of 16
arXiv:1412.5942v1 [astro-ph.HE] 18 Dec 2014
Draft version December 19, 2014
Preprint typeset using L
A
T
E
X style emulateapj v. 5/2/11
SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUN
G SUPERNOVA REMNANTS
J. Aasi
1
, B. P. Abbott
1
, R. Abbott
1
, T. Abbott
2
, M. R. Abernathy
1
, F. Acernese
3
,
4
, K. Ackley
5
, C. Adams
6
,
T. Adams
7
,
8
, T. Adams
8
, P. Addesso
9
, R. X. Adhikari
1
, V. Adya
10
, C. Affeldt
10
, M. Agathos
11
, K. Agatsuma
11
,
N. Aggarwal
12
, O. D. Aguiar
13
, A. Ain
14
, P. Ajith
15
, A. Alemic
16
, B. Allen
17
,
18
, A. Allocca
19
,
20
, D. Amariutei
5
,
S. B. Anderson
1
, W. G. Anderson
18
, K. Arai
1
, M. C. Araya
1
, C. Arceneaux
21
, J. S. Areeda
22
, S. Ast
23
,
S. M. Aston
6
, P. Astone
24
, P. Aufmuth
23
, C. Aulbert
17
, B. E. Aylott
25
, S. Babak
26
, P. T. Baker
27
,
F. Baldaccini
28
,
29
, G. Ballardin
30
, S. W. Ballmer
16
, J. C. Barayoga
1
, M. Barbet
5
, S. Barclay
31
, B. C. Barish
1
,
D. Barker
32
, F. Barone
3
,
4
, B. Barr
31
, L. Barsotti
12
, M. Barsuglia
33
, J. Bartlett
32
, M. A. Barton
32
,
I. Bartos
34
, R. Bassiri
35
, A. Basti
36
,
20
, J. C. Batch
32
, Th. S. Bauer
11
, C. Baune
10
, V. Bavigadda
30
, B. Behnke
26
,
M. Bejger
37
, C. Belczynski
38
, A. S. Bell
31
, C. Bell
31
, M. Benacquista
39
, J. Bergman
32
, G. Bergmann
10
,
C. P. L. Berry
25
, D. Bersanetti
40
,
41
, A. Bertolini
11
, J. Betzwieser
6
, S. Bhagwat
16
, R. Bhandare
42
,
I. A. Bilenko
43
, G. Billingsley
1
, J. Birch
6
, S. Biscans
12
, M. Bitossi
30
,
20
, C. Biwer
16
, M. A. Bizouard
44
,
J. K. Blackburn
1
, L. Blackburn
45
, C. D. Blair
46
, D. Blair
46
, S. Bloemen
11
,
47
, O. Bock
17
, T. P. Bodiya
12
,
M. Boer
48
, G. Bogaert
48
, P. Bojtos
49
, C. Bond
25
, F. Bondu
50
, L. Bonelli
36
,
20
, R. Bonnand
8
, R. Bork
1
,
M. Born
10
, V. Boschi
20
, Sukanta Bose
14
,
51
, C. Bradaschia
20
, P. R. Brady
18
, V. B. Braginsky
43
,
M. Branchesi
52
,
53
, J. E. Brau
54
, T. Briant
55
, D. O. Bridges
6
, A. Brillet
48
, M. Brinkmann
10
, V. Brisson
44
,
A. F. Brooks
1
, D. A. Brown
16
, D. D. Brown
25
, N. M. Brown
12
, S. Buchman
35
, A. Buikema
12
, T. Bulik
38
,
H. J. Bulten
56
,
11
, A. Buonanno
57
, D. Buskulic
8
, C. Buy
33
, L. Cadonati
58
, G. Cagnoli
59
, J. Calder
́
on Bustillo
60
,
E. Calloni
61
,
4
, J. B. Camp
45
, K. C. Cannon
62
, J. Cao
63
, C. D. Capano
57
, F. Carbognani
30
, S. Caride
64
,
S. Caudill
18
, M. Cavagli
`
a
21
, F. Cavalier
44
, R. Cavalieri
30
, G. Cella
20
, C. Cepeda
1
, E. Cesarini
65
,
R. Chakraborty
1
, T. Chalermsongsak
1
, S. J. Chamberlin
18
, S. Chao
66
, P. Charlton
67
, E. Chassande-Mottin
33
,
Y. Chen
68
, A. Chincarini
41
, A. Chiummo
30
, H. S. Cho
69
, M. Cho
57
, J. H. Chow
70
, N. Christensen
71
, Q. Chu
46
,
S. Chua
55
, S. Chung
46
, G. Ciani
5
, F. Clara
32
, J. A. Clark
58
, F. Cleva
48
, E. Coccia
72
,
73
, P.-F. Cohadon
55
,
A. Colla
74
,
24
, C. Collette
75
, M. Colombini
29
, L. Cominsky
76
, M. Constancio, Jr.
