of 7
Observation of the

ð
1
3
D
J
Þ
bottomonium state through decays to

þ



ð
1
S
Þ
P. del Amo Sanchez,
1
J. P. Lees,
1
V. Poireau,
1
E. Prencipe,
1
V. Tisserand,
1
J. Garra Tico,
2
E. Grauges,
2
M. Martinelli,
3a,3b
A. Palano,
3a,3b
M. Pappagallo,
3a,3b
G. Eigen,
4
B. Stugu,
4
L. Sun,
4
M. Battaglia,
5
D. N. Brown,
5
B. Hooberman,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
G. Lynch,
5
I. L. Osipenkov,
5
T. Tanabe,
5
C. M. Hawkes,
6
A. T. Watson,
6
H. Koch,
7
T. Schroeder,
7
D. J. Asgeirsson,
8
C. Hearty,
8
T. S. Mattison,
8
J. A. McKenna,
8
A. Khan,
9
A. Randle-Conde,
9
V. E. Blinov,
10
A. R. Buzykaev,
10
V. P. Druzhinin,
10
V. B. Golubev,
10
A. P. Onuchin,
10
S. I. Serednyakov,
10
Yu. I. Skovpen,
10
E. P. Solodov,
10
K. Yu. Todyshev,
10
A. N. Yushkov,
10
M. Bondioli,
11
S. Curry,
11
D. Kirkby,
11
A. J. Lankford,
11
M. Mandelkern,
11
E. C. Martin,
11
D. P. Stoker,
11
H. Atmacan,
12
J. W. Gary,
12
F. Liu,
12
O. Long,
12
G. M. Vitug,
12
C. Campagnari,
13
T. M. Hong,
13
D. Kovalskyi,
13
J. D. Richman,
13
A. M. Eisner,
14
C. A. Heusch,
14
J. Kroseberg,
14
W. S. Lockman,
14
A. J. Martinez,
14
T. Schalk,
14
B. A. Schumm,
14
A. Seiden,
14
L. O. Winstrom,
14
C. H. Cheng,
15
D. A. Doll,
15
B. Echenard,
15
D. G. Hitlin,
15
P. Ongmongkolkul,
15
F. C. Porter,
15
A. Y. Rakitin,
15
R. Andreassen,
16
M. S. Dubrovin,
16
G. Mancinelli,
16
B. T. Meadows,
16
M. D. Sokoloff,
16
P. C. Bloom,
17
W. T. Ford,
17
A. Gaz,
17
J. F. Hirschauer,
17
M. Nagel,
17
U. Nauenberg,
17
J. G. Smith,
17
S. R. Wagner,
17
R. Ayad,
18,
*
W. H. Toki,
18
T. M. Karbach,
19
J. Merkel,
19
A. Petzold,
19
B. Spaan,
19
K. Wacker,
19
M. J. Kobel,
20
K. R. Schubert,
20
R. Schwierz,
20
D. Bernard,
21
M. Verderi,
21
P. J. Clark,
22
S. Playfer,
22
J. E. Watson,
22
M. Andreotti,
23a,23b
D. Bettoni,
23a
C. Bozzi,
23a
R. Calabrese,
23a,23b
A. Cecchi,
23a,23b
G. Cibinetto,
23a,23b
E. Fioravanti,
23a,23b
P. Franchini,
23a,23b
E. Luppi,
23a,23b
M. Munerato,
23a,23b
M. Negrini,
23a,23b
A. Petrella,
23a,23b
L. Piemontese,
23a
R. Baldini-Ferroli,
24
A. Calcaterra,
24
R. de Sangro,
24
G. Finocchiaro,
24
M. Nicolaci,
24
S. Pacetti,
24
P. Patteri,
24
I. M. Peruzzi,
24,
M. Piccolo,
24
M. Rama,
24
A. Zallo,
24
R. Contri,
25a,25b
E. Guido,
25a,25b
M. Lo Vetere,
25a,25b
M. R. Monge,
25a,25b
S. Passaggio,
25a
C. Patrignani,
25a,25b
E. Robutti,
25a
S. Tosi,
25a,25b
B. Bhuyan,
26
M. Morii,
27
A. Adametz,
28
J. Marks,
28
S. Schenk,
28
U. Uwer,
28
F. U. Bernlochner,
29
H. M. Lacker,
29
T. Lueck,
29
A. Volk,
29
P. D. Dauncey,
30
M. Tibbetts,
30
P. K. Behera,
31
U. Mallik,
31
C. Chen,
32
J. Cochran,
32
H. B. Crawley,
32
L. Dong,
32
W. T. Meyer,
32
S. Prell,
32
E. I. Rosenberg,
32
A. E. Rubin,
32
Y. Y. Gao,
33
A. V. Gritsan,
33
Z. J. Guo,
33
N. Arnaud,
34
M. Davier,
34
D. Derkach,
34
J. Firmino da Costa,
34
G. Grosdidier,
34
F. Le Diberder,
34
A. M. Lutz,
34
B. Malaescu,
34
A. Perez,
34
P. Roudeau,
34
M. H. Schune,
34
J. Serrano,
34
V. Sordini,
34,
A. Stocchi,
34
L. Wang,
34
G. Wormser,
34
D. J. Lange,
35
D. M. Wright,
35
I. Bingham,
36
J. P. Burke,
36
C. A. Chavez,
36
J. P. Coleman,
36
J. R. Fry,
36
E. Gabathuler,
36
R. Gamet,
36
D. E. Hutchcroft,
36
D. J. Payne,
36
C. Touramanis,
36
A. J. Bevan,
37
F. Di Lodovico,
37
R. Sacco,
37
M. Sigamani,
37
G. Cowan,
38
S. Paramesvaran,
38
A. C. Wren,
38
D. N. Brown,
39
C. L. Davis,
39
A. G. Denig,
40
M. Fritsch,
40
W. Gradl,
40
A. Hafner,
40
K. E. Alwyn,
41
D. Bailey,
41
R. J. Barlow,
41
G. Jackson,
41
G. D. Lafferty,
41
T. J. West,
41
J. Anderson,
42
R. Cenci,
42
A. Jawahery,
42
D. A. Roberts,
42
G. Simi,
42
J. M. Tuggle,
42
C. Dallapiccola,
43
E. Salvati,
43
R. Cowan,
44
D. Dujmic,
44
P. H. Fisher,
44
G. Sciolla,
44
M. Zhao,
44
D. Lindemann,
45
P. M. Patel,
45
S. H. Robertson,
45
M. Schram,
45
P. Biassoni,
46a,46b
A. Lazzaro,
46a,46b
V. Lombardo,
46a
F. Palombo,
46a,46b
S. Stracka,
46a,46b
L. Cremaldi,
47
R. Godang,
47,
x
R. Kroeger,
47
P. Sonnek,
47
D. J. Summers,
47
H. W. Zhao,
47
X. Nguyen,
48
M. Simard,
48
P. Taras,
48
G. De Nardo,
49a,49b
D. Monorchio,
49a,49b
G. Onorato,
49a,49b
C. Sciacca,
49a,49b
G. Raven,
50
H. L. Snoek,
50
C. P. Jessop,
51
K. J. Knoepfel,
51
J. M. LoSecco,
51
W. F. Wang,
51
L. A. Corwin,
52
K. Honscheid,
52
R. Kass,
52
J. P. Morris,
52
A. M. Rahimi,
52
N. L. Blount,
53
J. Brau,
53
R. Frey,
53
O. Igonkina,
53
J. A. Kolb,
53
R. Rahmat,
53
N. B. Sinev,
53
D. Strom,
53
J. Strube,
53
E. Torrence,
53
G. Castelli,
54a,54b
E. Feltresi,
54a,54b
N. Gagliardi,
54a,54b
M. Margoni,
54a,54b
M. Morandin,
54a
M. Posocco,
54a
