry of Human Resource
Development, India, the Spanish Ministerio de Economía
y Competitividad, the Conselleria d
Economia i
Competitivitat and Conselleria d
Educació, Cultura i
Universitats of the Govern de les Illes Balears, the
National Science Centre of Poland, the European
Commission, the Royal Society, the Scottish Funding
Council, the Scottish Universities Physics Alliance, the
Hungarian Scientific Research Fund (OTKA), the Lyon
Institute of Origins (LIO), the National Research
Foundation of Korea, Industry Canada and the Province
of Ontario through the Ministry of Economic Development
and Innovation, the Natural Science and Engineering
Research Council Canada, Canadian Institute for
Advanced Research, the Brazilian Ministry of Science,
Technology, and Innovation, Russian Foundation for Basic
Research, the Leverhulme Trust, the Research Corporation,
Ministry of Science and Technology (MOST), Taiwan and
the Kavli Foundation. The authors gratefully acknowledge
the support of the NSF, STFC, MPS, INFN, CNRS and the
State of Niedersachsen/Germany for provision of computa-
tional resources. This article has LIGO document number
LIGO-P1500271.
[1] J. Aasi
et al.
,
Classical Quantum Gravity
32
, 074001
(2015)
.
[2] B. P. Abbott
et al.
,
Living Rev. Relativ.
19
, 1 (2016)
.
[3] I. Bartos, P. Brady, and S. Márka,
Classical Quantum
Gravity
30
, 123001 (2013)
.
[4] M. W. E. Smith
et al.
,
Astropart. Phys.
45
, 56 (2013)
.
[5] S. Ando
et al.
,
Rev. Mod. Phys.
85
, 1401 (2013)
.
[6] X. Fan, C. Messenger, and I. S. Heng,
Astrophys. J.
795
,43
(2014)
.
[7] D. Eichler, M. Livio, T. Piran, and D. N. Schramm,
Nature
(London)
340
, 126 (1989)
.
[8] S. E. Woosley,
Astrophys. J.
405
, 273 (1993)
.
[9] A. Achterberg
et al.
,
Astropart. Phys.
26
, 155 (2006)
.
[10] R. Abbasi
et al.
,
Nucl. Instrum. Methods Phys. Res., Sect. A
601
, 294 (2009)
.
[11] R. Abbasi
et al.
,
Nucl. Instrum. Methods Phys. Res., Sect. A
618
, 139 (2010)
.
[12] M. Ageron
et al.
,
Nucl. Instrum. Methods Phys. Res., Sect.
A
656
, 11 (2011)
.
[13] J. A. Aguilar
et al.
,
Nucl. Instrum. Methods Phys. Res.,
Sect. A
570
, 107 (2007)
.
[14] J. A. Aguilar
et al.
,
Nucl. Instrum. Methods Phys. Res.,
Sect. A
555
, 132 (2005)
.
[15] S. Adrián-Martínez
et al.
,
arXiv:1601.07459.
[16] M. G. Aartsen
et al.
,
arXiv:1412.5106.
[17] M. G. Aartsen
et al.
,
arXiv:1401.2046.
[18] A. Avrorin
et al.
,
Nucl. Instrum. Methods Phys. Res., Sect.
A
626-627
, S13 (2011)
.
[19] M. G. Aartsen
et al.
,
Phys. Rev. Lett.
113
, 101101 (2014)
.
[20] M. G. Aartsen
et al.
,
Phys. Rev. Lett.
115
, 081102
(2015)
.
[21] M. G. Aartsen
et al.
,
Phys. Rev. D
91
, 022001 (2015)
.
[22] M. G. Aartsen
et al.
,
Astrophys. J.
809
, 98 (2015)
.
[23] I. Bartos, C. Finley, A. Corsi, and S. Márka,
Phys. Rev. Lett.
107
, 251101 (2011)
.
[24] S. Adrián-Martínez
et al.
,
J. Cosmol. Astropart. Phys. 06
(2013) 008.
[25] M. G. Aartsen
et al.
,
Phys. Rev. D
90
, 102002 (2014)
.
[26] B. P. Abbott
et al.
(LIGO Scientific Collaboration and Virgo
Collaboration),
Phys. Rev. Lett.
116
, 061102 (2016)
.
[27] P. Mészáros,
Annu. Rev. Astron. Astrophys.
40
, 137 (2002)
.