13
, A. Conte
74
,
24
, D. Cook
32
,
T. R. Corbitt
2
, N. Cornish
27
, A. Corsi
77
, C. A. Costa
13
, M. W. Coughlin
71
, J.-P. Coulon
48
, S. Countryman
34
,
P. Couvares
16
, D. M. Coward
46
, M. J. Cowart
6
, D. C. Coyne
1
, R. Coyne
77
, K. Craig
31
, J. D. E. Creighton
18
,
T. D. Creighton
39
, J. Cripe
2
, S. G. Crowder
78
, A. Cumming
31
, L. Cunningham
31
, E. Cuoco
30
, C. Cutler
68
,
K. Dahl
10
, T. Dal Canton
17
, M. Damjanic
10
, S. L. Danilishin
46
, S. D’Antonio
65
, K. Danzmann
23
,
10
, L. Dartez
39
,
V. Dattilo
30
, I. Dave
42
, H. Daveloza
39
, M. Davier
44
, G. S. Davies
31
, E. J. Daw
79
, R. Day
30
, D. DeBra
35
,
G. Debreczeni
80
, J. Degallaix
59
, M. De Laurentis
61
,
4
, S. Del
́
eglise
55
, W. Del Pozzo
25
, T. Denker
10
, T. Dent
17
,
H. Dereli
48
, V. Dergachev
1
, R. De Rosa
61
,
4
, R. T. DeRosa
2
, R. DeSalvo
9
, S. Dhurandhar
14
, M. D
́
ıaz
39
,
L. Di Fiore
4
, A. Di Lieto
36
,
20
, I. Di Palma
26
, A. Di Virgilio
20
, G. Dojcinoski
81
, V. Dolique
59
, E. Dominguez
82
,
F. Donovan
12
, K. L. Dooley
10
, S. Doravari
6
, R. Douglas
31
, T. P. Downes
18
, M. Drago
83
,
84
, J. C. Driggers
1
,
Z. Du
63
, M. Ducrot
8
, S. Dwyer
32
, T. Eberle
10
, T. Edo
79
, M. Edwards
7
, M. Edwards
71
, A. Effler
2
,
H.-B. Eggenstein
17
, P. Ehrens
1
, J. Eichholz
5
, S. S. Eikenberry
5
, R. Essick
12
, T. Etzel
1
, M. Evans
12
, T. Evans
6
,
M. Factourovich
34
, V. Fafone
72
,
65
, S. Fairhurst
7
, X. Fan
31
, Q. Fang
46
, S. Farinon
41
, B. Farr
85
, W. M. Farr
25
,
M. Favata
81
, M. Fays
7
, H. Fehrmann
17
, M. M. Fejer
35
, D. Feldbaum
5
,
6
, I. Ferrante
36
,
20
, E. C. Ferreira
13
,
F. Ferrini
30
, F. Fidecaro
36
,
20
, I. Fiori
30
, R. P. Fisher
16
, R. Flaminio
59
, J.-D. Fournier
48
, S. Franco
44
,
S. Frasca
74
,
24
, F. Frasconi
20
, Z. Frei
49
, A. Freise
25
, R. Frey
54
, T. T. Fricke
10
, P. Fritschel
12
, V. V. Frolov
6
,
S. Fuentes-Tapia
39
, P. Fulda
5
, M. Fyffe
6
, J. R. Gair
86
, L. Gammaitoni
28
,
29
, S. Gaonkar
14
, F. Garufi
61
,
4
,
A. Gatto
33
, N. Gehrels
45
, G. Gemme
41
, B. Gendre
48
, E. Genin
30
, A. Gennai
20
, L.