M. Rotondo,
54a
F. Simonetto,
54a,54b
R. Stroili,
54a,54b
E. Ben-Haim,
55
G. R. Bonneaud,
55
H. Briand,
55
G. Calderini,
55
J. Chauveau,
55
O. Hamon,
55
Ph. Leruste,
55
G. Marchiori,
55
J. Ocariz,
55
J. Prendki,
55
S. Sitt,
55
M. Biasini,
56a,56b
E. Manoni,
56a,56b
C. Angelini,
57a,57b
G. Batignani,
57a,57b
S. Bettarini,
57a,57b
M. Carpinelli,
57a,57b,
k
G. Casarosa,
57a,57b
A. Cervelli,
57a,57b
F. Forti,
57a,57b
M. A. Giorgi,
57a,57b
A. Lusiani,
57a,57c
N. Neri,
57a,57b
E. Paoloni,
57a,57b
G. Rizzo,
57a,57b
J. J. Walsh,
57a
D. Lopes Pegna,
58
C. Lu,
58
J. Olsen,
58
A. J. S. Smith,
58
A. V. Telnov,
58
F. Anulli,
59a
E. Baracchini,
59a,59b
G. Cavoto,
59a
R. Faccini,
59a,59b
F. Ferrarotto,
59a
F. Ferroni,
59a,59b
M. Gaspero,
59a,59b
L. Li Gioi,
59a
M. A. Mazzoni,
59a
G. Piredda,
59a
F. Renga,
59a,59b
M. Ebert,
60
T. Hartmann,
60
T. Leddig,
60
H. Schro
̈
der,
60
R. Waldi,
60
T. Adye,
61
B. Franek,
61
E. O. Olaiya,
61
F. F. Wilson,
61
S. Emery,
62
G. Hamel de Monchenault,
62
G. Vasseur,
62
Ch. Ye
`
che,
62
M. Zito,
62
M. T. Allen,
63
D. Aston,
63
D. J. Bard,
63
R. Bartoldus,
63
J. F. Benitez,
63
C. Cartaro,
63
M. R. Convery,
63
J. Dorfan,
63
G. P. Dubois-Felsmann,
63
W. Dunwoodie,
63
R. C. Field,
63
M. Franco Sevilla,
63
B. G. Fulsom,
63
A. M. Gabareen,
63
M. T. Graham,
63
P. Grenier,
63
C. Hast,
63
W. R. Innes,
63
M. H. Kelsey,
63
H. Kim,
63
P. Kim,
63
M. L. Kocian,
63
D. W. G. S. Leith,
63
S. Li,
63
B. Lindquist,
63
S. Luitz,
63
V. Luth,
63
H. L. Lynch,
63
D. B. MacFarlane,
63
H. Marsiske,
63
D. R. Muller,
63
H. Neal,
63
S. Nelson,
63
C. P. O’Grady,
63
I. Ofte,
63
M. Perl,
63
T. Pulliam,
63
B. N. Ratcliff,
63
A. Roodman,
63
A. A. Salnikov,
63
V. Santoro,
63
R. H. Schindler,
63
J. Schwiening,
63
A. Snyder,
63
D. Su,
63
M. K. Sullivan,
63
PHYSICAL REVIEW D
82,
111102(R) (2010)
RAPID COMMUNICATIONS
1550-7998
=
2010
=
82(11)
=
111102(7)
111102-1
Ó
2010 The American Physical Society
S. Sun,
63
K. Suzuki,
63
J. M. Thompson,
63
J. Va’vra,
63
A. P. Wagner,
63
M. Weaver,
63
C. A. West,
63
W. J. Wisniewski,
63
M. Wittgen,
63
D. H. Wright,
63
H. W. Wulsin,
63
A. K. Yarritu,
63
C. C. Young,
63
V. Ziegler,
63
X. R. Chen,
64
W. Park,
64
M. V. Purohit,
64
R. M. White,
64
J. R. Wilson,
64
S. J. Sekula,
65
M. Bellis,
66
P. R. Burchat,
66
A. J. Edwards,
66
T. S. Miyashita,
66
S. Ahmed,
67
M. S. Alam,
67
J. A. Ernst,
67
B. Pan,
67
M. A. Saeed,
67
S. B. Zain,
67
N. Guttman,
68
A. Soffer,
68
P. Lund,
69
S. M. Spanier,
69
R. Eckmann,
70
J. L. Ritchie,
70
A. M. Ruland,
70
C. J. Schilling,
70
R. F. Schwitters,
70
B. C. Wray,
70
J. M. Izen,
71
X. C. Lou,
71
F. Bianchi,
72a,72b
D. Gamba,
72a,72b
M. Pelliccioni,
72a,72b
M. Bomben,
73a,73b
L. Lanceri,
73a,73b
L. Vitale,
73a,73b
N. Lopez-March,
74
F. Martinez-Vidal,
74
D. A. Milanes,
74
A. Oyanguren,
74
J. Albert,
75
Sw. Banerjee,
75
H. H. F. Choi,
75
K. Hamano,
75
G. J. King,
75
R. Kowalewski,
75
M. J. Lewczuk,
75
I. M. Nugent,
75
J. M. Roney,
75
R. J. Sobie,
75
T. J. Gershon,
76
P. F. Harrison,
76
J. Ilic,
76
T. E. Latham,
76
E. M. T. Puccio,
76
H. R. Band,
77
X. Chen,
77
S. Dasu,
77
K. T. Flood,
77
Y. Pan,
77
R. Prepost,
77
C. O. Vuosalo,
77
and S. L. Wu
77
(
B
A
B
AR
Collaboration)
1
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universite
́
de Savoie,
CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy
3b
Dipartimento di Fisica, Universita
`
di Bari, I-70126 Bari, Italy
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
University of Birmingham, Birmingham, B15 2TT, United Kingdom
7
Ruhr Universita
̈
t Bochum, Institut fu
̈
r Experimentalphysik 1, D-44780 Bochum, Germany
8
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
9
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
10
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
11
University of California at Irvine, Irvine, California 92697, USA
12
University of California at Riverside, Riverside, California 92521, USA
13
University of California at Santa Barbara, Santa Barbara, California 93106, USA
14
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
15
California Institute of Technology, Pasadena, California 91125, USA
16
University of Cincinnati, Cincinnati, Ohio 45221, USA
17
University of Colorado, Boulder, Colorado 80309, USA
18
Colorado State University, Fort Collins, Colorado 80523, USA
19
Technische Universita
̈
t Dortmund, Fakulta
̈
t Physik, D-44221 Dortmund, Germany
20
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern-und Teilchenphysik, D-01062 Dresden, Germany
21
Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