[28] S. Klimenko, I. Yakushin, A. Mercer, and G. Mitselmakher,
Classical Quantum Gravity
25
, 114029 (2008)
.
[29] S. Klimenko
et al.
,
Phys. Rev. D
93
, 122003 (2016)
.
[30] B. Abbott
et al.
,
Phys. Rev. D
93
, 042004 (2016)
.
[31] B. Abbott
et al.
,
arXiv:1602.03839.
[32] B. Abbott
et al.
,
arXiv:1602.03840 [Phys. Rev. Lett. (to be
published)].
[33] J. Aasi
et al.
,
Phys. Rev. D
88
, 062001 (2013)
.
[34] J. Veitch
et al.
,
Phys. Rev. D
91
, 042003 (2015)
.
[35] B. Baret
et al.
,
Astropart. Phys.
35
, 1 (2011)
.
[36] S. Razzaque, P. Mészáros, and E. Waxman,
Phys. Rev. D
68
,
083001 (2003)
.
[37] I. Bartos, B. Dasgupta, and S. Márka,
Phys. Rev. D
86
,
083007 (2012)
.
[38] I. Bartos and S. Márka,
Phys. Rev. D
90
, 101301 (2014)
.
[39] M. G. Aartsen
et al.
,
Astrophys. J.
796
, 109 (2014)
.
[40] M. G. Aartsen
et al.
,
Phys. Rev. D
89
, 102004 (2014)
.
[41] M. G. Aartsen
et al.
,
J. Instrum.
9
, P03009 (2014)
.
[42] IceCube Collaboration
et al.
,
Astropart. Phys.
78
, 1 (2016)
.
[43] R. Abbasi
et al.
,
Astron. Astrophys.
535
, A109 (2011)
.
[44] S. Adrian-Martinez
et al.
,
J. Cosmol. Astropart. Phys. 02
(2016) 062.
[45] J. A. Aguilar
et al.
,
Astropart. Phys.
34
, 652 (2011)
.
[46] S. Adrián-Martínez
et al.
,
Eur. Phys. J. C
73
, 2606 (2013)
.
[47] B. Baret
et al.
,
Phys. Rev. D
85
, 103004 (2012)
.
S. ADRIÁN-MARTÍNEZ
et al.
PHYSICAL REVIEW D
93,
122010 (2016)
122010-6
[48] U. Jacob and T. Piran,
Nat. Phys.
3
, 87 (2007)
.
[49] B. Abbott
et al.
,
arXiv:1602.03841.
[50] A. Kappes, J. Hinton, C. Stegmann, and F. A. Aharonian,
J. Phys. Conf. Ser.
60
, 243 (2007)
.
[51] S. Adrián-Martínez
et al.
,
arXiv:1511.02149.
[52] P. Mészáros,
Rep. Prog. Phys.
69
, 2259 (2006)
.
[53] P. Mészáros,
arXiv:1511.01396.
[54] J. N. Bahcall and P. Mészáros,
Phys. Rev. Lett.
85
, 1362
(2000)
.
[55] I. Bartos, A. M. Beloborodov, K. Hurley, and S. Márka,
Phys. Rev. Lett.
110
, 241101 (2013)
.
[56] K. Murase, K. Kashiyama, and P. Mészáros,
Phys. Rev. Lett.
111
, 131102 (2013)
.
[57] K. Murase, B. Dasgupta, and T. A. Thompson,
Phys. Rev. D
89
, 043012 (2014)
.
[58] P. Mészáros and E. Waxman,
Phys. Rev. Lett.
87
, 171102
(2001)
.
[59] K. Murase and K. Ioka,
Phys. Rev. Lett.
111
, 121102
(2013)
.
[60] V. Connaughton
et al.
,
arXiv:1602.03920.
[61] B. Abbott
et al.
,
arXiv:1602.03842.
[62] S. Adrián-Martínez
et al.
,
Astrophys. J. Lett.
786
,L5
(2014)
.
[63] S. Nissanke, M. Kasliwal, and A. Georgieva,
Astrophys. J.
767
, 124 (2013)
.
[64] M. G. Aartsen
et al.
,
arXiv:1510.05222.
