Published December 9, 2005 | Version Published
Journal Article Open

Algebraic Vortex Liquid in Spin-1/2 Triangular Antiferromagnets: Scenario for Cs2CuCl4

Abstract

Motivated by inelastic neutron scattering data on Cs2CuCl4, we explore spin-1/2 triangular lattice antiferromagnets with both spatial and easy-plane exchange anisotropies, the latter due to an observed Dzyaloshinskii-Moriya interaction. Exploiting a duality mapping followed by a fermionization of the dual vortex degrees of freedom, we find a novel critical spin-liquid phase described in terms of Dirac fermions with an emergent global SU(4) symmetry minimally coupled to a noncompact U(1) gauge field. This "algebraic vortex liquid" supports gapless spin excitations and universal power-law correlations in the dynamical spin structure factor which are consistent with those observed in Cs2CuCl4. We suggest future neutron scattering experiments that should help distinguish between the algebraic vortex liquid and other spin liquids and quantum critical points previously proposed in the context of Cs2CuCl4.

Additional Information

© 2005 The American Physical Society (Received 26 August 2005; published 6 December 2005) We would like to thank Leon Balents, T. Senthil, and Martin Veillette for sharing their insights, and especially Michael Hermele for an initial collaboration. This work was supported by the National Science Foundation (J.A.) through Grants No. PHY-9907949 (O.I.M. and M.P.A.F.) and No. DMR-0210790 (M.P.A.F.).

Attached Files

Published - ALIprl05.pdf

Files

ALIprl05.pdf

Files (192.3 kB)

Name Size Download all
md5:7a9dd54792f161ec21ddc417751f0b7b
192.3 kB Preview Download

Additional details

Identifiers

Eprint ID
7134
Resolver ID
CaltechAUTHORS:ALIprl05

Funding

NSF
PHY-9907949
NSF
DMR-0210790

Dates

Created
2007-01-09
Created from EPrint's datestamp field
Updated
2021-11-08
Created from EPrint's last_modified field