́
A. Gergely
87
, S. Ghosh
11
,
47
,
J. A. Giaime
6
,
2
, K. D. Giardina
6
, A. Giazotto
20
, J. Gleason
5
, E. Goetz
17
, R. Goetz
5
, L. Gondan
49
, G. Gonz
́
alez
2
,
N. Gordon
31
, M. L. Gorodetsky
43
, S. Gossan
68
, S. Goßler
10
, R. Gouaty
8
, C. Gr
̈
af
31
, P. B. Graff
45
,
M. Granata
59
, A. Grant
31
, S. Gras
12
, C. Gray
32
, R. J. S. Greenhalgh
88
, A. M. Gretarsson
89
, P. Groot
47
,
H. Grote
10
, S. Grunewald
26
, G. M. Guidi
52
,
53
, C. J. Guido
6
, X. Guo
63
, K. Gushwa
1
, E. K. Gustafson
1
,
R. Gustafson
64
, J. Hacker
22
, E. D. Hall
1
, G. Hammond
31
, M. Hanke
10
, J. Hanks
32
, C. Hanna
90
, M. D. Hannam
7
,
J. Hanson
6
, T. Hardwick
54
,
2
, J. Harms
53
, G. M. Harry
91
, I. W. Harry
26
, M. Hart
31
, M. T. Hartman
5
,
C.-J. Haster
25
, K. Haughian
31
, S. Hee
86
, A. Heidmann
55
, M. Heintze
5
,
6
, G. Heinzel
10
, H. Heitmann
48
, P. Hello
44
,
G. Hemming
30
, M. Hendry
31
, I. S. Heng
31
, A. W. Heptonstall
1
, M. Heurs
10
, M. Hewitson
10
, S. Hild
31
, D. Hoak
58
,
K. A. Hodge
1
, D. Hofman
59
, S. E. Hollitt
92
, K. Holt
6
, P. Hopkins
7
, D. J. Hosken
92
, J. Hough
31
, E. Houston
31
,
E. J. Howell
46
, Y. M. Hu
31
, E. Huerta
93
, B. Hughey
89
, S. Husa
60
, S. H. Huttner
31
, M. Huynh
18
, T. Huynh-Dinh
6
,
A. Idrisy
90
, N. Indik
17
, D. R. Ingram
32
, R. Inta
90
, G. Islas
22
, J. C. Isler
16
, T. Isogai
12
, B. R. Iyer
94
, K. Izumi
32
,
M. Jacobson
1
, H. Jang
95
, P. Jaranowski
96
, S. Jawahar
97
, Y. Ji
63
, F. Jim
́
enez-Forteza
60
, W. W. Johnson
2
,
D. I. Jones
98
, R. Jones
31
, R.J.G. Jonker
11
, L. Ju
46
, Haris K
99
, V. Kalogera
85
, S. Kandhasamy
21
, G. Kang
95
,
J. B. Kanner
1
, M. Kasprzack
44
,
30
, E. Katsavounidis
12
, W. Katzman
6
, H. Kaufer
23
, S. Kaufer
23
, T. Kaur
46
,
K. Kawabe
32
, F. Kawazoe
10
, F. K
́
ef
́
elian
48
, G. M. Keiser
35
, D. Keitel
17
, D. B. Kelley
16
, W. Kells
1
,
D. G. Keppel
17
, J. S. Key
39
, A. Khalaidovski
10
, F. Y. Khalili
43
, E. A. Khazanov
100
, C. Kim
101
,
95
, K. Kim
102
,
N. G. Kim
95
, N. Kim
35
, Y.-M. Kim
69
, E. J. King
92
, P. J. King
32
, D. L. Kinzel
6
, J. S. Kissel
32
, S. Klimenko
5
,
J. Kline
18
, S. Koehlenbeck
10
, K. Kokeyama
2
, V. Kondrashov
1
, M. Korobko
10
, W. Z. Korth
1
, I. Kowalska
38
,
D. B. Kozak
1
, V. Kringel
10
, B. Krishnan
17
, A. Kr
́
olak
103
,
104
, C. Krueger
23
, G. Kuehn
10
, A. Kumar
105
,
P. Kumar
16
, L. Kuo
66
, A. Kutynia
103
, M. Landry
32
, B. Lantz
35
, S. Larson
85
