of 8
Measurement of the absolute branching fractions for
D

s
!



and
extraction of the decay constant
f
D
s
P. del Amo Sanchez,
1
J. P. Lees,
1
V. Poireau,
1
E. Prencipe,
1
V. Tisserand,
1
J. Garra Tico,
2
E. Grauges,
2
M. Martinelli,
3a,3b
A. Palano,
3a,3b
M. Pappagallo,
3a,3b
G. Eigen,
4
B. Stugu,
4
L. Sun,
4
M. Battaglia,
5
D. N. Brown,
5
B. Hooberman,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
G. Lynch,
5
I. L. Osipenkov,
5
T. Tanabe,
5
C. M. Hawkes,
6
A. T. Watson,
6
H. Koch,
7
T. Schroeder,
7
D. J. Asgeirsson,
8
C. Hearty,
8
T. S. Mattison,
8
J. A. McKenna,
8
A. Khan,
9
A. Randle-Conde,
9
V. E. Blinov,
10
A. R. Buzykaev,
10
V. P. Druzhinin,
10
V. B. Golubev,
10
A. P. Onuchin,
10
S. I. Serednyakov,
10
Yu. I. Skovpen,
10
E. P. Solodov,
10
K. Yu. Todyshev,
10
A. N. Yushkov,
10
M. Bondioli,
11
S. Curry,
11
D. Kirkby,
11
A. J. Lankford,
11
M. Mandelkern,
11
E. C. Martin,
11
D. P. Stoker,
11
H. Atmacan,
12
J. W. Gary,
12
F. Liu,
12
O. Long,
12
G. M. Vitug,
12
C. Campagnari,
13
T. M. Hong,
13
D. Kovalskyi,
13
J. D. Richman,
13
C. West,
13
A. M. Eisner,
14
C. A. Heusch,
14
J. Kroseberg,
14
W. S. Lockman,
14
A. J. Martinez,
14
T. Schalk,
14
B. A. Schumm,
14
A. Seiden,
14
L. O. Winstrom,
14
C. H. Cheng,
15
D. A. Doll,
15
B. Echenard,
15
D. G. Hitlin,
15
P. Ongmongkolkul,
15
F. C. Porter,
15
A. Y. Rakitin,
15
R. Andreassen,
16
M. S. Dubrovin,
16
G. Mancinelli,
16
B. T. Meadows,
16
M. D. Sokoloff,
16
P. C. Bloom,
17
W. T. Ford,
17
A. Gaz,
17
M. Nagel,
17
U. Nauenberg,
17
J. G. Smith,
17
S. R. Wagner,
17
R. Ayad,
18,
*
W. H. Toki,
18
H. Jasper,
19
T. M. Karbach,
19
J. Merkel,
19
A. Petzold,
19
B. Spaan,
19
K. Wacker,
19
M. J. Kobel,
20
K. R. Schubert,
20
R. Schwierz,
20
D. Bernard,
21
M. Verderi,
21
P. J. Clark,
22
S. Playfer,
22
J. E. Watson,
22
M. Andreotti,
23a,23b
D. Bettoni,
23a
C. Bozzi,
23a
R. Calabrese,
23a,23b
A. Cecchi,
23a,23b
G. Cibinetto,
23a,23b
E. Fioravanti,
23a,23b
P. Franchini,
23a,23b
E. Luppi,
23a,23b
M. Munerato,
23a,23b
M. Negrini,
23a,23b
A. Petrella,
23a,23b
L. Piemontese,
23a
R. Baldini-Ferroli,
24
A. Calcaterra,
24
R. de Sangro,
24
G. Finocchiaro,
24
M. Nicolaci,
24
S. Pacetti,
24
P. Patteri,
24
I. M. Peruzzi,
24,
M. Piccolo,
24
M. Rama,
24
A. Zallo,
24
R. Contri,
25a,25b
E. Guido,
25a,25b
M. Lo Vetere,
25a,25b
M. R. Monge,
25a,25b
S. Passaggio,
25a
C. Patrignani,
25a,25b
E. Robutti,
25a
S. Tosi,
25a,25b
B. Bhuyan,
26
V. Prasad,
26
C. L. Lee,
27
M. Morii,
27
A. Adametz,
28
J. Marks,
28
U. Uwer,
28
F. U. Bernlochner,
29
M. Ebert,
29
H. M. Lacker,
29
T. Lueck,
29
A. Volk,
29
P. D. Dauncey,
30
M. Tibbetts,
30
P. K. Behera,
31
U. Mallik,
31
C. Chen,
32
J. Cochran,
32
H. B. Crawley,
32
L. Dong,
32
W. T. Meyer,
32
S. Prell,
32
E. I. Rosenberg,
32
A. E. Rubin,
32
A. V. Gritsan,
33
Z. J. Guo,
33
N. Arnaud,
34
M. Davier,
34
D. Derkach,
34
J. Firmino da Costa,
34
G. Grosdidier,
34
F. Le Diberder,
34
A. M. Lutz,
34
B. Malaescu,
34
A. Perez,
34
P. Roudeau,
34
M. H. Schune,
34
J. Serrano,
34
V. Sordini,
34,
A. Stocchi,
34
L. Wang,
34
G. Wormser,
34
D. J. Lange,
35
D. M. Wright,
35
I. Bingham,
36
C. A. Chavez,
36
J. P. Coleman,
36
J. R. Fry,
36
E. Gabathuler,
36
R. Gamet,
36
D. E. Hutchcroft,
36
D. J. Payne,
36
C. Touramanis,
36
A. J. Bevan,
37
F. Di Lodovico,
37
R. Sacco,
37
M. Sigamani,
37
G. Cowan,
38
S. Paramesvaran,
38
A. C. Wren,
38
D. N. Brown,
39
C. L. Davis,
39
A. G. Denig,
40
M. Fritsch,
40
W. Gradl,
40
A. Hafner,
40
K. E. Alwyn,
41
D. Bailey,
41
R. J. Barlow,
41
G. Jackson,
41
G. D. Lafferty,
41
J. Anderson,
42
R. Cenci,
42
A. Jawahery,
42
D. A. Roberts,
42
G. Simi,
42
J. M. Tuggle,
42
C. Dallapiccola,
43
E. Salvati,
43
R. Cowan,
44
D. Dujmic,
44
G. Sciolla,
44
M. Zhao,
44
D. Lindemann,
45
P. M. Patel,
45
S. H. Robertson,
45
M. Schram,
45
P. Biassoni,
46a,46b
A. Lazzaro,
46a,46b
V. Lombardo,
46a
F. Palombo,
46a,46b
S. Stracka,
46a,46b
L. Cremaldi,
47
R. Godang,
47,
x
R. Kroeger,
47
P. Sonnek,
47
D. J. Summers,
47
X. Nguyen,
48
M. Simard,
48
P. Taras,
48
G. De Nardo,
49a,49b
D. Monorchio,
49a,49b
G. Onorato,
49a,49b
C. Sciacca,
49a,49b
G. Raven,
50
H. L. Snoek,
50
C. P. Jessop,
51
K. J. Knoepfel,
51
J. M. LoSecco,
51
W. F. Wang,
51
L. A. Corwin,
52
K. Honscheid,
52
R. Kass,
52
J. P. Morris,
52
N. L. Blount,
53
J. Brau,
53
R. Frey,
53
O. Igonkina,
53
J. A. Kolb,
53
R. Rahmat,
53
N. B. Sinev,
53
D. Strom,
53
J. Strube,
53
E. Torrence,
53
G. Castelli,
54a,54b
E. Feltresi,
54a,54b
N. Gagliardi,
54a,54b
M. Margoni,
54a,54b
M. Morandin,
54a
M. Posocco,
54a
M. Rotondo,
54a
F. Simonetto,
54a,54b
