of 7
Search for Second-Class Currents in


!
!



B. Aubert,
1
Y. Karyotakis,
1
J. P. Lees,
1
V. Poireau,
1
E. Prencipe,
1
X. Prudent,
1
V. Tisserand,
1
J. Garra Tico,
2
E. Grauges,
2
M. Martinelli,
3a,3b
A. Palano,
3a,3b
M. Pappagallo,
3a,3b
G. Eigen,
4
B. Stugu,
4
L. Sun,
4
M. Battaglia,
5
D. N. Brown,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
G. Lynch,
5
I. L. Osipenkov,
5
K. Tackmann,
5
T. Tanabe,
5
C. M. Hawkes,
6
N. Soni,
6
A. T. Watson,
6
H. Koch,
7
T. Schroeder,
7
D. J. Asgeirsson,
8
B. G. Fulsom,
8
C. Hearty,
8
T. S. Mattison,
8
J. A. McKenna,
8
M. Barrett,
9
A. Khan,
9
A. Randle-Conde,
9
V. E. Blinov,
10
A. D. Bukin,
10,
*
A. R. Buzykaev,
10
V. P. Druzhinin,
10
V. B. Golubev,
10
A. P. Onuchin,
10
S. I. Serednyakov,
10
Yu. I. Skovpen,
10
E. P. Solodov,
10
K. Yu. Todyshev,
10
M. Bondioli,
11
S. Curry,
11
I. Eschrich,
11
D. Kirkby,
11
A. J. Lankford,
11
P. Lund,
11
M. Mandelkern,
11
E. C. Martin,
11
D. P. Stoker,
11
H. Atmacan,
12
J. W. Gary,
12
F. Liu,
12
O. Long,
12
G. M. Vitug,
12
Z. Yasin,
12
L. Zhang,
12
V. Sharma,
13
C. Campagnari,
14
T. M. Hong,
14
D. Kovalskyi,
14
M. A. Mazur,
14
J. D. Richman,
14
T. W. Beck,
15
A. M. Eisner,
15
C. A. Heusch,
15
J. Kroseberg,
15
W. S. Lockman,
15
A. J. Martinez,
15
T. Schalk,
15
B. A. Schumm,
15
A. Seiden,
15
L. Wang,
15
L. O. Winstrom,
15
C. H. Cheng,
16
D. A. Doll,
16
B. Echenard,
16
F. Fang,
16
D. G. Hitlin,
16
I. Narsky,
16
T. Piatenko,
16
F. C. Porter,
16
R. Andreassen,
17
G. Mancinelli,
17
B. T. Meadows,
17
K. Mishra,
17
M. D. Sokoloff,
17
P. C. Bloom,
18
W. T. Ford,
18
A. Gaz,
18
J. F. Hirschauer,
18
M. Nagel,
18
U. Nauenberg,
18
J. G. Smith,
18
S. R. Wagner,
18
R. Ayad,
19,
W. H. Toki,
19
R. J. Wilson,
19
E. Feltresi,
20
A. Hauke,
20
H. Jasper,
20
T. M. Karbach,
20
J. Merkel,
20
A. Petzold,
20
B. Spaan,
20
K. Wacker,
20
M. J. Kobel,
21
R. Nogowski,
21
K. R. Schubert,
21
R. Schwierz,
21
A. Volk,
21
D. Bernard,
22
E. Latour,
22
M. Verderi,
22
P. J. Clark,
23
S. Playfer,
23
J. E. Watson,
23
M. Andreotti,
24a,24b
D. Bettoni,
24a
C. Bozzi,
24a
R. Calabrese,
24a,24b
A. Cecchi,
24a,24b
G. Cibinetto,
24a,24b
E. Fioravanti,
24a,24b
P. Franchini,
24a,24b
E. Luppi,
24a,24b
M. Munerato,
24a,24b
M. Negrini,
24a,24b
A. Petrella,
24a,24b
L. Piemontese,
24a
V. Santoro,
24a,24b
R. Baldini-Ferroli,
25
A. Calcaterra,
25
R. de Sangro,
25
G. Finocchiaro,
25
S. Pacetti,
25
P. Patteri,
25
I. M. Peruzzi,
25,
M. Piccolo,
25
M. Rama,
25
A. Zallo,
25
R. Contri,
26a,26b
E. Guido,
26a
M. Lo Vetere,
26a,26b
M. R. Monge,
26a,26b
S. Passaggio,
26a,26b
C. Patrignani,
26a,26b
E. Robutti,
26a
S. Tosi,
26a,26b
K. S. Chaisanguanthum,
27
M. Morii,
27
A. Adametz,
28
J. Marks,
28
S. Schenk,
28
U. Uwer,
28
F. U. Bernlochner,
29
V. Klose,
29
H. M. Lacker,
29
D. J. Bard,
30
P. D. Dauncey,
30
M. Tibbetts,
30
P. K. Behera,
31
M. J. Charles,
31
U. Mallik,
31
J. Cochran,
32
H. B. Crawley,
32
L. Dong,
32
V. Eyges,
32
W. T. Meyer,
32
S. Prell,
32
E. I. Rosenberg,
32
A. E. Rubin,
32
Y. Y. Gao,
33
A. V. Gritsan,
33
Z. J. Guo,
33
N. Arnaud,
34
J. Be
́
quilleux,
34
A. D’Orazio,
34
M. Davier,
34
D. Derkach,
34
J. Firmino da Costa,
34
G. Grosdidier,
34
F. Le Diberder,
34
V. Lepeltier,
34
A. M. Lutz,
34
B. Malaescu,
34
S. Pruvot,
34
P. Roudeau,
34
M. H. Schune,
34
J. Serrano,
34
V. Sordini,
34,
x
A. Stocchi,
34
G. Wormser,
34
D. J. Lange,
35
D. M. Wright,
35
I. Bingham,
36
J. P. Burke,
36
C. A. Chavez,
36
J. R. Fry,
36
E. Gabathuler,
36
R. Gamet,
36
D. E. Hutchcroft,
36
D. J. Payne,
36
C. Touramanis,
36
A. J. Bevan,
37
C. K. Clarke,
37
F. Di Lodovico,
37
R. Sacco,
37
M. Sigamani,
37
G. Cowan,
38