, P. D. Lasky
106
, A. Lazzarini
1
,
C. Lazzaro
107
, C. Lazzaro
58
, J. Le
85
, P. Leaci
26
, S. Leavey
31
, E. Lebigot
33
, E. O. Lebigot
63
, C. H. Lee
69
,
H. K. Lee
102
, H. M. Lee
101
, M. Leonardi
83
,
84
, J. R. Leong
10
, N. Leroy
44
, N. Letendre
8
, Y. Levin
108
, B. Levine
32
,
J. Lewis
1
, T. G. F. Li
1
, K. Libbrecht
1
, A. Libson
12
, A. C. Lin
35
, T. B. Littenberg
85
, N. A. Lockerbie
97
,
V. Lockett
22
, J. Logue
31
, A. L. Lombardi
58
, M. Lorenzini
73
, V. Loriette
109
, M. Lormand
6
, G. Losurdo
53
,
2
J. Lough
17
, M. J. Lubinski
32
, H. L
̈
uck
23
,
10
, A. P. Lundgren
17
, R. Lynch
12
, Y. Ma
46
, J. Macarthur
31
,
T. MacDonald
35
, B. Machenschalk
17
, M. MacInnis
12
, D. M. Macleod
2
, F. Maga
̃
na-Sandoval
16
, R. Magee
51
,
M. Mageswaran
1
, C. Maglione
82
, K. Mailand
1
, E. Majorana
24
, I. Maksimovic
109
, V. Malvezzi
72
,
65
, N. Man
48
,
I. Mandel
25
, V. Mandic
78
, V. Mangano
31
, V. Mangano
74
,
24
, G. L. Mansell
70
, M. Mantovani
30
,
20
,
F. Marchesoni
110
,
29
, F. Marion
8
, S. M
́
arka
34
, Z. M
́
arka
34
, A. Markosyan
35
, E. Maros
1
, F. Martelli
52
,
53
,
L. Martellini
48
, I. W. Martin
31
, R. M. Martin
5
, D. Martynov
1
, J. N. Marx
1
, K. Mason
12
, A. Masserot
8
,
T. J. Massinger
16
, F. Matichard
12
, L. Matone
34
, N. Mavalvala
12
, N. Mazumder
99
, G. Mazzolo
17
, R. McCarthy
32
,
D. E. McClelland
70
, S. McCormick
6
, S. C. McGuire
111
, G. McIntyre
1
, J. McIver
58
, K. McLin
76
,
S. McWilliams
93
, D. Meacher
48
, G. D. Meadors
64
, J. Meidam
11
, M. Meinders
23
, A. Melatos
106
, G. Mendell
32
,
R. A. Mercer
18
, S. Meshkov
1
, C. Messenger
31
, P. M. Meyers
78
, F. Mezzani
24
,
74
, H. Miao
25
, C. Michel
59
,
H. Middleton
25
, E. E. Mikhailov
112
, L. Milano
61
,
4
, A. Miller
113
, J. Miller
12
, M. Millhouse
27
, Y. Minenkov
65
,
J. Ming
26
, S. Mirshekari
114
, C. Mishra
15
, S. Mitra
14
, V. P. Mitrofanov
43
, G. Mitselmakher
5
, R. Mittleman
12
,
B. Moe
18
, A. Moggi
20
, M. Mohan
30
, S. D. Mohanty
39
, S. R. P. Mohapatra
12
, B. Moore
81
, D. Moraru
32
,
G. Moreno
32
, S. R. Morriss
39
, K. Mossavi
10
, B. Mours
8
, C. M. Mow-Lowry
10
, C. L. Mueller
5
, G. Mueller
5
,
S. Mukherjee
39
, A. Mullavey
6
, J. Munch
92
, D. Murphy
34
, P. G. Murray
31
, A. Mytidis
5
, M. F. Nagy
80
,
I. Nardecchia
72
,
65
, T. Nash
1
, L. Naticchioni
74
,
24
, R. K. Nayak
115
, V. Necula
5
, K. Nedkova
58
, G. Nelemans
11
,
47
,
I. Neri
28
,
29
, M. Neri
40
,
41
, G. Newton