R. Stroili,
54a,54b
E. Ben-Haim,
55
G. R. Bonneaud,
55
H. Briand,
55
G. Calderini,
55
J. Chauveau,
55
O. Hamon,
55
Ph. Leruste,
55
G. Marchiori,
55
J. Ocariz,
55
J. Prendki,
55
S. Sitt,
55
M. Biasini,
56a,56b
E. Manoni,
56a,56b
A. Rossi,
56a,56b
C. Angelini,
57a,57b
G. Batignani,
57a,57b
S. Bettarini,
57a,57b
M. Carpinelli,
57a,57b,
k
G. Casarosa,
57a,57b
A. Cervelli,
57a,57b
F. Forti,
57a,57b
M. A. Giorgi,
57a,57b
A. Lusiani,
57a,57c
N. Neri,
57a,57b
E. Paoloni,
57a,57b
G. Rizzo,
57a,57b
J. J. Walsh,
57a
D. Lopes Pegna,
58
C. Lu,
58
J. Olsen,
58
A. J. S. Smith,
58
A. V. Telnov,
58
F. Anulli,
59a
E. Baracchini,
59a,59b
G. Cavoto,
59a
R. Faccini,
59a,59b
F. Ferrarotto,
59a
F. Ferroni,
59a,59b
M. Gaspero,
59a,59b
L. Li Gioi,
59a
M. A. Mazzoni,
59a
G. Piredda,
59a
F. Renga,
59a,59b
T. Hartmann,
60
T. Leddig,
60
H. Schro
̈
der,
60
R. Waldi,
60
T. Adye,
61
B. Franek,
61
E. O. Olaiya,
61
F. F. Wilson,
61
S. Emery,
62
G. Hamel de Monchenault,
62
G. Vasseur,
62
Ch. Ye
`
che,
62
M. Zito,
62
M. T. Allen,
63
D. Aston,
63
D. J. Bard,
63
R. Bartoldus,
63
J. F. Benitez,
63
C. Cartaro,
63
M. R. Convery,
63
J. Dorfan,
63
G. P. Dubois-Felsmann,
63
W. Dunwoodie,
63
R. C. Field,
63
M. Franco Sevilla,
63
B. G. Fulsom,
63
A. M. Gabareen,
63
M. T. Graham,
63
P. Grenier,
63
C. Hast,
63
W. R. Innes,
63
M. H. Kelsey,
63
H. Kim,
63
P. Kim,
63
M. L. Kocian,
63
D. W. G. S. Leith,
63
S. Li,
63
B. Lindquist,
63
S. Luitz,
63
V. Luth,
63
H. L. Lynch,
63
D. B. MacFarlane,
63
H. Marsiske,
63
D. R. Muller,
63
H. Neal,
63
S. Nelson,
63
C. P. O’Grady,
63
I. Ofte,
63
M. Perl,
63
T. Pulliam,
63
B. N. Ratcliff,
63
A. Roodman,
63
PHYSICAL REVIEW D
82,
091103(R) (2010)
RAPID COMMUNICATIONS
1550-7998
=
2010
=
82(9)
=
091103(8)
091103-1
Ó
2010 The American Physical Society
A. A. Salnikov,
63
V. Santoro,
63
R. H. Schindler,
63
J. Schwiening,
63
A. Snyder,
63
D. Su,
63
M. K. Sullivan,
63
S. Sun,
63
K. Suzuki,
63
J. M. Thompson,
63
J. Va’vra,
63
A. P. Wagner,
63
M. Weaver,
63
C. A. West,
63
W. J. Wisniewski,
63
M. Wittgen,
63
D. H. Wright,
63
H. W. Wulsin,
63
A. K. Yarritu,
63
C. C. Young,
63
V. Ziegler,
63
X. R. Chen,
64
W. Park,
64
M. V. Purohit,
64
R. M. White,
64
J. R. Wilson,
64
S. J. Sekula,
65
M. Bellis,
66
P. R. Burchat,
66
A. J. Edwards,
66
T. S. Miyashita,
66
S. Ahmed,
67
M. S. Alam,
67
J. A. Ernst,
67
B. Pan,
67
M. A. Saeed,
67
S. B. Zain,
67
N. Guttman,
68
A. Soffer,
68
P. Lund,
69
S. M. Spanier,
69
R. Eckmann,
70
J. L. Ritchie,
70
A. M. Ruland,
70
C. J. Schilling,
70
R. F. Schwitters,
70
B. C. Wray,
70
J. M. Izen,
71
X. C. Lou,
71
F. Bianchi,
72a,72b
D. Gamba,
72a,72b
M. Pelliccioni,
72a,72b
M. Bomben,
73a,73b
L. Lanceri,
73a,73b
L. Vitale,
73a,73b
N. Lopez-March,
74
F. Martinez-Vidal,
74
D. A. Milanes,
74
A. Oyanguren,
74
J. Albert,
75
Sw. Banerjee,
75
H. H. F. Choi,
75
K. Hamano,
75
G. J. King,
75
R. Kowalewski,
75
M. J. Lewczuk,
75
I. M. Nugent,
75
J. M. Roney,
75
R. J. Sobie,
75
T. J. Gershon,
76
P. F. Harrison,
76
T. E. Latham,
76
E. M. T. Puccio,
76
H. R. Band,
77
S. Dasu,
77
K. T. Flood,
77
Y. Pan,
77
R. Prepost,
77
C. O. Vuosalo,
77
and S. L. Wu
77
(
B
A
B
AR
Collaboration)
1
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universite
́
de Savoie,
CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy;
3b
Dipartimento di Fisica, Universita
`
di Bari, I-70126 Bari, Italy
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
University of Birmingham, Birmingham, B15 2TT, United Kingdom
7
Ruhr Universita
̈
t Bochum, Institut fu
̈
r Experimentalphysik 1, D-44780 Bochum, Germany
8
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
9
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
10
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
11
University of California at Irvine, Irvine, California 92697, USA
12
University of California at Riverside, Riverside, California 92521, USA
13
University of California at Santa Barbara, Santa Barbara, California 93106, USA
14
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
15
California Institute of Technology, Pasadena, California 91125, USA
16
University of Cincinnati, Cincinnati, Ohio 45221, USA
17
University of Colorado, Boulder, Colorado 80309, USA
18
Colorado State University, Fort Collins, Colorado 80523, USA
19
Technische Universita
̈
t Dortmund, Fakulta
̈
t Physik, D-44221 Dortmund, Germany
20
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern- und Teilchenphysik, D-01062 Dresden, Germany
21
Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
22
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
