Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 1, 2000 | Published
Journal Article Open

Culture in Reduced Levels of Oxygen Promotes Clonogenic Sympathoadrenal Differentiation by Isolated Neural Crest Stem Cells


Isolated neural crest stem cells (NCSCs) differentiate to autonomic neurons in response to bone morphogenetic protein 2 (BMP2) in clonal cultures, but these neurons do not express sympathoadrenal (SA) lineage markers. Whether this reflects a developmental restriction in NCSCs or simply inappropriate culture conditions was not clear. We tested the growth and differentiation potential of NCSCs at ∼5% O_2, which more closely approximates physiological oxygen levels. Eighty-three percent of p75^+P_0 ^− cells isolated from embryonic day 14.5 sciatic nerve behaved as stem cells under these conditions, suggesting that this is a nearly pure population. Furthermore, addition of BMP2 plus forskolin in decreased oxygen cultures elicited differentiation of thousands of cells expressing tyrosine hydroxylase, dopamine-β-hydroxylase, and the SA lineage marker SA-1 in nearly all colonies. Such cells also synthesized and released dopamine and norepinephrine. These data demonstrate that isolated mammalian NCSCs uniformly possess SA lineage capacity and further suggest that oxygen levels can influence cell fate. Parallel results indicating that reduced oxygen levels can also promote the survival, proliferation, and catecholaminergic differentiation of CNS stem cells (Studer et al., 2000) suggests that neural stem cells may exhibit a conserved response to reduced oxygen levels.

Additional Information

© 2000 Society for Neuroscience. Received May 12, 2000; Revised July 5, 2000; Accepted July 6, 2000. This work was supported by a program project grant from the National Institutes of Health (B.W., Principle Investigator). S.J.M. was initially supported by a postdoctoral fellowship from the American Cancer Society, California Division and is currently an Assistant Investigator of the Howard Hughes Medical Institute. D.J.A. is an Investigator of the Howard Hughes Medical Institute. We thank Gaby Mosconi for laboratory management, Suzanne Bixby, Lan Dinh, Hieu Phan, and Ling Wang for technical assistance, and Robert Vega for animal ordering. We thank Rochelle Diamond and Pat Koen of the Caltech Flow-Cytometry Facility for FACS operation and J. J. Archelos for monoclonal anti-P_0 antibody.

Attached Files

Published - 7370.full.pdf


Files (3.3 MB)
Name Size Download all
3.3 MB Preview Download

Additional details

August 21, 2023
October 20, 2023