S. Paramesvaran,
38
A. C. Wren,
38
D. N. Brown,
39
C. L. Davis,
39
A. G. Denig,
40
M. Fritsch,
40
W. Gradl,
40
A. Hafner,
40
K. E. Alwyn,
41
D. Bailey,
41
R. J. Barlow,
41
G. Jackson,
41
G. D. Lafferty,
41
T. J. West,
41
J. I. Yi,
41
J. Anderson,
42
C. Chen,
42
A. Jawahery,
42
D. A. Roberts,
42
G. Simi,
42
J. M. Tuggle,
42
C. Dallapiccola,
43
E. Salvati,
43
S. Saremi,
43
R. Cowan,
44
D. Dujmic,
44
P. H. Fisher,
44
S. W. Henderson,
44
G. Sciolla,
44
M. Spitznagel,
44
R. K. Yamamoto,
44
M. Zhao,
44
P. M. Patel,
45
S. H. Robertson,
45
M. Schram,
45
A. Lazzaro,
46a,46b
V. Lombardo,
46a
F. Palombo,
46a,46b
S. Stracka,
46a,46b
J. M. Bauer,
47
L. Cremaldi,
47
R. Godang,
47,
k
R. Kroeger,
47
P. Sonnek,
47
D. J. Summers,
47
H. W. Zhao,
47
M. Simard,
48
P. Taras,
48
H. Nicholson,
49
G. De Nardo,
50a,50b
L. Lista,
50a
D. Monorchio,
50a,50b
G. Onorato,
50a,50b
C. Sciacca,
50a,50b
G. Raven,
51
H. L. Snoek,
51
C. P. Jessop,
52
K. J. Knoepfel,
52
J. M. LoSecco,
52
W. F. Wang,
52
L. A. Corwin,
53
K. Honscheid,
53
H. Kagan,
53
R. Kass,
53
J. P. Morris,
53
A. M. Rahimi,
53
J. J. Regensburger,
53
S. J. Sekula,
53
Q. K. Wong,
53
N. L. Blount,
54
J. Brau,
54
R. Frey,
54
O. Igonkina,
54
J. A. Kolb,
54
M. Lu,
54
R. Rahmat,
54
N. B. Sinev,
54
D. Strom,
54
J. Strube,
54
E. Torrence,
54
G. Castelli,
55a,55b
N. Gagliardi,
55a,55b
M. Margoni,
55a,55b
M. Morandin,
55a
M. Posocco,
55a
M. Rotondo,
55a
F. Simonetto,
55a,55b
R. Stroili,
55a,55b
C. Voci,
55a,55b
P. del Amo Sanchez,
56
E. Ben-Haim,
56
G. R. Bonneaud,
56
H. Briand,
56
J. Chauveau,
56
O. Hamon,
56
Ph. Leruste,
56
G. Marchiori,
56
J. Ocariz,
56
A. Perez,
56
J. Prendki,
56
S. Sitt,
56
L. Gladney,
57
M. Biasini,
58a,58b
E. Manoni,
58a,58b
C. Angelini,
59a,59b
G. Batignani,
59a,59b
S. Bettarini,
59a,59b
G. Calderini,
59a,59b,
{
M. Carpinelli,
59a,59b,
**
A. Cervelli,
59a,59b
F. Forti,
59a,59b
M. A. Giorgi,
59a,59b
A. Lusiani,
59a,59c
M. Morganti,
59a,59b
N. Neri,
59a,59b
E. Paoloni,
59a,59b
G. Rizzo,
59a,59b
J. J. Walsh,
59a,59b
D. Lopes Pegna,
60
C. Lu,
60
J. Olsen,
60
A. J. S. Smith,
60
A. V. Telnov,
60
F. Anulli,
61a
E. Baracchini,
61a,61b
G. Cavoto,
61a
R. Faccini,
61a,61b
F. Ferrarotto,
61a
F. Ferroni,
61a,61b
M. Gaspero,
61a,61b
P. D. Jackson,
61a
L. Li Gioi,
61a
M. A. Mazzoni,
61a
S. Morganti,
61a
G. Piredda,
61a
F. Renga,
61a,61b
C. Voena,
61a
M. Ebert,
62
T. Hartmann,
62
H. Schro
̈
der,
62
R. Waldi,
62
T. Adye,
63
B. Franek,
63
E. O. Olaiya,
63
F. F. Wilson,
63
S. Emery,
64
L. Esteve,
64
G. Hamel de Monchenault,
64
W. Kozanecki,
64
G. Vasseur,
64
PRL
103,
041802 (2009)
PHYSICAL REVIEW LETTERS
week ending
24 JULY 2009
0031-9007
=
09
=
103(4)
=
041802(7)
041802-1
Ó
2009 The American Physical Society
Ch. Ye
`
che,
64
M. Zito,
64
M. T. Allen,
65
D. Aston,
65
R. Bartoldus,
65
J. F. Benitez,
65
R. Cenci,
65
J. P. Coleman,
65
M. R. Convery,
65
J. C. Dingfelder,
65
J. Dorfan,
65
G. P. Dubois-Felsmann,
65
W. Dunwoodie,
65
R. C. Field,
65
M. Franco Sevilla,
65
A. M. Gabareen,
65
M. T. Graham,
65
P. Grenier,
65
C. Hast,
65
W. R. Innes,
65
J. Kaminski,
65
M. H. Kelsey,
65
H. Kim,
65
P. Kim,
65
M. L. Kocian,
65
D. W. G. S. Leith,
65
S. Li,
65
B. Lindquist,
65
S. Luitz,
65
V. Luth,
65
H. L. Lynch,
65
D. B. MacFarlane,
65
H. Marsiske,
65
R. Messner,
65,
*
D. R. Muller,
65
H. Neal,
65
S. Nelson,
65
C. P. O’Grady,
65
I. Ofte,
65
M. Perl,
65
B. N. Ratcliff,
65
A. Roodman,
65
A. A. Salnikov,
65
R. H. Schindler,
65
J. Schwiening,
65
A. Snyder,
65
D. Su,
65
M. K. Sullivan,
65
K. Suzuki,
65
S. K. Swain,
65
J. M. Thompson,
65
J. Va’vra,
65
A. P. Wagner,
65
M. Weaver,
65
C. A. West,
65
W. J. Wisniewski,