23a
INFN Sezione di Ferrara, I-44100 Ferrara, Italy;
23b
Dipartimento di Fisica, Universita
`
di Ferrara, I-44100 Ferrara, Italy
24
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
25a
INFN Sezione di Genova, I-16146 Genova, Italy;
25b
Dipartimento di Fisica, Universita
`
di Genova, I-16146 Genova, Italy
26
Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
27
Harvard University, Cambridge, Massachusetts 02138, USA
28
Universita
̈
t Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
29
Humboldt-Universita
̈
t zu Berlin, Institut fu
̈
r Physik, Newtonstr. 15, D-12489 Berlin, Germany
30
Imperial College London, London, SW7 2AZ, United Kingdom
31
University of Iowa, Iowa City, Iowa 52242, USA
32
Iowa State University, Ames, Iowa 50011-3160, USA
33
Johns Hopkins University, Baltimore, Maryland 21218, USA
34
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN2P3/CNRS et Universite
́
Paris-Sud 11,
Centre Scientifique d’Orsay, Boite Postale 34, F-91898 Orsay Cedex, France
35
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
36
University of Liverpool, Liverpool L69 7ZE, United Kingdom
37
Queen Mary, University of London, London, E1 4NS, United Kingdom
38
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
39
University of Louisville, Louisville, Kentucky 40292, USA
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
82,
091103(R) (2010)
RAPID COMMUNICATIONS
091103-2
40
Johannes Gutenberg-Universita
̈
t Mainz, Institut fu
̈
r Kernphysik, D-55099 Mainz, Germany
41
University of Manchester, Manchester M13 9PL, United Kingdom
42
University of Maryland, College Park, Maryland 20742, USA
43
University of Massachusetts, Amherst, Massachusetts 01003, USA
44
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
45
McGill University, Montre
́
al, Que
́
bec, Canada H3A 2T8
46a
INFN Sezione di Milano, I-20133 Milano, Italy;
46b
Dipartimento di Fisica, Universita
`
di Milano, I-20133 Milano, Italy
47
University of Mississippi, University, Mississippi 38677, USA
48
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
49a
INFN Sezione di Napoli, I-80126 Napoli, Italy;
49b
Dipartimento di Scienze Fisiche, Universita
`
di Napoli Federico II, I-80126 Napoli, Italy
50
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
51
University of Notre Dame, Notre Dame, Indiana 46556, USA
52
Ohio State University, Columbus, Ohio 43210, USA
53
University of Oregon, Eugene, Oregon 97403, USA
54a
INFN Sezione di Padova, I-35131 Padova, Italy;
54b
Dipartimento di Fisica, Universita
`
di Padova, I-35131 Padova, Italy
55
Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-Paris6,
Universite
́
Denis Diderot-Paris7, F-75252 Paris, France
56a
INFN Sezione di Perugia, I-06100 Perugia, Italy;
56b
Dipartimento di Fisica, Universita
`
di Perugia, I-06100 Perugia, Italy
57a
INFN Sezione di Pisa, I-56127 Pisa, Italy;
57b
Dipartimento di Fisica, Universita
`
di Pisa, I-56127 Pisa, Italy;
57c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
58
Princeton University, Princeton, New Jersey 08544, USA
59a
INFN Sezione di Roma, I-00185 Roma, Italy;
59b
Dipartimento di Fisica, Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
60
Universita
̈
t Rostock, D-18051 Rostock, Germany
61
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
62
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
63
SLAC National Accelerator Laboratory, Stanford, California 94309 USA
64
University of South Carolina, Columbia, South Carolina 29208, USA
65
Southern Methodist University, Dallas, Texas 75275, USA
66
Stanford University, Stanford, California 94305-4060, USA
67
State University of New York, Albany, New York 12222, USA
68
Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel
69
University of Tennessee, Knoxville, Tennessee 37996, USA
70
University of Texas at Austin, Austin, Texas 78712, USA
71
University of Texas at Dallas, Richardson, Texas 75083, USA
72a
INFN Sezione di Torino, I-10125 Torino, Italy;
72b
Dipartimento di Fisica Sperimentale, Universita
`
di Torino, I-10125 Torino, Italy
73a
INFN Sezione di Trieste, I-34127 Trieste, Italy;
73b
Dipartimento di Fisica, Universita
`
di Trieste, I-34127 Trieste, Italy
74
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
75
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
76
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
77
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 25 August 2010; published 10 November 2010)
The absolute branching fractions for the decays
D