22
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
23a
INFN Sezione di Ferrara, I-44100 Ferrara, Italy
23b
Dipartimento di Fisica, Universita
`
di Ferrara, I-44100 Ferrara, Italy
24
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
25a
INFN Sezione di Genova, I-16146 Genova, Italy
25b
Dipartimento di Fisica, Universita
`
di Genova, I-16146 Genova, Italy
26
Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
27
Harvard University, Cambridge, Massachusetts 02138, USA
28
Universita
̈
t Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
29
Humboldt-Universita
̈
t zu Berlin, Institut fu
̈
r Physik, Newtonstrasse 15, D-12489 Berlin, Germany
30
Imperial College London, London, SW7 2AZ, United Kingdom
31
University of Iowa, Iowa City, Iowa 52242, USA
32
Iowa State University, Ames, Iowa 50011-3160, USA
33
Johns Hopkins University, Baltimore, Maryland 21218, USA
34
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN2P3/CNRS et Universite
́
Paris-Sud 11, Centre Scientifique d’Orsay,
B.P. 34, F-91898 Orsay Cedex, France
35
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
36
University of Liverpool, Liverpool L69 7ZE, United Kingdom
37
Queen Mary, University of London, London, E1 4NS, United Kingdom
38
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
39
University of Louisville, Louisville, Kentucky 40292, USA
40
Johannes Gutenberg-Universita
̈
t Mainz, Institut fu
̈
r Kernphysik, D-55099 Mainz, Germany
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
82,
111102(R) (2010)
RAPID COMMUNICATIONS
111102-2
41
University of Manchester, Manchester M13 9PL, United Kingdom
42
University of Maryland, College Park, Maryland 20742, USA
43
University of Massachusetts, Amherst, Massachusetts 01003, USA
44
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
45
McGill University, Montre
́
al, Que
́
bec, Canada H3A 2T8
46a
INFN Sezione di Milano, I-20133 Milano, Italy
46b
Dipartimento di Fisica, Universita
`
di Milano, I-20133 Milano, Italy
47
University of Mississippi, University, Mississippi 38677, USA
48
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
49a
INFN Sezione di Napoli, I-80126 Napoli, Italy
49b
Dipartimento di Scienze Fisiche, Universita
`
di Napoli Federico II, I-80126 Napoli, Italy
50
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
51
University of Notre Dame, Notre Dame, Indiana 46556, USA
52
Ohio State University, Columbus, Ohio 43210, USA
53
University of Oregon, Eugene, Oregon 97403, USA
54a
INFN Sezione di Padova, I-35131 Padova, Italy
54b
Dipartimento di Fisica, Universita
`
di Padova, I-35131 Padova, Italy
55
Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-Paris6,
Universite
́
Denis Diderot-Paris7, F-75252 Paris, France
56a
INFN Sezione di Perugia, I-06100 Perugia, Italy
56b
Dipartimento di Fisica, Universita
`
di Perugia, I-06100 Perugia, Italy
57a
INFN Sezione di Pisa, I-56127 Pisa, Italy
57b
Dipartimento di Fisica, Universita
`
di Pisa, I-56127 Pisa, Italy
57c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
58
Princeton University, Princeton, New Jersey 08544, USA
59a
INFN Sezione di Roma, I-00185 Roma, Italy
59b
Dipartimento di Fisica, Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
60
Universita
̈
t Rostock, D-18051 Rostock, Germany
61
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
62
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
63
SLAC National Accelerator Laboratory, Stanford, California 94309 USA
64
University of South Carolina, Columbia, South Carolina 29208, USA
65
Southern Methodist University, Dallas, Texas 75275, USA
66
Stanford University, Stanford, California 94305-4060, USA
67
State University of New York, Albany, New York 12222, USA
68
Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel
69
University of Tennessee, Knoxville, Tennessee 37996, USA
70
University of Texas at Austin, Austin, Texas 78712, USA
71
University of Texas at Dallas, Richardson, Texas 75083, USA
72a
INFN Sezione di Torino, I-10125 Torino, Italy
72b
Dipartimento di Fisica Sperimentale, Universita
`
di Torino, I-10125 Torino, Italy
73a
INFN Sezione di Trieste, I-34127 Trieste, Italy
73b
Dipartimento di Fisica, Universita
`
di Trieste, I-34127 Trieste, Italy
74
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
75
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
76
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
77
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 31 March 2010; published 22 December 2010)
Based on
122