65
M. Wittgen,
65
D. H. Wright,
65
H. W. Wulsin,
65
A. K. Yarritu,
65
C. C. Young,
65
V. Ziegler,
65
X. R. Chen,
66
H. Liu,
66
W. Park,
66
M. V. Purohit,
66
R. M. White,
66
J. R. Wilson,
66
P. R. Burchat,
67
A. J. Edwards,
67
T. S. Miyashita,
67
S. Ahmed,
68
M. S. Alam,
68
J. A. Ernst,
68
B. Pan,
68
M. A. Saeed,
68
S. B. Zain,
68
A. Soffer,
69
S. M. Spanier,
70
B. J. Wogsland,
70
R. Eckmann,
71
J. L. Ritchie,
71
A. M. Ruland,
71
C. J. Schilling,
71
R. F. Schwitters,
71
B. C. Wray,
71
B. W. Drummond,
72
J. M. Izen,
72
X. C. Lou,
72
F. Bianchi,
73a,73b
D. Gamba,
73a,73b
M. Pelliccioni,
73a,73b
M. Bomben,
74a,74b
L. Bosisio,
74a,74b
C. Cartaro,
74a,74b
G. Della Ricca,
74a,74b
L. Lanceri,
74a,74b
L. Vitale,
74a,74b
V. Azzolini,
75
N. Lopez-March,
75
F. Martinez-Vidal,
75
D. A. Milanes,
75
A. Oyanguren,
75
J. Albert,
76
Sw. Banerjee,
76
B. Bhuyan,
76
H. H. F. Choi,
76
K. Hamano,
76
G. J. King,
76
R. Kowalewski,
76
M. J. Lewczuk,
76
I. M. Nugent,
76
J. M. Roney,
76
R. J. Sobie,
76
T. J. Gershon,
77
P. F. Harrison,
77
J. Ilic,
77
T. E. Latham,
77
G. B. Mohanty,
77
E. M. T. Puccio,
77
H. R. Band,
78
X. Chen,
78
S. Dasu,
78
K. T. Flood,
78
Y. Pan,
78
R. Prepost,
78
C. O. Vuosalo,
78
and S. L. Wu
78
(The
B
A
B
AR
Collaboration)
1
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universite
́
de Savoie, CNRS/IN2P3,
F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy
3b
Dipartimento di Fisica, Universita
`
di Bari, I-70126 Bari, Italy
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
University of Birmingham, Birmingham, B15 2TT, United Kingdom
7
Ruhr Universita
̈
t Bochum, Institut fu
̈
r Experimentalphysik 1, D-44780 Bochum, Germany
8
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
9
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
10
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
11
University of California at Irvine, Irvine, California 92697, USA
12
University of California at Riverside, Riverside, California 92521, USA
13
University of California at San Diego, La Jolla, California 92093, USA
14
University of California at Santa Barbara, Santa Barbara, California 93106, USA
15
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
16
California Institute of Technology, Pasadena, California 91125, USA
17
University of Cincinnati, Cincinnati, Ohio 45221, USA
18
University of Colorado, Boulder, Colorado 80309, USA
19
Colorado State University, Fort Collins, Colorado 80523, USA
20
Technische Universita
̈
t Dortmund, Fakulta
̈
t Physik, D-44221 Dortmund, Germany
21
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern- und Teilchenphysik, D-01062 Dresden, Germany
22
Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
23
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
24a
INFN Sezione di Ferrara, I-44100 Ferrara, Italy
24b
Dipartimento di Fisica, Universita
`
di Ferrara, I-44100 Ferrara, Italy
25
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
26a
INFN Sezione di Genova, I-16146 Genova, Italy
26b
Dipartimento di Fisica, Universita
`
di Genova, I-16146 Genova, Italy
27
Harvard University, Cambridge, Massachusetts 02138, USA
28
Universita
̈
t Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
29
Humboldt-Universita
̈
t zu Berlin, Institut fu
̈
r Physik, Newtonstr. 15, D-12489 Berlin, Germany
30
Imperial College London, London, SW7 2AZ, United Kingdom
31
University of Iowa, Iowa City, Iowa 52242, USA
32
Iowa State University, Ames, Iowa 50011-3160, USA
PRL
103,
041802 (2009)
PHYSICAL REVIEW LETTERS
week ending
24 JULY 2009
041802-2
33
Johns Hopkins University, Baltimore, Maryland 21218, USA