s
!



(
¼
e
,

,or

) are measured using a data
sample corresponding to an integrated luminosity of
521 fb

1
collected at center-of-mass energies near
10.58 GeV with the
BABAR
detector at the PEP-II
e
þ
e

collider at SLAC. The number of
D

s
mesons is
determined by reconstructing the recoiling system
DKX
in events of the type
e
þ
e

!
DKXD

s
, where
*
Now at Temple University, Philadelphia, PA 19122, USA.
Also with Universita
`
di Perugia, Dipartimento di Fisica, Perugia, Italy.
Also with Universita
`
di Roma La Sapienza, I-00185 Roma, Italy.
x
Now at University of South Alabama, Mobile, AL 36688, USA.
k
Also with Universita
`
di Sassari, Sassari, Italy.
MEASUREMENT OF THE ABSOLUTE BRANCHING
...
PHYSICAL REVIEW D
82,
091103(R) (2010)
RAPID COMMUNICATIONS
091103-3
D

s
!
D

s

and
X
represents additional pions from fragmentation. The
D

s
!


events are detected
by full or partial reconstruction of the recoiling system
DKX‘
. The branching fraction measurements are
combined to determine the
D

s
decay constant
f
D
s
¼ð
258
:
6

6
:
4

7
:
5
Þ
MeV
, where the first uncer-
tainty is statistical and the second is systematic.
DOI:
10.1103/PhysRevD.82.091103
PACS numbers: 13.20.Fc, 12.38.Gc
The
D

s
meson can decay purely leptonically via anni-
hilation of the

c
and
s
quarks into a
W

boson [
1
]. In the
standard model (SM), the leptonic partial width

ð
D

s
!



Þ
is given by

¼
G
2
F
M
3
D
s
8


m
M
D
s

2

1

m
2
M
2
D
s

2
j
V
cs
j
2
f
2
D
s
;
(1)
where
M
D
s
and
m
are the
D

s
and lepton masses, respec-
tively,
G
F
is the Fermi coupling constant, and
V
cs
is an
element of the Cabibbo-Kobayashi-Maskawa quark mix-
ing matrix. These decays provide a clean probe of the
pseudoscalar meson decay constant
f
D
s
.
Within the SM,
f
D
s
has been predicted using several
methods [
2
]; the most precise value by Follana
et al.
uses
unquenched lattice QCD calculations and gives
f
D
s
¼
ð
241

3
Þ
MeV
. Currently, the experimental values are
significantly larger than this theoretical prediction. The
Heavy Flavor Averaging Group combines the CLEO-c,
Belle, and
BABAR
measurements and reports
f
D
s
¼
ð
254
:
6

5
:
9
Þ
MeV
[
3
]. Models of new physics (NP), in-
cluding a two-Higgs doublet [
4
] and leptoquarks [
5
], may
explain this difference. In addition,
f
D
s
measurements
provide a cross-check of QCD calculations which predict
the impact of NP on
B
and
B
s
meson decay rates and
mixing. High precision determinations of
f
D
s
, both from
experiment and theory, are necessary in order to discover
or constrain effects of NP.
We present absolute measurements of the branching
fractions of leptonic
D

s
decays with a method similar to
the one used by the Belle Collaboration [
6
,
7
]. An inclusive
sample of
D

s
’s is obtained by reconstructing the rest of the
event in reactions of the kind
e
þ
e

!
c

c
!
DKXD

s
,
where
D

s
!
D

s

. Here,
D
represents a charmed hadron
(
D
0
,
D
þ
,
D

,or

þ
c
),
K
represents the
K
0
S
or
K
þ
required
to balance strangeness in the event, and
X
represents addi-
tional pions produced in the
c

c
fragmentation process.
When the charmed hadron is a

þ
c
an additional antiproton
is required to ensure baryon number conservation. No
requirements are placed on the decay products of the
D

s
so that the selected events correspond to an inclusive
sample. The 4-momentum of each
D

s
candidate,
p
r
,is
measured as the difference between the momenta of the
colliding beam particles and the fully reconstructed
DKX
system:
p
r
¼
p
e
þ
þ
p
e


p
D

p
K

p
X

p

. The in-
clusive
D

s
yield is obtained from a binned fit to the
distribution in the recoil mass
m
r
ð
DKX
Þ
ffiffiffiffiffiffi
p
2
r
p
. Within
this inclusive sample, we determine the fraction of events
corresponding to
D

s
!





,
D

s
!
e



e
, and
D

s
!





decays. In the SM, ratios of the branching fractions
for these decays are
e



e
:





:





¼
2

10

5
:
1
:
10
,
due to helicity and phase-space suppression.
The analysis is based on a data sample of
521 fb

1
,
which corresponds to about
677

10
6
e
þ
e

!
c

c
events,
recorded near
ffiffiffi
s
p
¼
10
:
58 GeV
by the
BABAR
detector at
the SLAC PEP-II asymmetric-energy collider. The detec-
tor is described in detail in Refs. [
8
,
9
]. Charged-particle
momenta are measured with a 5 layer, double-sided silicon
vertex tracker and a 40 layer drift chamber inside a 1.5 T
superconducting solenoidal magnet. A calorimeter consist-
ing of 6580 CsI(Tl) crystals (EMC) is used to measure
electromagnetic energy. Measurements from a ring-
imaging Cherenkov radiation detector, and of specific
ionization (
dE=dx
) in the silicon vertex tracker and drift
chamber, provide particle identification (PID) of charged
hadrons. Muons are mainly identified by the instrumented
magnetic flux return, and electrons are identified using
EMC and
dE=dx
information. The analysis uses Monte
Carlo (MC) events generated with
EVTGEN
and
JETSET
[
10
,
11
] and passed through a detailed
G
eant
4
[
12
] simula-
tion of the detector response. Final state radiation from
charged particles is modeled by
PHOTOS
[
13
]. Samples of
MC events for
e
þ
e

annihilation to
q

q
(
q
¼
u
,
d
,
s
,
c
,
b
)
(generic MC) are used to develop methods to separate
signal events from backgrounds. In addition, we use dedi-
cated samples for
D

s
production and leptonic decays
(signal MC) to determine reconstruction efficiencies and
the distributions needed for the extraction of the signal
decays.
We reconstruct
D
candidates using the following
15 modes:
D
0
!
K