31
, T. Nguyen
70
, A. B. Nielsen
17
, S. Nissanke
68
, A. H. Nitz
16
, F. Nocera
30
,
D. Nolting
6
, M. E. N. Normandin
39
, L. K. Nuttall
18
, E. Ochsner
18
, J. O’Dell
88
, E. Oelker
12
, G. H. Ogin
116
,
J. J. Oh
117
, S. H. Oh
117
, F. Ohme
7
, P. Oppermann
10
, R. Oram
6
, B. O’Reilly
6
, W. Ortega
82
, R. O’Shaughnessy
118
,
C. Osthelder
1
, C. D. Ott
68
, D. J. Ottaway
92
, R. S. Ottens
5
, H. Overmier
6
, B. J. Owen
90
, C. Padilla
22
, A. Pai
99
,
S. Pai
42
, O. Palashov
100
, C. Palomba
24
, A. Pal-Singh
10
, H. Pan
66
, C. Pankow
18
, F. Pannarale
7
, B. C. Pant
42
,
F. Paoletti
30
,
20
, M. A. Papa
18
,
26
, H. Paris
35
, A. Pasqualetti
30
, R. Passaquieti
36
,
20
, D. Passuello
20
, Z. Patrick
35
,
M. Pedraza
1
, L. Pekowsky
16
, A. Pele
32
, S. Penn
119
, A. Perreca
16
, M. Phelps
1
, M. Pichot
48
, F. Piergiovanni
52
,
53
,
V. Pierro
9
, G. Pillant
30
, L. Pinard
59
, I. M. Pinto
9
, M. Pitkin
31
, J. Poeld
10
, R. Poggiani
36
,
20
, A. Post
17
,
A. Poteomkin
100
, J. Powell
31
, J. Prasad
14
, V. Predoi
7
, S. Premachandra
108
, T. Prestegard
78
, L. R. Price
1
,
M. Prijatelj
30
, M. Principe
9
, S. Privitera
1
, R. Prix
17
, G. A. Prodi
83
,
84
, L. Prokhorov
43
, O. Puncken
39
,
M. Punturo
29
, P. Puppo
24
, M. P
̈
urrer
7
, J. Qin
46
, V. Quetschke
39
, E. Quintero
1
, G. Quiroga
82
,
R. Quitzow-James
54
, F. J. Raab
32
, D. S. Rabeling
70
,
56
,
11
, I. R
́
acz
80
, H. Radkins
32
, P. Raffai
49
, S. Raja
42
,
G. Rajalakshmi
120
, M. Rakhmanov
39
, K. Ramirez
39
, P. Rapagnani
74
,
24
, V. Raymond
1
, M. Razzano
36
,
20
, V. Re
72
,
65
,
C. M. Reed
32
, T. Regimbau
48
, L. Rei
41
, S. Reid
121
, D. H. Reitze
1
,
5
, O. Reula
82
, F. Ricci
74
,
24
, K. Riles
64
,
N. A. Robertson
1
,
31
, R. Robie
31
, F. Robinet
44
, A. Rocchi
65
, L. Rolland
8
, J. G. Rollins
1
, V. Roma
54
,
R. Romano
3
,
4
, G. Romanov
112
, J. H. Romie
6
, D. Rosi
́
nska
122
,
37
, S. Rowan
31
, A. R
̈
udiger
10
, P. Ruggi
30
, K. Ryan
32
,
S. Sachdev
1
, T. Sadecki
32
, L. Sadeghian
18
, M. Saleem
99
, F. Salemi
17
, L. Sammut
106
, V. Sandberg
32
,
J. R. Sanders
64
, V. Sannibale
1
, I. Santiago-Prieto
31
, B. Sassolas
59
, B. S. Sathyaprakash
7
, P. R. Saulson
16
,
R. Savage
32
, A. Sawadsky
23
, J. Scheuer
85
, R. Schilling
10
, P. Schmidt
7
,
1
, R. Schnabel
10
,
123
, R. M. S. Schofield
54
,
E. Schreiber
10
, D. Schuette
10
, B. F. Schutz
7
,
26
, J. Scott
31
, S. M. Scott
70
, D. Sellers
6
, A. S. Sengupta