10
6

ð
3
S
Þ
events collected with the
BABAR
detector, we have observed the

ð
1
3
D
J
Þ
bottomonium state through the

ð
3
S
Þ!

ð
1
3
D
J
Þ!

þ



ð
1
S
Þ
decay chain. The significance
for the
J
¼
2
member of the

ð
1
3
D
J
Þ
triplet is 5.8 standard deviations including systematic uncertainties.
*
Present address: Temple University, Philadelphia, PA 19122, USA.
Also at Universita
`
di Perugia, Dipartimento di Fisica, Perugia, Italy.
Also at Universita
`
di Roma La Sapienza, I-00185 Roma, Italy.
x
Present address: University of South Alabama, Mobile, AL 36688, USA.
k
Also at Universita
`
di Sassari, Sassari, Italy.
OBSERVATION OF THE

ð
1
3
D
J
Þ
...
PHYSICAL REVIEW D
82,
111102(R) (2010)
RAPID COMMUNICATIONS
111102-3
The mass of the
J
¼
2
state is determined to be
10 164
:
5

0
:
8
ð
stat
Þ
0
:
5
ð
syst
Þ
MeV
=c
2
. We use the

þ


invariant mass distribution to confirm the consistency of the observed state with the orbital angular
momentum assignment of the

ð
1
3
D
J
Þ
.
DOI:
10.1103/PhysRevD.82.111102
PACS numbers: 14.40.Nd, 13.25.Hw, 14.65.Fy
Heavy quark bound states below open flavor thresholds
provide a key probe of the interactions between quarks.
The mass spectrum and branching fractions of these states
can be described by potential models and quantum chro-
modynamics [
1
3
].
S
-wave and
P
-wave bottomonium (
b

b
)
states were first observed in the 1970s and 1980s. Only
recently [
4
] has a
D
-wave bottomonium state, the
triplet

ð
1
3
D
J
Þ
[
5
], been observed, where
J
¼
1
;
2
;
3
. The
separation between the members of the triplet (intrinsic
widths about
30 keV
=c
2
) is expected to be on the order of
10 MeV
=c
2
[
2
]. A single state, interpreted to be the
J
¼
2
member of the

ð
1
3
D
J
Þ
triplet, was observed [
4
] by the
CLEO Collaboration in the radiative

ð
1
3
D
2
Þ!

ð
1
S
Þ
decay channel, but the quantum numbers
L
and
J
[
5
] and
parity
P
were not verified.
In this paper, we report the observation of the
J
¼
2
state
of the

ð
1
3
D
J
Þ
in the hadronic

þ



ð
1
S
Þ
decay channel,
with

ð
1
S
Þ!
þ

(
¼
e; 
). This decay channel has
been of interest for decades [
2
,
6
8
]. Predictions for the
branching fraction vary widely [
6
8
]. It provides better
mass resolution than the

ð
1
S
Þ
channel and allows
L
,
J
,and
P
, for which there is currently no experimental
information, to be tested, through measurement of the an-
gular distributions of the


and

. The only previous
result for this channel is the 90% confidence level
(C.L.) branching fraction upper limit
B

ð
3
S
Þ!

ð
1
3
D
J
Þ

B

ð
1
3
D
J
Þ!

þ



ð
1
S
Þ

B

ð
1
S
Þ!
þ

<
6
:
6

10

6
[
4
].
The analysis is based on a sample of
ð
121
:
8

1
:
2
Þ
10
6

ð
3
S
Þ
decays collected with the
BABAR
detector at the
PEP-II asymmetric-energy
e
þ
e

storage rings at the SLAC
National Accelerator Laboratory, corresponding to an in-
tegrated luminosity of
28
:
6fb

1
. The
BABAR
detector is
described elsewhere [
9
]. Monte Carlo (MC) event samples
that include simulation of the detector response are used to
determine the signal and background characteristics, opti-
mize selection criteria, and evaluate efficiencies. Pure
electric-dipole transitions [
10
] are assumed when generat-
ing radiative decays.
The

ð
1
3
D
J
Þ
in our study are produced through

ð
3
S
Þ!

bJ
0
ð
2
P
Þ!

ð
1
3
D
J
Þ
transitions, with
J
0
¼
0
;
1
;
2
. To reconstruct the

ð
3
S
Þ!