þ
ð

0
Þ
,
K


þ



þ
ð

0
Þ
,
or
K
0
S

þ


ð

0
Þ
;
D
þ
!
K


þ

þ
ð

0
Þ
,
K
0
S

þ
ð

0
Þ
,or
K
0
S

þ



þ
; and

þ
c
!
pK


þ
ð

0
Þ
,
pK
0
S
,or
pK
0
S



þ
. All

0
’s and
K
0
S
’s used in this analysis are
reconstructed from two photons or two oppositely charged
pions, respectively, and are kinematically constrained to
their nominal mass values [
14
]. The
K
0
S
in a
D
candidate
must have a flight distance from the
e
þ
e

interaction point
(IP) greater than 10 times its uncertainty. For each
D
candidate we fit the tracks to a common vertex, and for
each mode, we determine the mean and

of the recon-
structed signal mass distribution from a fit to data. We then
simultaneously optimize a set of selection criteria to max-
imize
S=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S
þ
B
p
, where
S
refers to the number of
D
candidates after subtraction of the background
B
within a
mass window defined about the signal peak, and where
B
is
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
82,
091103(R) (2010)
RAPID COMMUNICATIONS
091103-4
estimated from the sideband regions of the mass distribu-
tion. In addition to the size of the mass window, several
other properties of the
D
candidate are used in the opti-
mization: the center-of-mass (CM) momentum of the
D
,
PID requirements on the tracks, the probability of the
D
vertex fit, and the minimum lab energy of

0
photons. The
CM momentum must be at least
2
:
35 GeV
=c
in order to
remove
B
meson backgrounds. After the optimization the
relative contributions to the total signal sample are 74.0%
D
0
, 22.6%
D
þ
, and 3.4%

þ
c
. Multiple candidates per
event are accepted.
To identify
D
mesons originating from
D

decays we
reconstruct the following decays:
D
!
D
0

þ
,
D

0
!
D
0

0
,
D
!
D
þ

0
, and
D

0
!
D
0

. The photon energy
in the laboratory frame is required to exceed 30 MeV for

0
!

and 250 MeV for
D

0
!
D
0

decays. The

invariant mass must be within 3 sigma of the

0
peak. For
all
D

decays, the mass difference
m
ð
D

Þ
m
ð
D
Þ
is re-
quired to be within 2.5 sigma of the peak value.
A
K
candidate is selected from tracks not overlapping
with the
D
candidate. PID requirements are applied to each
K
þ
candidate, and a
K
0
S
candidate must have a flight
distance greater than 5 times its uncertainty.
An
X
candidate is reconstructed from the remaining


’s and

0
’s not overlapping with the
DK
candidate. In
the laboratory frame, a


must have a momentum greater
than
100 MeV
=c
and each photon from a

0
decay must
have energy greater than 100 MeV. We reconstruct
X
modes without

0
’s with up to three charged pions, and
modes with one

0
with up to two charged pions. The total
charge of the
X
candidate is not checked at this stage.
Finally, we select a

candidate for the signal
D

s
decay
by requiring a minimum energy of 120 MeV in the labo-
ratory frame, and an angle with respect to the direction of
the
D
candidate momentum in the CM frame greater than
90 degrees. This photon cannot form a

0
or

candidate
when combined with any other photon in the event. In
addition, the cluster must pass tight requirements on the
shower shape in the EMC and a separation of at least 15 cm
from the impact of any charged particle or the position of
any other energy cluster in the EMC.
Only
DKX
candidates with a total charge of
þ
1
are
selected to form a right-sign (RS) sample, from which we
extract the
D

s
signal yield. The charm and strange quark
content of the
DKX
must be consistent with recoiling from
a
D

s
. The RS sample includes candidates for which con-
sistency cannot be determined due to the presence of a
K
0
S
.
We define a wrong-sign (WS) sample with the same charge
requirement above, but by requiring that the charm and
strange quark content of the
DKX
be consistent with a
recoil from a
D
þ
s
. The WS sample contains a small fraction
of signal events due mainly to
DKX
candidates for which
the total charge is misreconstructed. The generic MC shows
that the WS sample, after subtraction of the signal contri-
bution, correctly models the backgrounds in the RS sample.
A kinematic fit to each
DKX
candidate is performed in
which the particles are required to originate from a com-
mon point inside the interaction point region, and the
D
mass is constrained to the nominal value [
14
]. The
4-momentum of the signal
D

s
is extracted as the missing
4-momentum in the event. We require that the
D

s
candi-
date mass be within
2
:
5

of the signal peak. For MC signal
events, the mean is found to be consistent with the nominal
value and

varies between 37 and
64 MeV
=c
2
depending
on the number of pions in
X
.
We perform a similar kinematic fit with the signal

included and with the mass recoiling against the
DKX
constrained to the nominal
D

s
mass [
14
] in order to
determine the
D

s
4-momentum. We require that the
D

s
CM momentum exceed
3
:
0GeV
=c
, and that its mass be
greater than
1
:
82 GeV
=c
2
. After the final selections, there
remain on average 1.7
D

s
candidates per event, due mainly
to multiple photons that can be associated with the
D

s
decay. In order to properly count events in the fits described
below, we assign weight
1
=n
to each
D

s
candidate, where
n
is the number of
D

s
candidates in the event.
We define
n
R
X
and
n
T
X
to be the number of reconstructed
and true pions in the
X
system, respectively. The efficiency
for reconstructing signal events depends on
n
T
X
. However,
the
n
T
X
distribution is expected to differ from the MC
simulation due to inaccurate fragmentation functions used
by
JETSET
. To correct for these inaccuracies, we extract the
D

s
signal yields from a fit to the two-dimensional histo-
gram of
m
r
ð
DKX
Þ
versus
n
R
X
. The probability distribution
function (PDF) for the signal distribution is written as a
weighted sum of the MC distributions for
j
¼
n
T
X
,
S
ð
m; n
R
X
Þ¼
X
6
j
¼
0
w
j
S
j
ð
m; n
R
X
Þ
:
(2)
The weights
w
j
have to be extracted from this fit. To
constrain the shape of the weights distribution, we intro-
duce the parametrization
w
j
j