S. Adrián-Martínez,
1
A. Albert,
2
M. André,
3
M. Anghinolfi,
4
G. Anton,
5
M. Ardid,
1
J.-J. Aubert,
6
T. Avgitas,
7
B. Baret,
7
J. Barrios-Martí,
8
S. Basa,
9
V. Bertin,
6
S. Biagi,
10
R. Bormuth,
11,12
M. C. Bouwhuis,
11
R. Bruijn,
11,13
J. Brunner,
6
J. Busto,
6
A. Capone,
14,15
L. Caramete,
16
J. Carr,
6
S. Celli,
14,15,17
T. Chiarusi,
18
M. Circella,
19
A. Coleiro,
7
R. Coniglione,
10
H. Costantini,
6
P. Coyle,
6
A. Creusot,
7
A. Deschamps,
20
G. De Bonis,
14,15
C. Distefano,
10
C. Donzaud,
7,21
D. Dornic,
6
D. Drouhin,
2
T. Eberl,
5
I. El Bojaddaini,
22
D. Elsässer,
23
A. Enzenhöfer,
5
K. Fehn,
5
I. Felis,
24
L. A. Fusco,
25,18
S. Galatà,
7
P. Gay,
26,27
S. Geißelsöder,
5
K. Geyer,
5
V. Giordano,
28
A. Gleixner,
5
H. Glotin,
29,30
R. Gracia-Ruiz,
7
K. Graf,
5
S. Hallmann,
5
H. van Haren,
31
A. J. Heijboer,
11
Y. Hello,
20
J. J. Hernández-Rey,
8
J. Hößl,
5
J. Hofestädt,
5
C. Hugon,
4,32
G. Illuminati,
14,15
C. W. James,
5
M. de Jong,
11,12
M. Jongen,
11
M. Kadler,
23
O. Kalekin,
5
U. Katz,
5
D. Kießling,
5
A. Kouchner,
7,30
M. Kreter,
23
I. Kreykenbohm,
33
V. Kulikovskiy,
10,34
C. Lachaud,
7
R. Lahmann,
5
D. Lefèvre,
35
E. Leonora,
28
S. Loucatos,
36
M. Marcelin,
9
A. Margiotta,
25,18
A. Marinelli,
37,38
J. A. Martínez-Mora,
1
A. Mathieu,
6
K. Melis,
13
T. Michael,
11
P. Migliozzi,
39
A. Moussa,
22
C. Mueller,
23
E. Nezri,
9
G. E. P
̆
av
̆
ala
ş
,
16
C. Pellegrino,
25,18
C. Perrina,
14,15
P. Piattelli,
10
V. Popa,
16
T. Pradier,
40
C. Racca,
2
G. Riccobene,
10
K. Roensch,
5
M. Saldaña,
1
D. F. E. Samtleben,
11,12
A. Sánchez-Losa,
8,41
M. Sanguineti,
4,32
P. Sapienza,
10
J. Schnabel,
5
F. Schüssler,
36
T. Seitz,
5
C. Sieger,
5
M. Spurio,
25,18
Th. Stolarczyk,
36
M. Taiuti,
4,32
A. Trovato,
10
M. Tselengidou,
5
D. Turpin,
6
C. Tönnis,
8
B. Vallage,
36,27
C. Vallée,
6
V. Van Elewyck,
7
D. Vivolo,
39,42
S. Wagner,
5
J. Wilms,
33
J. D. Zornoza,
8
and J. Zúñiga
8
(
A
NTARES
Collaboration)
M. G. Aartsen,
43
K. Abraham,
44
M. Ackermann,
45
J. Adams,
46
J. A. Aguilar,
47
M. Ahlers,
48
M. Ahrens,
49
D. Altmann,
5
T. Anderson,
50
I. Ansseau,
47
G. Anton,
5
M. Archinger,
51
C. Arguelles,
52
T. C. Arlen,
50
J. Auffenberg,
53
X. Bai,
54
S. W. Barwick,
55
V. Baum,
51
R. Bay,
56
J. J. Beatty,
57,58
J. Becker Tjus,
59
K.-H. Becker,
60
E. Beiser,
48
S. BenZvi,
61
P. Berghaus,
45
D. Berley,
62
E. Bernardini,
45
A. Bernhard,
44
D. Z. Besson,
63
G. Binder,
64,56
D. Bindig,
60
M. Bissok,
53
E. Blaufuss,
62
J. Blumenthal,
53
D. J. Boersma,
65
C. Bohm,
49
M. Börner,
66
F. Bos,
59
D. Bose,
67
S. Böser,
51
O. Botner,
65
J. Braun,
48
L. Brayeur,
68