124
,
D. Sentenac
30
, V. Sequino
72
,
65
, A. Sergeev
100
, G. Serna
22
, A. Sevigny
32
, D. A. Shaddock
70
, S. Shah
11
,
47
,
M. S. Shahriar
85
, M. Shaltev
17
, Z. Shao
1
, B. Shapiro
35
, P. Shawhan
57
, D. H. Shoemaker
12
, T. L. Sidery
25
,
K. Siellez
48
, X. Siemens
18
, D. Sigg
32
, A. D. Silva
13
, D. Simakov
10
, A. Singer
1
, L. Singer
1
, R. Singh
2
,
A. M. Sintes
60
, B. J. J. Slagmolen
70
, J. R. Smith
22
, M. R. Smith
1
, R. J. E. Smith
1
, N. D. Smith-Lefebvre
1
,
E. J. Son
117
, B. Sorazu
31
, T. Souradeep
14
, A. Staley
34
, J. Stebbins
35
, M. Steinke
10
, J. Steinlechner
31
,
S. Steinlechner
31
, D. Steinmeyer
10
, B. C. Stephens
18
, S. Steplewski
51
, S. Stevenson
25
, R. Stone
39
,
K. A. Strain
31
, N. Straniero
59
, S. Strigin
43
, R. Sturani
114
, A. L. Stuver
6
, T. Z. Summerscales
125
, P. J. Sutton
7
,
B. Swinkels
30
, M. Szczepanczyk
89
, G. Szeifert
49
, M. Tacca
33
, D. Talukder
54
, D. B. Tanner
5
, M. T
́
apai
87
,
S. P. Tarabrin
10
, A. Taracchini
57
, R. Taylor
1
, G. Tellez
39
, T. Theeg
10
, M. P. Thirugnanasambandam
1
,
M. Thomas
6
, P. Thomas
32
, K. A. Thorne
6
, K. S. Thorne
68
, E. Thrane
1
,
108
, V. Tiwari
5
, C. Tomlinson
79
,
M. Tonelli
36
,
20
, C. V. Torres
39
, C. I. Torrie
1
,
31
, F. Travasso
28
,
29
, G. Traylor
6
, M. Tse
12
, D. Tshilumba
75
,
D. Ugolini
126
, C. S. Unnikrishnan
120
, A. L. Urban
18
, S. A. Usman
16
, H. Vahlbruch
23
, G. Vajente
1
,
G. Vajente
36
,
20
, G. Valdes
39
, M. Vallisneri
68
, N. van Bakel
11
, M. van Beuzekom
11
, J. F. J. van den Brand
56
,
11
,
C. van den Broeck
11
, M. V. van der Sluys
11
,
47
, J. van Heijningen
11
, A. A. van Veggel
31
, S. Vass
1
, M. Vas
́
uth
80
,
R. Vaulin
12
, A. Vecchio
25
, G. Vedovato
107
, J. Veitch
25
, J. Veitch
11
, P. J. Veitch
92
, K. Venkateswara
127
,
D. Verkindt
8
, F. Vetrano
52
,
53
, A. Vicer
́
e
52
,
53
, R. Vincent-Finley
111
, J.-Y. Vinet
48
, S. Vitale
12
, T. Vo
32
,
H. Vocca
28
,
29
, C. Vorvick
32
, W. D. Vousden
25
, S. P. Vyatchanin
43
, A. R. Wade
70
, L. Wade
18
, M. Wade
18
,
M. Walker
2
, L. Wallace
1
, S. Walsh
18
, H. Wang
25
, M. Wang
25
, X. Wang
63
, R. L. Ward
70
, J. Warner
32
, M. Was
10
,
B. Weaver
32
, L.-W. Wei
48
, M. Weinert
10
, A. J. Weinstein
1
, R. Weiss
12
, T. Welborn
6
, L. Wen
46
, P. Wessels
10
,
T. Westphal
10
, K. Wette
17
, J. T. Whelan
118
,
17
, D. J. White
79
, B. F. Whiting
5
, C. Wilkinson
32
, L. Williams
5
,
R. Williams
1
, A. R. Williamson
7