Þ
e

j
together with
the condition
P
j
w
j
¼
1
. This parametrization is motivated
by the distribution of weights in the MC. The value

¼

1
:
32
is taken from a fit to MC, whereas
and

are
determined from the fit to data.
The RS and WS samples are fitted simultaneously to
determine the background. The fit to the WS sample uses
a signal component similar to that used in the RS fit, except
that due to the small signal component, the weights are fixed
to the MC values and the signal yield is determined from
signal MC to be 11.8% of the RS signal yield. The shapes
remaining after the signal component is removed from the
WS sample,
B
i
ð
m
Þ
(
i
¼
n
R
X
), are used to model the RS
backgrounds. A shape correction is applied to
B
0
to account
for a difference observed in the MC. We add these compo-
nents with free coefficients (
b
i
) to construct the total RS
background shape:
B
ð
m; n
R
X
Þ¼
P
3
i
¼
0
b
i
B
i
ð
m
Þ
ð
i

n
R
X
Þ
.
Thus in addition to
,

, and the total signal yield, there
are 3 additional free parameters
b
i
ð
i
¼
0
;
1
;
2
Þ
in the RS fit.
MEASUREMENT OF THE ABSOLUTE BRANCHING
...
PHYSICAL REVIEW D
82,
091103(R) (2010)
RAPID COMMUNICATIONS
091103-5
Figure
1
shows the data and the results of the fit, and
Fig.
2
shows the total RS and WS samples. The fit finds a
minimum
2
=ndf
¼
216
=
182
and the fitted parameter val-
ues are
¼
0
:
27

0
:
17
and

¼
0
:
28

0
:
07
. These are
different from the MC values
¼
3
:
38
and

¼
1
:
15
since
there are more events at low values of
n
T
X
than in the MC.
Having constructed the inclusive
D

s
sample, we pro-
ceed to the selection of
D

s
!





events within that
sample. We use the
m
r
ð
DKX
Þ
range between 1.934 and
2
:
012 GeV
=c
2
, which contains an inclusive
D

s
yield (
N
D
s
)
of
ð
67
:
2

1
:
5
Þ
10
3
. We require that there be exactly one
more charged particle in the remainder of the event, and
that it be identified as a


. In addition, we require that the
extra neutral energy in the event,
E
extra
, be less than
1.0 GeV;
E
extra
is defined as the total energy of EMC
clusters with individual energy greater than 30 MeV and
not overlapping with the
DKX
candidate. Since the only
missing particle in the event should be the neutrino we
expect the distribution of
E
extra
to peak at zero for signal
events. We determine the 4-momentum of the



candidate
through a kinematic fit similar to that described earlier in
the determination of the
D

s
4-momentum, but with the


included in the recoil system. In this fit we constrain the
mass recoiling against the
DKX
system to the nominal
value for the
D

s
[
14
]. To extract the signal yield, we
perform a binned maximum likelihood fit to the
m
2
r
ð
DKX
Þ
distribution using a signal PDF determined
from reconstructed signal MC events that contain the
signal decay chain
D

s
!
D

s

with
D

s
!





. The
background PDF is determined from the reconstructed
generic MC events with signal events removed. The fit is
shown in Fig.
3(a)
, and the number of signal events ex-
tracted,
N

, is listed in Table
I
.
The
D

s
!





branching fraction is obtained from
B
ð
D

s
!





Þ¼
N

N
D
s
P
6
j
¼
0
w
j
"
j

"
j
D
s
¼
N

N
D
s

"

;
(3)
where the
D

s
!





reconstruction efficiency,
"
j

,is
determined using the signal MC sample with
j
¼
n
T
X
, and
"
j
D
s
is the corresponding inclusive
D

s
reconstruction effi-
ciency. The efficiency ratios
"
j

="
j
D
s
decrease from 87%
to 33% as
j
increases from 0 to 6. The weighted average,

"

, and the value determined for
B
ð
D

s
!





Þ
are
listed in Table
I
. The statistical uncertainty includes con-
tributions from
N
D
s
,

"

, and
N

(with correlations taken
into accounted). The systematic uncertainty is determined
by varying the parameter values in the inclusive
D

s
fit
which were fixed to MC values, by varying the resolution
2
)
) (GeV/c
γ
(DKX
r
m
1.85
1.9
1.95
2
2.05
2.1
2
Events / 6 MeV/c
0
2
4
6
1000
×
=0
X
R
n
)
2
) (GeV/c
γ
(DKX
r
m
1.85
1.9
1.95
2
2.05
2.1
2
Events / 6 MeV/c
0
2
4
6
8
1000
×
=1
X
R
n
)
2
) (GeV/c
γ
(DKX
r
m
1.85
1.9
1.95
2
2.05
2.1
2
Events / 6 MeV/c
0
5
10
1000
×
=2
X
R
n
)
2
) (GeV/c
γ
(DKX
r
m
1.85
1.9
1.95
2
2.05
2.1
2
Events / 6 MeV/c
0
2
4
6
8
1000
×
=3
X
R
n
FIG. 1 (color online).
m
r
ð
DKX
Þ
distributions for each
n
R
X
value. The points are the data. The open histogram is from the
fit described in the text. The solid histogram is the background
component from the fit. The vertical lines define the region used
in the



selections.
)
4
/c
2
) (GeV
μ
γ
(DKX
r
2
m
-0. 5
0
0. 5
1
1. 5
2
4
/c
2
Events / 0.05 GeV
50
100
a)
)
4
/c
2
e) (GeV
γ
(DKX
r
2
m
-0. 5
0
0. 5
1
1. 5
2
4
/c
2
Events / 0.05 GeV
20
40
60
b)
(GeV)
extra
E
0123
Events / 0.05 GeV
50
100
c)
(GeV)
extra
E
0123
Events / 0.05 GeV
50
100
d)
)
2
) (GeV/c
γ
+
π
-
K
+
m(K
2.0 5
2. 1
2.1 5
2.2
2
Events / 8 MeV/c
200
400
600
e)
FIG. 3 (color online). Fitted distributions of (a)
m
2
r
ð
DKX
Þ
,
(b)
m
2
r
ð
DKXe
Þ
, (c)
E
extra
for
D

s
!