H.-P. Bretz,
45
N. Buzinsky,
69
J. Casey,
70
M. Casier,
68
E. Cheung,
62
D. Chirkin,
48
A. Christov,
71
K. Clark,
72
L. Classen,
5
S. Coenders,
44
G. H. Collin,
52
J. M. Conrad,
52
D. F. Cowen,
50,73
A. H. Cruz Silva,
45
J. Daughhetee,
70
J. C. Davis,
57
M. Day,
48
J. P. A. M. de André,
74
C. De Clercq,
68
E. del Pino Rosendo,
51
H. Dembinski,
75
S. De Ridder,
76
P. Desiati,
48
K. D. de Vries,
68
G. de Wasseige,
68
M. de With,
77
T. DeYoung,
74
J. C. Díaz-Vélez,
48
V. di Lorenzo,
51
H. Dujmovic,
67
J. P. Dumm,
49
M. Dunkman,
50
B. Eberhardt,
51
T. Ehrhardt,
51
B. Eichmann,
59
S. Euler,
65
P. A. Evenson,
75
S. Fahey,
48
A. R. Fazely,
78
J. Feintzeig,
48
J. Felde,
62
K. Filimonov,
56
C. Finley,
49
S. Flis,
49
C.-C. Fösig,
51
T. Fuchs,
66
T. K. Gaisser,
75
R. Gaior,
79
J. Gallagher,
80
L. Gerhardt,
64,56
K. Ghorbani,
48
D. Gier,
53
L. Gladstone,
48
M. Glagla,
53
T. Glüsenkamp,
45
A. Goldschmidt,
64
G. Golup,
68
J. G. Gonzalez,
75
D. Góra,
45
D. Grant,
69
Z. Griffith,
48
C. Ha,
64,56
C. Haack,
53
A. Haj Ismail,
76
A. Hallgren,
65
F. Halzen,
48
E. Hansen,
81
B. Hansmann,
53
T. Hansmann,
53
K. Hanson,
48
D. Hebecker,
77
D. Heereman,
47
K. Helbing,
60
R. Hellauer,
62
S. Hickford,
60
J. Hignight,
74
G. C. Hill,
43
K. D. Hoffman,
62
R. Hoffmann,
60
K. Holzapfel,
44
A. Homeier,
82
K. Hoshina,
48
,
F. Huang,
50
M. Huber,
44
W. Huelsnitz,
62
P. O. Hulth,
49
K. Hultqvist,
49
S. In,
67
A. Ishihara,
79
E. Jacobi,
45
G. S. Japaridze,
83
M. Jeong,
67
K. Jero,
48
B. J. P. Jones,
52
M. Jurkovic,
44
A. Kappes,
5
T. Karg,
45
A. Karle,
48
U. Katz,
5
M. Kauer,
48,84
A. Keivani,
50
J. L. Kelley,
48
J. Kemp,
53
A. Kheirandish,
48
HIGH-ENERGY NEUTRINO FOLLOW-UP SEARCH OF
...
PHYSICAL REVIEW D
93,
122010 (2016)
122010-7
M. Kim,
67
T. Kintscher,
45
J. Kiryluk,
85
S. R. Klein,
64,56
G. Kohnen,
86
R. Koirala,
75
H. Kolanoski,
77
R. Konietz,
53
L. Köpke,
51
C. Kopper,
69
S. Kopper,
60
D. J. Koskinen,
81
M. Kowalski,
77,45
K. Krings,
44
G. Kroll,
51
M. Kroll,
59
G. Krückl,
51
J. Kunnen,
68
S. Kunwar,
45
N. Kurahashi,
87
T. Kuwabara,
79
M. Labare,
76
J. L. Lanfranchi,
50
M. J. Larson,
81
D. Lennarz,
74
M. Lesiak-Bzdak,
85
M. Leuermann,
53
J. Leuner,
53
L. Lu,
79
J. Lünemann,
68
J. Madsen,
88
G. Maggi,
68
K. B. M. Mahn,
74
M. Mandelartz,
59
R. Maruyama,
84
K. Mase,
79
H. S. Matis,
64
R. Maunu,
62
F. McNally,
48
K. Meagher,
47
M. Medici,
81
M. Meier,
66
A. Meli,
76
T. Menne,
66
G. Merino,
48
T. Meures,
47
S. Miarecki,
64,56
E. Middell,
45
L. Mohrmann,
45
T. Montaruli,
71
R. Morse,
48
R. Nahnhauer,
45
U. Naumann,
60
G. Neer,
74
H. Niederhausen,
85
S. C. Nowicki,
69