, J. L. Willis
113
, B. Willke
23
,
10
, M. Wimmer
10
, W. Winkler
10
, C. C. Wipf
12
,
H. Wittel
10
, G. Woan
31
, J. Worden
32
, S. Xie
75
, J. Yablon
85
, I. Yakushin
6
, W. Yam
12
, H. Yamamoto
1
,
C. C. Yancey
57
, Q. Yang
63
, M. Yvert
8
, A. Zadro
̇
zny
103
, M. Zanolin
89
, J.-P. Zendri
107
, Fan Zhang
12
,
63
, L. Zhang
1
,
M. Zhang
112
, Y. Zhang
118
, C. Zhao
46
, M. Zhou
85
, X. J. Zhu
46
, M. E. Zucker
12
, S. Zuraw
58
, and J. Zweizig
1
1
LIGO, California Institute of Technology, Pasadena, CA 911
25, USA
2
Louisiana State University, Baton Rouge, LA 70803, USA
3
Universit`a di Salerno, Fisciano, I-84084 Salerno, Italy
4
INFN, Sezione di Napoli, Complesso Universitario di Monte S
ant’Angelo, I-80126 Napoli, Italy
5
University of Florida, Gainesville, FL 32611, USA
6
LIGO Livingston Observatory, Livingston, LA 70754, USA
7
Cardiff University, Cardiff, CF24 3AA, United Kingdom
8
Laboratoire d’Annecy-le-Vieux de Physique des Particules
(LAPP), Universit ́e de Savoie, CNRS/IN2P3, F-74941 Annecy
-le-Vieux,
France
9
University of Sannio at Benevento, I-82100 Benevento, Ital
y and INFN, Sezione di Napoli, I-80100 Napoli, Italy
3
10
Experimental Group, Albert-Einstein-Institut, Max-Plan
ck-Institut f ̈ur Gravitationsphysik, D-30167 Hannover, G
ermany
11
Nikhef, Science Park, 1098 XG Amsterdam, The Netherlands
12
LIGO, Massachusetts Institute of Technology, Cambridge, M
A 02139, USA
13
Instituto Nacional de Pesquisas Espaciais, 12227-010 S ̃ao
Jos ́e dos Campos, SP, Brazil
14
Inter-University Centre for Astronomy and Astrophysics, P
une 411007, India
15
International Centre for Theoretical Sciences, Tata Insti
tute of Fundamental Research, Bangalore 560012, India
16
Syracuse University, Syracuse, NY 13244, USA
17
Data Analysis Group, Albert-Einstein-Institut, Max-Plan
ck-Institut f ̈ur Gravitationsphysik, D-30167 Hannover, G
ermany
18
University of Wisconsin–Milwaukee, Milwaukee, WI 53201, U
SA
19
Universit`a di Siena, I-53100 Siena, Italy
20
INFN, Sezione di Pisa, I-56127 Pisa, Italy
21
The University of Mississippi, University, MS 38677, USA
22
California State University Fullerton, Fullerton, CA 9283
1, USA
23
Leibniz Universit ̈at Hannover, D-30167 Hannover, Germany
24
INFN, Sezione di Roma, I-00185 Roma, Italy
25
University of Birmingham, Birmingham, B15 2TT, United King
dom
26
Albert-Einstein-Institut, Max-Planck-Institut f ̈ur Gra
vitationsphysik, D-14476 Golm, Germany
27
Montana State University, Bozeman, MT 59717, USA