34
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN2P3/CNRS et Universite
́
Paris-Sud 11, Centre Scientifique d’Orsay,
B. P. 34, F-91898 Orsay Cedex, France
35
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
36
University of Liverpool, Liverpool L69 7ZE, United Kingdom
37
Queen Mary, University of London, London, E1 4NS, United Kingdom
38
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
39
University of Louisville, Louisville, Kentucky 40292, USA
40
Johannes Gutenberg-Universita
̈
t Mainz, Institut fu
̈
r Kernphysik, D-55099 Mainz, Germany
41
University of Manchester, Manchester M13 9PL, United Kingdom
42
University of Maryland, College Park, Maryland 20742, USA
43
University of Massachusetts, Amherst, Massachusetts 01003, USA
44
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
45
McGill University, Montre
́
al, Que
́
bec, Canada H3A 2T8
46a
INFN Sezione di Milano, I-20133 Milano, Italy
46b
Dipartimento di Fisica, Universita
`
di Milano, I-20133 Milano, Italy
47
University of Mississippi, University, Mississippi 38677, USA
48
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
49
Mount Holyoke College, South Hadley, Massachusetts 01075, USA
50a
INFN Sezione di Napoli, I-80126 Napoli, Italy
50b
Dipartimento di Scienze Fisiche, Universita
`
di Napoli Federico II, I-80126 Napoli, Italy
51
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
52
University of Notre Dame, Notre Dame, Indiana 46556, USA
53
Ohio State University, Columbus, Ohio 43210, USA
54
University of Oregon, Eugene, Oregon 97403, USA
55a
INFN Sezione di Padova, I-35131 Padova, Italy
55b
Dipartimento di Fisica, Universita
`
di Padova, I-35131 Padova, Italy
56
Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-Paris6,
Universite
́
Denis Diderot-Paris7, F-75252 Paris, France
57
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
58a
INFN Sezione di Perugia, I-06100 Perugia, Italy
58b
Dipartimento di Fisica, Universita
`
di Perugia, I-06100 Perugia, Italy
59a
INFN Sezione di Pisa, I-56127 Pisa, Italy
59b
Dipartimento di Fisica, Universita
`
di Pisa, I-56127 Pisa, Italy
59c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
60
Princeton University, Princeton, New Jersey 08544, USA
61a
INFN Sezione di Roma, I-00185 Roma, Italy
61b
Dipartimento di Fisica, Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
62
Universita
̈
t Rostock, D-18051 Rostock, Germany
63
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
64
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
65
SLAC National Accelerator Laboratory, Stanford, California 94309 USA
66
University of South Carolina, Columbia, South Carolina 29208, USA
67
Stanford University, Stanford, California 94305-4060, USA
68
State University of New York, Albany, New York 12222, USA
69
Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel
70
University of Tennessee, Knoxville, Tennessee 37996, USA
71
University of Texas at Austin, Austin, Texas 78712, USA
72
University of Texas at Dallas, Richardson, Texas 75083, USA
73a
INFN Sezione di Torino, I-10125 Torino, Italy
73b
Dipartimento di Fisica Sperimentale, Universita
`
di Torino, I-10125 Torino, Italy
74a
INFN Sezione di Trieste, I-34127 Trieste, Italy
74b
Dipartimento di Fisica, Universita
`
di Trieste, I-34127 Trieste, Italy
75
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
76
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
77
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
78
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 20 April 2009; published 22 July 2009)
We report an analysis of