D. R. Nygren,
64
A. Obertacke Pollmann,
60
A. Olivas,
62
A. Omairat,
60
A. O
Murchadha,
47
T. Palczewski,
89
H. Pandya,
75
D. V. Pankova,
50
L. Paul,
53
J. A. Pepper,
89
C. Pérez de los Heros,
65
C. Pfendner,
57
D. Pieloth,
66
E. Pinat,
47
J. Posselt,
60
P. B. Price,
56
G. T. Przybylski,
64
M. Quinnan,
50
C. Raab,
47
L. Rädel,
53
M. Rameez,
71
K. Rawlins,
90
R. Reimann,
53
M. Relich,
79
E. Resconi,
44
W. Rhode,
66
M. Richman,
87
S. Richter,
48
B. Riedel,
69
S. Robertson,
43
M. Rongen,
53
C. Rott,
67
T. Ruhe,
66
D. Ryckbosch,
76
L. Sabbatini,
48
H.-G. Sander,
51
A. Sandrock,
66
J. Sandroos,
51
S. Sarkar,
81,91
K. Schatto,
51
M. Schimp,
53
P. Schlunder,
66
T. Schmidt,
62
S. Schoenen,
53
S. Schöneberg,
59
A. Schönwald,
45
L. Schumacher,
53
D. Seckel,
75
S. Seunarine,
88
D. Soldin,
60
M. Song,
62
G. M. Spiczak,
88
C. Spiering,
45
M. Stahlberg,
53
M. Stamatikos,
57
T. Stanev,
75
A. Stasik,
45
A. Steuer,
51
T. Stezelberger,
64
R. G. Stokstad,
64
A. Stößl,
45
R. Ström,
65
N. L. Strotjohann,
45
G. W. Sullivan,
62
M. Sutherland,
57
H. Taavola,
65
I. Taboada,
70
J. Tatar,
64,56
S. Ter-Antonyan,
78
A. Terliuk,
45
G. Te
š
i
ć
,
50
S. Tilav,
75
P. A. Toale,
89
M. N. Tobin,
48
S. Toscano,
68
D. Tosi,
48
M. Tselengidou,
5
A. Turcati,
44
E. Unger,
65
M. Usner,
45
S. Vallecorsa,
71
J. Vandenbroucke,
48
N. van Eijndhoven,
68
S. Vanheule,
76
J. van Santen,
45
J. Veenkamp,
44
M. Vehring,
53
M. Voge,
82
M. Vraeghe,
76
C. Walck,
49
A. Wallace,
43
M. Wallraff,
53
N. Wandkowsky,
48
Ch. Weaver,
69
C. Wendt,
48
S. Westerhoff,
48
B. J. Whelan,
43
K. Wiebe,
51
C. H. Wiebusch,
53
L. Wille,
48
D. R. Williams,
89
L. Wills,
87
H. Wissing,
62
M. Wolf,
49
T. R. Wood,
69
K. Woschnagg,
56
D. L. Xu,
48
X. W. Xu,
78
Y. Xu,
85
J. P. Yanez,
45
G. Yodh,
55
S. Yoshida,
79
and M. Zoll
49
(IceCube Collaboration)
B. P. Abbott,
92
R. Abbott,
92
T. D. Abbott,
93
M. R. Abernathy,
92
F. Acernese,
94,95
K. Ackley,
96
C. Adams,
97
T. Adams,
98
P. Addesso,
94
R. X. Adhikari,
92
V. B. Adya,
99
C. Affeldt,
99
M. Agathos,
100
K. Agatsuma,
100
N. Aggarwal,
101
O. D. Aguiar,
102
L. Aiello,
103,104
A. Ain,
105
P. Ajith,
106
B. Allen,
99,107,108
A. Allocca,
109,110
P. A. Altin,
111
S. B. Anderson,
92
W. G. Anderson,
107
K. Arai,
92
M. C. Araya,
92
C. C. Arceneaux,
112
J. S. Areeda,
113
N. Arnaud,
114
K. G. Arun,
115
S. Ascenzi,
116,104
G. Ashton,
117
M. Ast,
118
S. M. Aston,
97
P. Astone,
119
P. Aufmuth,
99
C. Aulbert,
99
S. Babak,
120
P. Bacon,
121
M. K. M. Bader,
100
P. T. Baker,
122
F. Baldaccini,
123,124
G. Ballardin,
125
S. W. Ballmer,
126
J. C. Barayoga,
92
S. E. Barclay,
127
B. C. Barish,