þ


þ

final states, we require exactly four charged tracks in an
event, two of which are identified as pions with opposite
charge and the other two as either an
e
þ
e

or

þ


pair.
Pion candidates must not be identified as electrons. To
reject Bhabha events with bremsstrahlung followed by

conversions, we require the cosine of the polar angle of the
electron with respect to the
e

beam direction to satisfy
cos

e

<
0
:
8
in the laboratory frame. To improve the
e

energy measurements, up to three photons are combined
with
e

candidates to partially recover bremsstrahlung [
11
].
The

ð
1
S
Þ
candidate is selected by requiring

0
:
35
<
m
e
þ
e


m

ð
1
S
Þ
<
0
:
2GeV
=c
2
or
j
m

þ



m

ð
1
S
Þ
j
<
0
:
2GeV
=c
2
, where the invariant mass of the lepton pair
m
þ

is then constrained to the nominal

ð
1
S
Þ
mass value
[
12
]. The pion pair is combined with the

ð
1
S
Þ
candidate to
form a

ð
1
3
D
J
Þ
candidate (mass resolution
3MeV
=c
2
). To
eliminate background from

!
e
þ
e

conversions in
whichboththe
e
þ
and
e

are misidentified as pions, we
reject events with a cosine for the laboratory

þ


opening
angle
cos


þ
;

greater than 0.95 if the converted
e
þ
e

mass is less than
50 MeV
=c
2
and events with a laboratory
angle between the

þ


pair and

that satisfies
cos


þ


;‘

>
0
:
98
.
Photons from

ð
3
S
Þ!

bJ
0
ð
2
P
Þ
[

bJ
0
ð
2
P
Þ!

ð
1
3
D
J
Þ
] decays have energies between 86 and
122 MeV [
12
] (80 and 117 MeV [
2
]) in the

ð
3
S
Þ
center-of-mass (c.m.) frame. Our resolution for 80 MeV
photons is about 6.6 MeV. We require at least two photons
in an event: one (the other) with c.m. energy larger than
70 MeV (60 MeV). Photons from final-state radiation are
rejected by requiring the cosines of the laboratory angles
between the cascade photons and leptons to satisfy
cos

‘;
<
0
:
98
. In the case of multiple photon combina-
tions, we choose the one that minimizes

2
¼
P
i
¼
1
;
2
ð
E
i


E
i
exp
Þ
2
=
2
E
i

, where
E
i
exp
are the nominal [
12
] [for

ð
3
S
Þ!

bJ
0
ð
2
P
Þ
] or expected [
2
] [for

bJ
0
ð
2
P
Þ!

ð
1
3
D
J
Þ
]
photon energies that correspond to one of the six possible

ð
3
S
Þ!

bJ
0
ð
2
P
Þ!

ð
1
3
D
J
Þ
transition paths al-
lowed by angular momentum conservation, with
E
i

(

E
i

) the measured energies (resolutions). We verified
that the

2
procedure does not bias our results, using
simulated data samples in which the assumed

ð
1
3
D
J
Þ
mass values are varied.
The

ð
1
3
D
J
Þ
candidate is combined with the two pho-
tons to form a

ð
3
S
Þ
candidate, whose c.m. momentum
must be less than
0
:
3 GeV
=c
. The

ð
3
S
Þ
mass is then
constrained to its nominal value [
12
]. The

ð
3
S
Þ
laboratory
energy (resolution 25 MeV) is required to equal the
summed
e
þ
and
e

beam energies to within 0.1 GeV.
We identify four background categories within our fit
interval
10
:
11
<m

þ


þ

<
10
:
28 GeV
=c
2
:

ð
3
S
Þ
de-
cays to (I)

bJ
0
ð
2
P
Þ
with

bJ
0
ð
2
P
Þ!
!
ð
1
S
Þ
and
!
!

þ


ð

0
Þ
, (II)

þ



ð
1
S
Þ
with final-state radiation,
(III)

ð
1
S
Þ
with

!

þ



0
ð

Þ
, and (IV)

ð
2
S
Þ
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
82,
111102(R) (2010)
RAPID COMMUNICATIONS
111102-4
or

0

0

ð
2
S
Þ
with

ð
2
S
Þ!

þ



ð
1
S
Þ
. Categories I
and II are the main backgrounds.
An extended unbinned maximum likelihood fit is ap-
plied to the sample of 263 events in the fit interval. The fit
has a component for each of the three

ð
1
3
D
J
Þ
signal states
and four background categories. The likelihood function is
L
¼
exp
ð
P
j
n
j
Þ
Q
N
i
¼
1
½
P
j
n
j
P
j
ð
m
i
Þ
, with
N
the number
of events,
n
j
the yield of component
j
,
P
j
the probability
density function (PDF) for component
j
, and
m
the

þ


þ

invariant mass.
The PDFs are derived from MC simulations. Each signal
PDF is parameterized by the sum of two Gaussians and a
crystal ball function [
13
]. For background category I, we
use the sum of a crystal ball function, which describes the
!
!

þ



0
events, and two Gaussians, which model
the two peaks from

b
1
;
2
ð
2
P
Þ
decays to
!
ð
1
S
Þ
with
!
!

þ


. A bifurcated Gaussian, a high statistics histogram,
and a Gaussian model the PDFs for backgrounds II, III, and
IV, respectively.
A large data control sample of

ð
3
S
Þ!

bJ
0
ð
2
P
Þ!

ð
2
S
Þ
events with

ð
2
S
Þ!

þ



ð
1
S
Þ
and

ð
1
S
Þ!
þ

is used to validate the signal PDFs and mass recon-
struction. The control sample is selected using similar
criteria to those used to select the

ð
1
3
D
J
Þ
. The back-
ground contamination is about 2%. Only a small difference
is observed between the shapes of the

ð
2
S
Þ!

þ


þ

invariant mass distributions in the data and
simulation. The signal PDF is adjusted to account for this
difference. The reconstructed

ð
2
S
Þ
mass is shifted down-
wards by
0
:
70

0
:
15
ð
stat
Þ
MeV
=c
2
compared to its nomi-
nal value [
12
]. We apply this shift as a correction to the

ð
1
3
D
J
Þ
mass results presented below.
Eleven parameters are determined in the fit: the three
signal yields and three masses, the yields of background
categories I and II, and—within background category I—
the

b
1
ð
2
P
Þ
mass and the relative yields of the

b
1
ð
2
P
Þ
and

b
2
ð
2
P
Þ
peaks from
!
!