decaying into
!



with
!
!

þ



0
using a data sample containing
nearly
320

10
6

pairs collected with the
BABAR
detector at the PEP-II
B
-Factory. We find no evidence
PRL
103,
041802 (2009)
PHYSICAL REVIEW LETTERS
week ending
24 JULY 2009
041802-3
for second-class currents, and we set an upper limit of 0.69% at 90% confidence level for the fraction of
second-class currents in this decay mode.
DOI:
10.1103/PhysRevLett.103.041802
PACS numbers: 13.35.Dx, 14.60.Fg
Hadronic weak currents can be classified as either first-
or second-class depending on the spin
J
, parity
P
, and
G
-parity
G
of the final hadronic system [
1
]. In the
Standard Model, first-class currents (FCC) in

decays
have
J
PG
¼
0
þþ
,
0

,
1
þ
,or
1
, and are expected to
dominate. Second-class currents (SCC) have
J
PG
¼
0
þ
,
0
,
1
þþ
,or
1

, and are associated with a decay constant
proportional to the mass difference between up and down
quarks. Thus, they are expected to vanish in the limit of
perfect isospin symmetry. A number of mechanisms have
been suggested [
2
], including possible exchange of Higgs
bosons, that could lead to an enhanced rate for second-
class currents. Searches have taken place extensively in
nuclear

decay experiments [
3
,
4
], with no confirmed
observations. This Letter presents a search for SCC in


!
!



decays with
!
!

þ



0
, based on
studying the angular distributions of final-state particles.
The decay


!
!



[
5
] is expected to proceed
predominantly through FCC mediated by the

resonance.
This decay may also potentially proceed through SCC with
J
PG
¼
0
or
1
þþ
. The latter may be mediated by
b
1
ð
1235
Þ
[
6
] with


!
b

1


!
!



. The decay
b

1
!
!

occurs through
S
- and
D
waves [
7
], as com-
pared to a
P
wave for FCC. Different alignments of
!
spin
result in different angular distributions of the final-state
particles. The expected distributions of
cos

!
,
F
ð
cos

!
Þ
, for all possible spin-parity states of the final-
state particles are listed in Table
I
, where

!
is the angle
between the normal to the
!
decay plane and the direction
of the remaining

in the
!
rest frame. The existing mea-
surements of the angular distribution in


!
!



are
consistent with having only the
P
-wave contribution, and
the present upper limit is 5.4% for the ratio of SCC to FCC
contributions at 90% confidence level (CL) [
8
,
9
].
This analysis is based on data recorded by the
BABAR
detector [
10
] at the PEP-II asymmetric-energy
e
þ
e

stor-
age rings operated at the SLAC National Accelerator
Laboratory. The data sample consists of
347
:
3fb

1
re-
corded at a center-of-mass energy of 10.58 GeV. With a
cross section for

pairs of


¼ð
0
:
919

0
:
003
Þ
nb
[
11
,
12
], this data sample contains nearly
320

10
6
pairs
of

decays.
The
BABAR
detector is described in detail in Ref. [
10
].
Charged-particle tracks are measured with a 5-layer
double-sided silicon vertex tracker (SVT) together with a
40-layer drift chamber (DCH) inside a 1.5-T superconduct-
ing solenoid magnet. An electromagnetic calorimeter
(EMC) consisting of 6580 CsI(Tl) crystals is used for
identification of electrons and photons. Charged hadrons
are identified by a ring-imaging Cherenkov detector in
combination with energy-loss measurements (
dE=dx
)in
the SVT and the DCH. An instrumented magnetic-flux
return (IFR) provides muon identification.
Monte Carlo simulation is used to estimate the signal
efficiencies and background contamination.
KK2F
[
12
]is
used to generate