92
D. Barker,
128
F. Barone,
94,95
B. Barr,
127
L. Barsotti,
101
M. Barsuglia,
121
D. Barta,
129
J. Bartlett,
128
I. Bartos,
130
R. Bassiri,
131
A. Basti,
109,110
J. C. Batch,
128
C. Baune,
99
V. Bavigadda,
125
M. Bazzan,
132,133
B. Behnke,
120
M. Bejger,
134
C. Belczynski,
135
A. S. Bell,
127
C. J. Bell,
127
B. K. Berger,
92
J. Bergman,
128
G. Bergmann,
99
C. P. L. Berry,
136
D. Bersanetti,
137,138
A. Bertolini,
100
J. Betzwieser,
97
S. Bhagwat,
126
R. Bhandare,
139
I. A. Bilenko,
140
G. Billingsley,
92
J. Birch,
97
R. Birney,
141
S. Biscans,
101
A. Bisht,
99,108
M. Bitossi,
125
C. Biwer,
126
M. A. Bizouard,
114
J. K. Blackburn,
92
C. D. Blair,
142
D. G. Blair,
142
R. M. Blair,
128
S. Bloemen,
143
O. Bock,
99
T. P. Bodiya,
101
M. Boer,
144
G. Bogaert,
144
C. Bogan,
99
A. Bohe,
120
P. Bojtos,
145
C. Bond,
136
F. Bondu,
146
R. Bonnand,
98
B. A. Boom,
100
R. Bork,
92
V. Boschi,
109,110
S. Bose,
147,105
Y. Bouffanais,
121
A. Bozzi,
125
C. Bradaschia,
110
P. R. Brady,
107
V. B. Braginsky,
140
M. Branchesi,
148,149
J. E. Brau,
150
T. Briant,
151
A. Brillet,
144
M. Brinkmann,
99
V. Brisson,
114
P. Brockill,
107
A. F. Brooks,
92
D. A. Brown,
126
D. D. Brown,
136
N. M. Brown,
101
C. C. Buchanan,
93
A. Buikema,
101
T. Bulik,
135
H. J. Bulten,
152,100
A. Buonanno,
120,153
D. Buskulic,
98
C. Buy,
121
R. L. Byer,
131
L. Cadonati,
154
G. Cagnoli,
155,156
C. Cahillane,
92
J. Calderón Bustillo,
157,154
T. Callister,
92
E. Calloni,
158,95
J. B. Camp,
159
K. C. Cannon,
160
J. Cao,
161
C. D. Capano,
99
E. Capocasa,
121
F. Carbognani,
125
S. Caride,
162
J. Casanueva Diaz,
114
C. Casentini,
116,104
S. Caudill,
107
M. Cavaglià,
112
F. Cavalier,
114
R. Cavalieri,
125
G. Cella,
110
C. B. Cepeda,
92
L. Cerboni Baiardi,
148,149
G. Cerretani,
109,110
E. Cesarini,
116,104
R. Chakraborty,
92
T. Chalermsongsak,
92
S. J. Chamberlin,
163
M. Chan,
127
S. Chao,
164
P. Charlton,
165
E. Chassande-Mottin,
121
H. Y. Chen,
166
Y. Chen,
167
C. Cheng,
164
A. Chincarini,
138
A. Chiummo,
125
H. S. Cho,
168
M. Cho,
153
J. H. Chow,
111
N. Christensen,
169
Q. Chu,
142
S. Chua,
151
S. Chung,
142
G. Ciani,
96
F. Clara,
128
J. A. Clark,
154
F. Cleva,
144
E. Coccia,
116,103,104
P.-F. Cohadon,
151
A. Colla,
170,119
C. G. Collette,
171
L. Cominsky,
172
M. Constancio Jr.,
102
A. Conte,
170,119
L. Conti,
133
D. Cook,
128
T. R. Corbitt,
93
N. Cornish,
122
A. Corsi,
162
S. Cortese,
125
C. A. Costa,
102
M. W. Coughlin,
169
S. B. Coughlin,
173
J.-P. Coulon,
144
S. T. Countryman,
130
P. Couvares,
92
E. E. Cowan,
154
S. ADRIÁN-MARTÍNEZ
et al.
PHYSICAL REVIEW D
93,
122010 (2016)
122010-8