Published 1994
| public
Book Section - Chapter
Approximation of dissipative partial differential equations over long time intervals
- Creators
- Humphries, A. R.
- Jones, D. A.
- Stuart, A. M.
- Others:
- Griffiths, D. F.
- Watson, G. A..
Abstract
In this article the numerical analysis of dissipative semilinear evolution equations with sectorial linear part is reviewed. In particular the approximation theory for such equations over long time intervals is discussed. Emphasis is placed on studying the effect of approximation on certain invariant objects which play an important role in understanding long time dynamics. Specifically the existence of absorbing sets, the upper and lower semicontinuity of global attractors and the existence and convergence of attractive invariant manifolds, such as the inertial manifold and unstable manifolds of equilibrium points, is studied.
Additional Information
© 1994 Longman Scientific & Technical. This research was supported by the NSF contract DMS-9201727 and ONR contract N00014-92-J-1876.Additional details
- Eprint ID
- 78127
- Resolver ID
- CaltechAUTHORS:20170612-152618052
- NSF
- DMS-9201727
- Office of Naval Research (ONR)
- N00014-92-J-1876
- Created
-
2017-06-13Created from EPrint's datestamp field
- Updated
-
2019-10-03Created from EPrint's last_modified field
- Series Name
- Pitman Research Notes in Mathematics Series
- Series Volume or Issue Number
- 303
- Other Numbering System Name
- Andrew Stuart
- Other Numbering System Identifier
- C3