pairs with the decays of the

leptons
modeled by
TAUOLA
[
13
]. Continuum
q

q
events are simu-
lated using
JETSET
[
14
]. Final-state radiative effects are
generated for all decays using
PHOTOS
[
15
]. The detector
response is simulated with
GEANT4
[
16
], and the
Monte Carlo events are reconstructed in the same manner
as data.
Since

pairs are produced back to back in the
e
þ
e

center-of-mass frame, each event is divided into two hemi-
spheres according to the thrust axis [
17
], calculated using
all reconstructed charged particles. Candidate events in this
analysis are required to have a ‘‘1–3 topology,’’ where one
track is in one hemisphere (tag hemisphere) and three
tracks are in the other hemisphere (signal hemisphere).
Events with four well-reconstructed tracks and zero net
charge are selected for further analysis. The polar angles of
all four tracks and the neutral clusters used in

0
recon-
struction are required to be within the calorimeter accep-
tance range. Events are rejected if the invariant mass of any
pair of oppositely charged tracks, assuming electron mass
hypotheses, is less than
90 MeV
=c
2
, as these tracks are
likely to be from photon conversions in the detector
material.
The charged particle found in the tag hemisphere must
be either an electron or a muon candidate. Electrons are
identified using the ratio of calorimeter energy to track
momentum (
E=p
), the shape of the shower in the calo-
rimeter, and
dE=dx
. Muons are identified by signals in the
IFR and small energy deposits in the calorimeter consistent
with expectation for a minimum-ionizing particle. Charged
particles found in the signal hemisphere must be identified
as pion candidates. The

0
candidates are reconstructed
from two separate EMC clusters with energies above
100 MeV that are not associated with charged tracks; these

0
candidates are required to have invariant masses be-
TABLE I. Expected angular distributions,
F
ð
cos

!
Þ
, for pos-
sible spin-parity states in the decay


!
!



.
L
is the
orbital angular momentum.
J
P
LF
ð
cos

!
Þ
1

1(
1

cos
2

!
)
0

1
cos
2

!
1
þ
01
1
þ
2(
1
þ
3cos
2

!
)
PRL
103,
041802 (2009)
PHYSICAL REVIEW LETTERS
week ending
24 JULY 2009
041802-4
tween 100 and
160 MeV
=c
2
. Events are required to have a
single

0
in the signal hemisphere. The

candidates are
reconstructed in the signal hemisphere using the three
tracks and the

0
candidate. The invariant mass of the

candidate,
m
ð





þ

0
Þ
, is required to be less than the
mass of the

lepton. The Monte Carlo simulation predicts
that 14% of the events remaining after the event selection
process are

-pair events that do not contain a


!





þ

0


decay, and 1.3% are
e
þ
e

!
q

q
events.
Each selected event has two

þ



0
combinations.
The
!
signal region is defined for masses
m
ð

þ



0
Þ
between
760 MeV
=c
2
and
800 MeV
=c
2
with mass regions
of width
60 MeV
=c
2
on each side of the peak used as
sideband regions for background studies, as shown in
Fig.
1
. For each
!
candidate, the angle

!
is calculated.
The distribution of
cos

!
is used for the SCC
measurement.
There are three background sources to be considered in
this analysis: combinatoric background,
q

q
events, and
nonsignal

decays. The combinatoric background is ex-
pected, and confirmed by the simulation, to have a distri-
bution of
cos

!
which is independent of
m
ð

þ



0
Þ
.
This allows the sideband regions to be used to subtract this
background. The number of combinatoric events lying
within the signal region is obtained by fitting the
m
ð

þ



0
Þ
spectrum with a relativistic Breit-Wigner
convolved with a resolution function for the
!
resonance
and a polynomial for the combinatoric background. The
polynomial is integrated over the signal region to find the
number of continuum events in the signal region.
After subtracting the combinatoric background, ap-
proximately 0.3% of the remaining events in the signal
region are expected to be of
q

q
origin, while 4.6% are
expected to be from nonsignal

decays. The background
from
e
þ
e

!
q

q
events that contain
!
!

þ



0
de-
cays is studied using events with
m
ð





þ

0
Þ
well
above the

mass (
>
2
:
1 GeV
=c
2
). In this region, where
all events are considered to be of
q

q
origin, a comparison
of the numbers of
!
mesons in simulation and data is used
to scale the simulated
q

q
background before subtracting
from data.
The dominant nonsignal

background, comprising 99%
of the remaining background, is


!
!


0


, where
the additional

0
has not been reconstructed. The decay


!
!