þ


decays. The mass differ-
ence between the

b
1
ð
2
P
Þ
and

b
2
ð
2
P
Þ
peaks is fixed to its
measured value [
12
]. The yields of background categories
III and IV are fixed to their expected values based on the
measured branching fractions [
12
,
14
].
Figure
1
shows the

þ


þ

mass distribution and fit
results. The results for the separated

ð
1
S
Þ!
e
þ
e

and

ð
1
S
Þ!

þ


channels are shown in Fig.
2
. The
e
þ
e

channel has a smaller efficiency than the

þ


channel in
part because of the criteria to reject Bhabha events. The
differences in efficiency between the
e
þ
e

and

þ


channels, including those for the

bJ
0
ð
2
P
Þ!
!
ð
1
S
Þ
background events, are consistent with the expectations
from the simulation within the uncertainties. We find
10
:
6
þ
5
:
7

4
:
9

ð
1
3
D
1
Þ
,
33
:
9
þ
8
:
2

7
:
5

ð
1
3
D
2
Þ
, and
9
:
4
þ
6
:
2

5
:
2

ð
1
3
D
3
Þ
events. The positions of the three signal peaks in Fig.
1
are
stable with respect to different initial assumptions about
their masses within the fit interval. The fluctuations at
around 10.13 and
10
:
18 GeV
=c
2
are discussed below.
The fitted background category I and II yields of
50

9
and
94

13
events agree with the MC expectations of 51
and 94 events, respectively. The fitted

b
1
ð
2
P
Þ
mass value
of
10 255
:
7

0
:
7
ð
stat
Þ
MeV
=c
2
[after applying the shift of
þ
0
:
7 MeV
=c
2
from the

ð
2
S
Þ
mass calibration] is in good
agreement with the nominal value
10 255
:
5

0
:
5 MeV
=c
2
[
12
], validating the calibration.
)
2
mass (GeV/c
-
l
+
l
-
π
+
π
10.15
10.2
10.25
)
2
Events / ( 0.0025 GeV/c
0
10
20
)
2
mass (GeV/c
-
l
+
l
-
π
+
π
10.15
10.2
10.25
)
2
Events / ( 0.0025 GeV/c
0
10
20
Data
Fit
)
J
(1
3
D
Υ
Signal
(1S)
Υ
ω
γ
(2P )
b
J'
χ
γ
(1S)
Υ
-
π
+
π
(1S)
Υ
η
(2S)
Υ
)
0
π
0
π
(
γγ
FIG. 1. The

þ


þ

mass spectrum and fit results. The
two peaks near
10
:
25 GeV
=c
2
arise from

bJ
0
ð
2
P
Þ!
!
ð
1
S
Þ
background events with
!
!

þ


.
)
2
mass (GeV/c
-
e
+
e
-
π
+
π
10.15
10.2
10.25
)
2
Events / ( 0.0025 GeV/c
0
5
)
2
mass (GeV/c
-
e
+
e
-
π
+
π
a)
10.15
10.2
10.25
)
2
Events / ( 0.0025 GeV/c
0
5
)
2
mass (GeV/c
-
μ
+
μ
-
π
+
π
10.15
10.2
10.25
b)
)
2
Events / ( 0.0025 GeV/c
0
5
10
15
)
2
mass (GeV/c
-
μ
+
μ
-
π
+
π
10.15
10.2
10.25
)
2
Events / ( 0.0025 GeV/c
0
5
10
15
FIG. 2. The

þ


þ

mass spectra for the separated
(a)

ð
1
S
Þ!
e
þ
e

and (b)

ð
1
S
Þ!

þ


channels. The
results of the fit are shown. The legend is given in Fig.
1
.
OBSERVATION OF THE

ð
1
3
D
J
Þ
...
PHYSICAL REVIEW D
82,
111102(R) (2010)
RAPID COMMUNICATIONS
111102-5
Fit biases are evaluated by applying the fit to an en-
semble of 2000 simulated experiments constructed by
randomly extracting events from MC samples. The num-
bers of signal and background events and the

ð
1
3
D
J
Þ
masses correspond to those of the fit. The biases are
1
:
6

0
:
1
,

1
:
8

0
:
2
, and
1
:
0

0
:
1
events for the

ð
1
3
D
1
Þ
,

ð
1
3
D
2
Þ
, and

ð
1
3
D
3
Þ
, respectively. We subtract
these biases from the signal yields. The biases on the
masses are negligible.
Multiplicative systematic uncertainties arise from the
uncertainty in the number
N

ð
3
S
Þ
of

ð
3
S
Þ
events in the
initial sample (1.0%) and in the reconstruction efficiencies
for tracks (1.4%), photons (3.0%), and particle identifica-
tion (2.0%). Additive systematic uncertainties originate
from signal and background PDFs, evaluated by varying
the PDF parameters within their uncertainties, background
yields, evaluated by varying the background category IV
(III) yield by its uncertainties (by

100%
), the fit bias, and
the

ð
2
S
Þ
mass calibration. The fit bias uncertainties are
defined as the quadratic sum of half the biases and their
statistical uncertainties. The mass calibration uncertainty is
taken to be half the

ð
2
S
Þ
mass shift added in quadrature
with the

ð
2
S
Þ
mass uncertainty [
12
]. The overall additive
uncertainties for the signal yields (masses) are 1.5–2.0
events (
0
:
48 MeV
=c
2
) and are dominated by the contribu-
tion from the background yields [

ð
2
S
Þ
mass calibration].
As a check, we repeat the fit with an additional back-
ground term, given by a second-order polynomial. The
purpose of this check is to test for the effect of potential
unmodeled background. The parameters of the polynomial
are left free in the fit (thus there are 14 free parameters).
The fitted

ð
1
3
D
J
Þ
yields are affected by less than 0.5
events compared to our standard fit, for all
J
values. The
shifts in the fitted mass values are less than 0.05 MeV.
Since this polynomial background term is not motivated by
any known source and since the description of the back-
ground without the additional term is good, we do not use
this alternate background model to define a systematic
uncertainty.
We define the statistical significance of each