e



, (d)
E
extra
for
D

s
!






candidates, and (e)
m
ð
KK
Þ
. In each figure, the points
represent the data with statistical error bars, the open histogram
is from the fit described in the text, and the solid histogram is the
background component from the fit.
)
2
) (GeV/c
γ
(DKX
r
m
1.85
1.9
1.95
2
2.05
2.1
2
Events / 6 MeV/c
0
2
4
6
8
1000
×
)
2
) (GeV/c
γ
(DKX
r
m
1.85
1.9
1.95
2
2.05
2.1
2
Events / 6 MeV/c
0
10
20
30
1000
×
FIG. 2 (color online).
m
r
ð
DKX
Þ
distribution for the total WS
(left) and RS (right) samples.
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
82,
091103(R) (2010)
RAPID COMMUNICATIONS
091103-6
on the
D

s
signal PDF (for both mass and
n
R
X
), and by
estimating how well the MC models the nonpeaking com-
ponent of the signal PDF observed in Figs.
1
and
2
. The
nonpeaking signal component in the
m
r
ð
DKX
Þ
distribu-
tion arises from
DKX
candidates in events that contain
the signal decay
D

s
!
D

s

, but for which the photon
candidate is misidentified and is due to other sources such
as

0
or

decays, or tracks or
K
0
L
interacting in the
calorimeter. Uncertainties are assigned for possible mis-
modeling of the signal or background
m
2
r
ð
DKX
Þ
dis-
tributions due to possible differences in the position or
resolution of the mass distribution, or mismodelings of
different
D

s
decays. Uncertainties in the efficiencies due
to tracking and


identification are included. This mea-
surement supersedes our previous result [
15
].
Using a procedure similar to that for
D

s
!





we
search for
D

s
!
e



e
events. The fit to the
m
2
r
ð
DKXe
Þ
distribution, shown in Fig.
3(b)
, gives a signal yield
N
e
consistent with 0. We obtain an upper limit on
B
ð
D

s
!
e



e
Þ
by integrating a likelihood function from 0 to the
value of
B
ð
D

s
!
e



e
Þ
corresponding to 90% of the
integral from 0 to infinity. The likelihood function consists
of a Gaussian function written in terms of the variable
B
N
D
s

"
e
with mean and sigma set to
N
e
and its total
uncertainty, respectively. To account for the uncertainties
on
N
D
s

"
e
, the main Gaussian is convolved with another
Gaussian function centered at the measured value of
N
D
s

"
e
with sigma set to the
N
D
s

"
e
total uncertainty.
The value obtained for the upper limit is listed in Table
I
.
We find
D

s
!





decays within the sample of in-
clusively reconstructed
D

s
events by requiring exactly one
more track identified as an
e

or


, from the decay


!
e



e


or


!







. We remove events associated
with
D

s
!





decays by requiring
m
2
r
ð
DKX
Þ
>
0
:
5 GeV2
=c
4
. Since
D

s
!





events contain more
than one neutrino we use
E
extra
to extract the yield of signal
events; these are expected to peak towards zero, while the
backgrounds extend over a wide range. The signal and
background PDFs are determined from reconstructed MC
event samples. The fits are shown in Figs.
3(c)
and
3(d)
;
the signal yields are listed in Table
I
. We determine
B
ð
D

s
!





Þ
from the
e

and


samples using
Eq. (
3
) and accounting for the decay fractions of the


[
14
]. The values obtained are listed in Table
I
and are
consistent with the previous
BABAR
result [
16
]. The
error-weighted average [
17
] of the branching fractions is
B
ð
D

s
!





Þ¼ð
5
:
00

0
:
35
ð
stat
Þ
0
:
49
ð
syst
ÞÞ
10

2
.
The weights used in the average are computed from the
total error matrix and account for correlations. As a test of
lepton flavor universality we determine the ratio
B
ð
D

s
!





Þ
=
B
ð
D

s
!





Þ¼ð
8
:
27

0
:
77
ð
stat
Þ
0
:
85
ð
syst
ÞÞ
,
which is consistent with the SM value of 9.76.
As a cross-check of this analysis method, we measure
the branching fraction for the hadronic decay
D

s
!
K

K
þ


. Within the inclusive
D

s
sample, we require
exactly three additional charged-particle tracks that do not
overlap with the
DKX
candidate. PID requirements are
applied to the kaon candidates. The mass of the
K

K
þ


system must be between 1.93 and
2
:
00 GeV
=c
2
, and the
CM momentum above
3
:
0 GeV
=c
. We combine the
K

K
þ


system with the signal

and extract the signal
yield from the
m
ð
KK
Þ
distribution. For this mode we
choose the loose selection
m
r
ð
DKX
Þ
>
1
:
82 GeV
=c
2
,
because this variable is correlated with
m
ð
KK
Þ
; this
corresponds to an inclusive
D

s
yield of
N
D
s
¼ð
108
:
9

2
:
4
Þ
10
3
. We model the signal distribution using recon-
structed MC events that contain the decay chain
D

s
!
D

s

and
D

s
!
K

K
þ


. In the generic MC and a high
statistics control data sample (for which the inclusive
reconstruction was not applied), the background was found
to be linear in
m
ð
KK
Þ
. From a fit to the
m
ð
KK
Þ
distribution, shown in Fig.
3(e)
, we determine a signal
yield of
N
KK
¼
1866

40
events.
We compute the
D

s
!
K

K
þ


branching fraction
using Eq. (
3
). The efficiency for reconstructing signal
events is determined from the signal MC in three regions
of the
K

K
þ


Dalitz plot, corresponding to


,
K

K

0
, and the rest. Avariation of

8%
is observed across
the Dalitz plot, leading to a correction factor of 1.016 on
"
j
KK
. The weighted efficiency ratio is found to be

"
KK
¼
29
:
5%
, and we obtain
B
ð
D

s
!
K

K
þ


Þ¼ð
5
:
78

0
:
20
ð
stat
Þ
0
:
30
ð
syst
ÞÞ
%
. The first uncertainty accounts
for the statistical uncertainties associated with the inclusive
D

s
sample and
N
KK
. The second accounts for systematic
uncertainties in the signal and background models, and the
inclusive
D

s
sample, as well as the reconstruction and PID
selection of the
K

K
þ


candidates. This result is con-
sistent with the value
ð
5
:
50

0
:
23

0
:
16
Þ
%
measured by
CLEO-c [
18
].
Using the leptonic branching fractions measured
above, we determine the
D

s
decay constant using Eq. (
1
)
and the known values for
m
,
m
D
s
,
j
V
ud
j
(we assume
TABLE I. Average efficiency ratios, signal yields, branching fractions, and decay constants for the leptonic
D

s
decays. The first
uncertainty is statistical and the second is systematic.
Decay

"
Signal yield
B
ð
D

s
!