0


has not been well measured and is in-
correctly modeled in the Monte Carlo simulation. To cor-
rect for the differences between data and Monte Carlo
simulations, events with an additional

0
candidate in
the signal hemisphere are selected, using the same cuts
discussed above. Using these events, the Monte Carlo
branching fraction of


!
!


0


is corrected by
comparing the numbers of fitted
!
candidates in data and
Monte Carlo simulations. The fit function used for this is a
relativistic Breit-Wigner convolved with a resolution func-
tion plus a polynomial background. The branching fraction
obtained using this correction technique is found to be
consistent with existing measurements [
7
]. To correct the
angular distribution of


!
!


0


, backgrounds,
consisting of combinatorics,
q

q
events, and


!
!



decays (assuming the angular distribution corre-
sponding to the dominant FCC contribution), are sub-
tracted from the
!


0
data sample, and the remaining
cos

!
distribution is used to correct the


!
!


0


distribution in the Monte Carlo simulation.
After subtracting backgrounds and applying
cos

!
-dependent efficiency corrections, a binned fit to
the remaining
cos

!
distribution is carried out using
F
ð
cos

!
Þ¼
N

1
2

þ
3
4
ð
1


Þð
1

cos
2

!
Þ

;
(1)
where
N
is a normalization factor and the parameter

is
the fraction of


!
!



decays that proceed through
SCC. In Eq. (
1
), only the
L
¼
0
term is used to describe the
SCC contribution since this function gives the most con-
servative estimate of

(i.e., the largest upper limit).
To help validate the analysis method, the procedures
were applied to Monte Carlo samples generated to include
small fractions (1% and 2%) of the second-class current
process


!
b
1
ð
1235
Þ



!
!



, as well as to a
sample containing no SCC contribution. In each case, the
fits to the simulated detector-level, background-subtracted
angular distributions returned values consistent with the
input fractions of SCC.
The largest contributions to systematic uncertainties on

are scaling and modeling the Monte Carlo background.
The correction applied to the branching fraction of


!
!


0


has an error associated with it, determined by
the available statistics. This correction factor is adjusted by

1

to obtain the uncertainty in

while the errors asso-
ciated with correcting the angular distribution are folded
]
2
) [GeV/c
0
π
-
π
+
π
m(
0.65
0.7
0.75
0.8
0.85
0.9
)
2
Entries/(5MeV/c
S
SBSB
0
10
20
30
40
50
60
70
3
10
×
FIG. 1 (color online).
!
candidate mass spectra for selected
events in data and background expected from simulation (shaded
histogram). The background histogram does not include the
nonresonant


!





þ

0


decays. The signal (S) and
sideband (SB) regions are indicated in the figure.
PRL
103,
041802 (2009)
PHYSICAL REVIEW LETTERS
week ending
24 JULY 2009
041802-5
into the statistical uncertainty. In addition, there are

decays that may be present in the final event sample but
which are not included in the simulation. The largest of
these are expected to be


!
!K



,


!
!


0

0


, and


!
!




þ


decays which,
when combined, can add up to 0.2% of the final event
sample. Since the effect that these decays have on the
angular distribution is unknown, the extreme cases are
taken to obtain the uncertainty. These cases correspond
to the decays having either entirely
1

cos
2

!
or entirely
cos
2

!
distributions. The scaling of
q

q
events can also
affect the measurement of

, and the uncertainty is ob-
tained by adjusting the scaling factor by

1

. These
systematic uncertainties are summarized in Table
II
.
Subsets of the generic Monte Carlo dataset are used in
the background studies and in the determination of the ef-
ficiencies. Therefore, to estimate the sensitivity of the an-
alysis without the effect of statistical correlations in the
Monte Carlo samples, an ensemble of simulated experi-
ments is used. In this study, angular distributions are
generated for the signal and sideband regions to simulate
the statistics available in the data and various Monte Carlo
samples used in the analysis, with

¼
0
in the signal
Monte Carlo simulation. After subtracting background
samples, the angular distribution is corrected for efficiency
and fitted using Eq. (
1
). The statistical uncertainty on

obtained from the fit is 0.63%, which combined with the
systematic uncertainties leads to an estimated uncertainty
of


¼
þ
0
:
64

0
:
84
%
.
The angular distribution of the final-state particles in
data is obtained by subtracting estimated backgrounds
as described above. The remaining distribution is cor-
rected for efficiency and fitted using Eq. (
1
) as shown in
Fig.
2
. The fit has
2
=
ð
degrees of freedom
Þ¼
15
:
4
=
18
,
and the fitted value of

in the data is
½
0
:
55

0
:
58
ð
stat
Þ
þ
0
:
08

0
:
55
ð
syst
Þ
%
, which is consistent with no SCC
contribution to


!
!



decays.
The upper limit on

is obtained using a Bayesian
approach [
18
] with a prior that is flat for
>
0
and zero
for
<
0
. The probability distribution for the value of the
SCC contribution is a Gaussian with mean