ð
1
3
D
J
Þ
state by the square root of the difference between the value
of

2ln
L
for zero signal events and assuming the bias-
corrected signal yield, with the masses and yields of the
other two states held at their fitted values. These results are
validated with frequentist techniques. Systematics are in-
cluded by convoluting
L
with a Gaussian whose standard
deviation (

) equals the total systematic uncertainty. The
significances of the

ð
1
3
D
1
Þ
,

ð
1
3
D
2
Þ
, and

ð
1
3
D
3
Þ
ob-
servations are 2.0 (1.8), 6.5 (5.8), and 1.7 (1.6)

without
(with) systematics included, respectively. If we use the raw
signal yields, rather than the bias-corrected yields, the
statistical significances of the
J
¼
1
, 2, and 3 states are
2.4, 6.2, and 2.0

, respectively.
From Fig.
1
it is seen that the data exhibit upward
fluctuations at

þ


þ

masses around 10.13 and
10
:
18 GeV
=c
2
. To investigate the significance of these
fluctuations, we reperform the fit with the
J
¼
1
mass
constrained to
10
:
13 GeV
=c
2
rather than leaving it as a
free parameter. An analogous fit is made with the
J
¼
3
mass constrained to
10
:
18 GeV
=c
2
. The statistical signifi-
cance for this alternate
J
¼
1
(
J
¼
3
) peak, evaluated
using the raw signal yield, is
2
:
0

(
1
:
3

), compared to
2
:
4

(
2
:
0

) for our standard fit. The
J
¼
2
signal yield and
mass shift by less than 1 event and
0
:
04 MeV
=c
2
, respec-
tively, in these alternate fits.
We determine branching fractions by dividing the bias-
corrected signal yields by the selection efficiencies and
N

ð
3
S
Þ
. The significances of the

ð
1
3
D
1
Þ
and

ð
1
3
D
3
Þ
peaks are low and we do not have clear evidence for
them. For the
J
¼
1
and 3 states, we also present upper
limits on the branching fractions assuming the fitted
masses. The efficiencies for the six allowed

ð
3
S
Þ!

bJ
0
ð
2
P
Þ!

ð
1
3
D
J
Þ
paths differ by up to 7.5% and
therefore do not factorize, leaving six unknown branching
fractions but only three measured signal yields. However,
91.4% of the

ð
3
S
Þ!

ð
1
3
D
1
Þ
and 88.7% of the

ð
3
S
Þ!

ð
1
3
D
2
Þ
transitions are predicted [
2
] to pro-
ceed through the

b
1
ð
2
P
Þ
state, while

ð
3
S
Þ!

ð
1
3
D
3
Þ
transitions can only proceed through the

b
2
ð
2
P
Þ
. Therefore, we evaluate the branching fractions
for the dominant modes only, using the predicted ratios of
the branching fractions to account for the nondominant
transitions. The efficiencies of the dominant modes, aver-
aged over the

ð
1
S
Þ!
e
þ
e

and

þ


final states, are
26
:
7

0
:
1%
,
26
:
7

0
:
1%
, and
25
:
7

0
:
2%
for the

ð
1
3
D
1
Þ
,

ð
1
3
D
2
Þ
, and

ð
1
3
D
3
Þ
, respectively.
The branching fraction products for the dominant
modes
B
J
0
J

B

ð
3
S
Þ!

bJ
0
ð
2
P
Þ

B

bJ
0
ð
2
P
Þ!

ð
1
3
D
J
Þ

B

ð
1
3
D
J
Þ!

ð
1
S
Þ

B

ð
1
S
Þ!
‘‘
(or the upper limits at
90% C.L. with systematics included) are, in units of
10

7
,
B
11
¼
1
:
27
þ
0
:
81

0
:
69

0
:
28
ð
<
2
:
50
Þ
,
B
12
¼
4
:
9
þ
1
:
1

1
:
0

0
:
3
,
and
B
23
¼
1
:
34
þ
0
:
99

0
:
83

0
:
24
ð
<
2
:
80
Þ
. We determine the

ð
1
3
D
2
Þ
mass to be
10 164
:
5

0
:
8

0
:
5MeV
=c
2
,which
is consistent with, and more precise than, the result
10 161
:
1

0
:
6
ð
stat
Þ
1
:
6
ð
syst
Þ
MeV
=c
2
from CLEO [
4
].
From the

ð
3
S
Þ!

bJ
0
ð
2
P
Þ
branching fractions
and uncertainties [
12
] and

bJ
0
ð
2
P
Þ!

ð
1
3
D
J
Þ
branching fraction predictions [
2
] we determine
B
½

ð
1
3
D
J
Þ!

þ



ð
1
S
Þ
(or 90% C.L. upper limits
including systematics) to be
0
:
42
þ
0
:
27

0
:
23

0
:
10%
ð
<
0
:
82%
Þ
for the

ð
1
3
D
1
Þ
,
0
:
66
þ
0
:
15

0
:
14

0
:
06%
for the

ð
1
3
D
2
Þ
, and
0
:
29
þ
0
:
22

0
:
18

0
:
06%
ð
<
0
:
62%
Þ
for the

ð
1
3
D
3
Þ
, which lie
between the predictions of about 0.2% from Ref. [
7
] and
2% from Ref. [
8
].
Figure
3(a)
shows the

þ


mass distribution for
events in the

ð
1
3
D
2
Þ
signal region
10
:
155
<
m

þ


þ

<
10
:
168 GeV
=c
2
after subtraction of the
backgrounds using the estimates from the fit. The data
are corrected for mass-dependent efficiency variations.
Shown in comparison are the expectations for the decay
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
82,
111102(R) (2010)
RAPID COMMUNICATIONS
111102-6
of a
D
[
15
],
S
[
15
], or
1
P
1
[
16
] bottomonium state to