Þ
f
D
s
(MeV)
D

s
!
e



e
70.5%
6
:
1

2
:
2

5
:
2
<
2
:
3

10

4
at 90% C.L.
D

s
!





67.7%
275

17
ð
6
:
02

0
:
38

0
:
34
Þ
10

3
265
:
7

8
:
4

7
:
7
D

s
!





(


!
e



e


)
61.6%
408

42
ð
5
:
07

0
:
52

0
:
68
Þ
10

2
247

13

17
D

s
!





(


!







)
59.5%
340

32
ð
4
:
91

0
:
47

0
:
54
Þ
10

2
243

12

14
MEASUREMENT OF THE ABSOLUTE BRANCHING
...
PHYSICAL REVIEW D
82,
091103(R) (2010)
RAPID COMMUNICATIONS
091103-7
j
V
cs
j¼j
V
ud
j
), and the
D

s
lifetime obtained from
Ref. [
14
]. The
f
D
s
values are listed in Table
I
; the system-
atic uncertainty includes the uncertainties on these parame-
ters (1.9 MeV). Finally, we obtain the error-weighted
average
f
D
s
¼ð
258
:
6

6
:
4
ð
stat
Þ
7
:
5
ð
syst
ÞÞ
MeV
.
In conclusion, we use the full data set collected by the
BABAR
experiment to measure the branching fractions for
the leptonic decays of the
D

s
meson. The measured value
of
f
D
s
is 1.8 standard deviations larger than the theoretical
value [
2
], consistent with the measurements by Belle and
CLEO-c [
6
,
19
]. Further work on this subject is necessary
to validate the theoretical calculations or to shed light on
possible NP processes.
We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues, and for the
substantial dedicated effort from the computing organiza-
tions that support
BABAR
. The collaborating institutions
wish to thank SLAC for its support and kind hospitality.
This work is supported by DOE and NSF (USA), NSERC
(Canada), CEA and CNRS-IN2P3 (France), BMBF and
DFG (Germany), INFN (Italy), FOM (The Netherlands),
NFR (Norway), MES (Russia), MICIIN (Spain), STFC
(United Kingdom). Individuals have received support
from the Marie Curie EIF (European Union), the A. P.
Sloan Foundation (USA), and the Binational Science
Foundation (USA-Israel).
[1] Use of charge conjugate reactions is implied in this paper.
[2] E. Follana
et al.
,
Phys. Rev. Lett.
100
, 062002 (2008)
;A.
Ali Khan
et al.
,
Phys. Lett. B
652
, 150 (2007)
; C. Aubin
et al.
,
Phys. Rev. Lett.
95
, 122002 (2005)
; B. Blossier
et al.
,
J. High Energy Phys. 07 (2009) 043; C. Bernard
et al.
, Proc. Sci., LATTICE2008 (2008) 278; J. Bordes
et al.
, J. High Energy Phys. 11 (2005) 014.
[3] Heavy Flavor Averaging Group,
www.slac.stanford.edu/
xorg/hfag/charm/index.html
, 2010.
[4] A. G. Akeroyd and C. H. Chen,
Phys. Rev. D
75
, 075004
(2007)
.
[5] B. A. Dobrescu and A. S. Kronfeld,
Phys. Rev. Lett.
100
,
241802 (2008)
.
[6] L. Widhalm
et al.
(Belle Collaboration),
Phys. Rev. Lett.
100
, 241801 (2008)
.
[7] L. Widhalm
et al.
(Belle Collaboration),
Phys. Rev. Lett.
97
, 061804 (2006)
.
[8] B. Aubert
et al.
(
B
A
B
AR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002)
.
[9] W. Menges
et al.
(
BABAR
Collaboration),
IEEE Nucl. Sci.
Symp. Conf. Rec.
3
, 1470 (2005)
.
[10] D. J. Lange,
Nucl. Instrum. Methods Phys. Res., Sect. A
462
, 152 (2001)
.
[11] T. Sjostrand,
Comput. Phys. Commun.
82
,74
(1994)
.
[12] S. Agostinelli
et al.
(GEANT4 Collaboration),
Nucl.
Instrum. Methods Phys. Res., Sect. A
506
, 250
(2003)
.
[13] E. Richter-Was,
Phys. Lett. B
303
, 163 (1993)
.
[14] C. Amsler
et al.
(Particle Data Group),
Phys. Lett. B
667
,1
(2008)
.
[15] B. Aubert
et al.
(
B
A
B
AR
Collaboration),
Phys. Rev. Lett.
98
, 141801 (2007)
.
[16] J. P. Lees
et al.
(
B
A
B
AR
Collaboration),
arXiv:1003.3063v2
. Because of differences in the event
reconstruction and analysis method we estimate this mea-
surement to have a statistical error which is about 40%
correlated with the present measurement and an uncorre-
lated systematic error.
[17] L. Lyons, D. Gibut, and P. Clifford,
Nucl. Instrum.
Methods Phys. Res., Sect. A
270
, 110 (1988)
.
[18] J. P. Alexander
et al.
(CLEO-c Collaboration),
Phys. Rev.
Lett.
100
, 161804 (2008)
.
[19] J. P. Alexander
et al.
(CLEO-c Collaboration),
Phys. Rev.
D
79
, 052001 (2009)
; P. Naik
et al.
(CLEO-c
Collaboration),
Phys. Rev. D
80
, 112004 (2009)
.
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
82,
091103(R) (2010)
RAPID COMMUNICATIONS
091103-8