¼
0
:
55%
and errors


¼
þ
0
:
64

0
:
84
%
, taken from the simulation studies;
however, since negative values of

are nonphysical, only
the positive portion of this probability distribution is used
in the limit calculation. The limits obtained from this
method are
<
0
:
68%
at 90% CL and
<
0
:
84%
at
95% CL.
In summary, a search for second-class currents in the
decay


!
!



has been conducted with the
BABAR
detector. No evidence for second-class currents is ob-
served, and a 90% confidence level Bayesian upper limit
for the fraction of the second-class current in


!
!



decays is set at 0.68%. For comparison with the
previous result from CLEO, this is equivalent to a ratio of
second-class (nonvector) to first-class (vector) currents of
0.69%. This limit is an order of magnitude lower than the
limit set by the CLEO collaboration [
9
].
We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues, and for the
substantial dedicated effort from the computing organiza-
tions that support
BABAR
. The collaborating institutions
wish to thank SLAC for its support and kind hospitality.
This work is supported by DOE and NSF (USA), NSERC
(Canada), CEA and CNRS-IN2P3 (France), BMBF and
DFG (Germany), INFN (Italy), FOM (The Netherlands),
NFR (Norway), MES (Russia), MEC (Spain), and STFC
(United Kingdom). Individuals have received support from
the Marie Curie EIF (European Union), and the A. P. Sloan
Foundation.
*
Deceased
Now at Temple University, Philadelphia, PA 19122, USA
Also with Universita
`
di Perugia, Dipartimento di Fisica,
Perugia, Italy
x
Also with Universita
`
di Roma La Sapienza, I-00185
Roma, Italy
π
ω
θ
cos
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8
1
Entries/(0.1)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
6
10
×
FIG. 2 (color online). The
cos

!
distribution for the data.
The curve is the result of the fit described in the text.
TABLE II. Summary of systematic uncertainties on

.
Source
Uncertainty (


)
B
(


!
!


0


)

0
:
07%
nonsimulated

decays
þ
0
:
00

0
:
55
%
q

q
scaling

0
:
01%
Total
þ
0
:
08

0
:
55
%
PRL
103,
041802 (2009)
PHYSICAL REVIEW LETTERS
week ending
24 JULY 2009
041802-6
k
Now at University of South Alabama, Mobile, AL 36688,
USA
{
Also with Laboratoire de Physique Nucle
́
aire et de Hautes
Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-
Paris6, Universite
́
Denis Diderot-Paris7, F-75252 Paris,
France
**
Also with Universita
`
di Sassari, Sassari, Italy
[1] S. Weinberg, Phys. Rev.
112
, 1375 (1958).
[2] P. Langacker, Phys. Rev. D
15
, 2386 (1977).
[3] T. Sumikama
et al.
, Phys. Lett. B
664
, 235 (2008).
[4] K. Minamisono
et al.
, Phys. Rev. C
65
, 015501 (2001).
[5] Charge-conjugate reactions are implied throughout this
Letter.
[6] C. Leroy and J. Pestieau, Phys. Lett. B
72
, 398
(1978).
[7] C. Amsler
et al.
(Particle Data Group), Phys. Lett. B
667
,1
(2008).
[8] D. Buskulic
et al.
(ALEPH Collaboration), Z. Phys. C
74
,
263 (1997).
[9] K. W. Edwards
et al.
(CLEO Collaboration), Phys. Rev. D
61
, 072003 (2000).
[10] B. Aubert
et al.
(
BABAR
Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002).
[11] S. Banerjee, B. Pietrzyk, J. M. Roney, and Z. Was, Phys.
Rev. D
77
, 054012 (2008).
[12] S. Jadach, B. F. L. Ward, and Z. Was, Comput. Phys.
Commun.
130
, 260 (2000).
[13] S. Jadach, Z. Was, R. Decker, and J. H. Kuhn, Comput.
Phys. Commun.
76
, 361 (1993).
[14] T. Sjostrand, Comput. Phys. Commun.
82
, 74 (1994).
[15] E. Barberio and Z. Was, Comput. Phys. Commun.
79
, 291
(1994).
[16] S. Agostinelli
et al.
(GEANT4 Collaboration), Nucl.
Instrum. Methods Phys. Res., Sect. A
506
, 250 (2003).
[17] S. Brandt
et al.
, Phys. Lett.
12
, 57 (1964); E. Farhi, Phys.
Rev. Lett.
39
, 1587 (1977).
[18] G. J. Feldman and R. D. Cousins, Phys. Rev. D
57
, 3873
(1998); R. Barlow,
Statistics
(Wiley, New York, 1989).
PRL
103,
041802 (2009)
PHYSICAL REVIEW LETTERS
week ending
24 JULY 2009
041802-7