þ



ð
1
S
Þ
. The resulting

2
probabilities of 81%,
11%, and 10%, respectively, strongly favor the
D
state.
The distribution of the angle

between the
þ

and

þ


planes in the

ð
1
3
D
J
Þ
rest frame, for events in the

ð
1
3
D
2
Þ
signal region, is shown in Fig.
3(b)
. The data are
corrected for background and efficiency. The

distribution
is expected to have the form
1
þ
cos2

with
sgn
ð
Þ¼
ð
1
Þ
J
P
[
17
], where
P
is the parity. A fit to the data yields
¼
0
:
41

0
:
29
ð
stat
Þ
0
:
10
ð
syst
Þ
, consistent with the
expected assignments
J
¼
2
and
P
¼
1
.
The background-subtracted, efficiency-corrected distri-
bution of the helicity angle


, for events in the

ð
1
3
D
2
Þ
signal region, is shown in Fig.
3(c)
, where


is the
angle of the

þ
in the

þ


rest frame with respect
to the boost from the

ð
1
3
D
2
Þ
frame. For
D
-state
decays to

þ



ð
1
S
Þ
,


follows a
1
þ
2
ð
3cos
2



1
Þ
distribution, where
is a dynamical parameter to be de-
termined experimentally. For
S
-state decays, the


distribution is flat (
¼
0
). A fit to data yields
¼

1
:
0

0
:
4
ð
stat
Þ
0
:
1
ð
syst
Þ
, disfavoring the
S
state.
In summary, we have observed the

ð
1
3
D
2
Þ
bottomo-
nium state through decays to

þ



ð
1
S
Þ
. The signifi-
cance is
5
:
8

including systematic uncertainties. We
improve the measurement of the

ð
1
3
D
2
Þ
mass and deter-
mine the

ð
1
3
D
J
Þ!

þ



ð
1
S
Þ
branching fractions or
set upper limits. We use the

þ


invariant mass, the
angle between the

þ


and
þ

planes, and the

þ
helicity angle, to test the consistency of the observed state
with the expected quantum numbers
L
¼
2
and
J
¼
2
and
parity
P
¼
1
for the dominant member of the triplet

ð
1
3
D
2
Þ
.
We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues and for the
substantial dedicated effort from the computing organiza-
tions that support
BABAR
. The collaborating institutions
thank SLAC for its support and kind hospitality. This work
is supported by DOE and NSF (USA), NSERC (Canada),
CEA and CNRS-IN2P3 (France), BMBF and DFG
(Germany), INFN (Italy), FOM (The Netherlands), NFR
(Norway), MES (Russia), MEC (Spain), and STFC (United
Kingdom). Individuals have received support from the
Marie Curie EIF (European Union) and the A. P. Sloan
Foundation.
[1] N. Brambilla
et al.
,
arXiv:hep-ph/0412158
; Y.-P. Kuang,
Front. Phys. China
1
, 19 (2006)
.
[2] W. Kwong and J. L. Rosner,
Phys. Rev. D
38
, 279
(1988)
.
[3] C. T. H. Davies
et al.
,
Phys. Rev. Lett.
92
, 022001 (2004)
;
Proc. Sci., LATTICE2008 (
2008
) 118 [
arXiv:0810.3548
].
[4] G. Bonvicini
et al.
(CLEO Collaboration),
Phys. Rev. D
70
, 032001 (2004)
.
[5] Fermion-antifermion bound states are denoted
n
2
S
þ
1
L
J
,
where
n
,
S
,
L
, and
J
are the radial, spin, orbital angular
momentum, and total angular momentum quantum num-
bers of the pair, respectively.
[6] Y.-P. Kuang and T.-M. Yan,
Phys. Rev. D
24
, 2874 (1981)
.
[7] P. Moxhay,
Phys. Rev. D
37
, 2557 (1988)
.
[8] P. Ko,
Phys. Rev. D
47
, 208 (1993)
.
[9] B. Aubert
et al.
(
B
A
B
AR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002)
; W. Menges,
IEEE Nucl. Sci. Symp. Conf. Rec.
5
, 1470 (2006).
[10] G. Karl, S. Meshkov, and J. L. Rosner,
Phys. Rev. D
13
,
1203 (1976)
; J. L. Rosner,
Phys. Rev. D
78
, 114011
(2008)
; (private communication).
[11] B. Aubert
et al.
(
B
A
B
AR
Collaboration),
Phys. Rev. D
66
,
032003 (2002)
.
[12] C. Amsler
et al.
(Particle Data Group),
Phys. Lett. B
667
,1
(2008)
.
[13] M. J. Oreglia, Report No. SLAC-R-236, 1980 (unpub-
lished); J. E. Gaiser, Report No. SLAC-R-255, 1982 (un-
published); T. Skwarnicki, DESY Report No. F31-86-02,
1986 (unpublished).
[14] Q. He
et al.
(CLEO Collaboration),
Phys. Rev. Lett.
101
,
192001 (2008)
.
[15] T.-M. Yan,
Phys. Rev. D
22
, 1652 (1980)
.
[16] Y.-P. Kuang, S.-F. Tuan, and T.-M. Yan,
Phys. Rev. D
37
,
1210 (1988)
.
[17] J. R. Dell’Aquila and C. A. Nelson,
Phys. Rev. D
33
,80
(1986)
; Y.-P. Kuang (private communication).
)
2
masss (GeV/c
-
π
+
π
0.4
0.6
)
2
Events / (60 MeV/c
0
20
40
Data
(a)
D state
S state
state
1
1P
χ
(b)
0
0.5
1
1.5
Events
0
20
40
60
|
+
π
θ
|cos
00.5
(c)
1
Events
0
20
40
FIG. 3 (color online). (a) The

þ


mass spectrum in the

ð
1
3
D
2
Þ
signal region. The area under each curve equals the
number of events. (b),(c) Distributions in the

ð
1
3
D
2
Þ
signal
region of (b) the angle

between the

þ


and
þ

planes
and (c) the

þ
helicity angle. The uncertainties include both
statistical and systematic terms.
OBSERVATION OF THE

ð
1
3
D
J
Þ
...
PHYSICAL REVIEW D
82,
111102(R) (2010)
RAPID COMMUNICATIONS
111102-7