28
Universit`a di Perugia, I-06123 Perugia, Italy
29
INFN, Sezione di Perugia, I-06123 Perugia, Italy
30
European Gravitational Observatory (EGO), I-56021 Cascin
a, Pisa, Italy
31
SUPA, University of Glasgow, Glasgow, G12 8QQ, United Kingd
om
32
LIGO Hanford Observatory, Richland, WA 99352, USA
33
APC, AstroParticule et Cosmologie, Universit ́e Paris Dide
rot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonn
e Paris Cit ́e,
10, rue Alice Domon et L ́eonie Duquet, F-75205 Paris Cedex 13
, France
34
Columbia University, New York, NY 10027, USA
35
Stanford University, Stanford, CA 94305, USA
36
Universit`a di Pisa, I-56127 Pisa, Italy
37
CAMK-PAN, 00-716 Warsaw, Poland
38
Astronomical Observatory Warsaw University, 00-478 Warsa
w, Poland
39
The University of Texas at Brownsville, Brownsville, TX 785
20, USA
40
Universit`a degli Studi di Genova, I-16146 Genova, Italy
41
INFN, Sezione di Genova, I-16146 Genova, Italy
42
RRCAT, Indore MP 452013, India
43
Faculty of Physics, Lomonosov Moscow State University, Mos
cow 119991, Russia
44
LAL, Universit ́e Paris-Sud, IN2P3/CNRS, F-91898 Orsay, Fr
ance
45
NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA
46
University of Western Australia, Crawley, WA 6009, Austral
ia
47
Department of Astrophysics/IMAPP, Radboud University Nij
megen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
48
ARTEMIS, Universit ́e Nice-Sophia-Antipolis, CNRS and Obs
ervatoire de la Cˆote d’Azur, F-06304 Nice, France
49
MTA E ̈otv ̈os University, ‘Lendulet’ Astrophysics Researc
h Group, Budapest 1117, Hungary
50
Institut de Physique de Rennes, CNRS, Universit ́e de Rennes
1, F-35042 Rennes, France
51
Washington State University, Pullman, WA 99164, USA
52
Universit`a degli Studi di Urbino ’Carlo Bo’, I-61029 Urbin
o, Italy
53
INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenz
e, Italy
54
University of Oregon, Eugene, OR 97403, USA
55
Laboratoire Kastler Brossel, ENS, CNRS, UPMC, Universit ́e
Pierre et Marie Curie, F-75005 Paris, France
56
VU University Amsterdam, 1081 HV Amsterdam, The Netherland
s
57
University of Maryland, College Park, MD 20742, USA
58
University of Massachusetts Amherst, Amherst, MA 01003, US
A
59
Laboratoire des Mat ́eriaux Avanc ́es (LMA), IN2P3/CNRS, Un
iversit ́e de Lyon, F-69622 Villeurbanne, Lyon, France
60
Universitat de les Illes Balears—IEEC, E-07122 Palma de Mal
lorca, Spain
61
Universit`a di Napoli ’Federico II,’ Complesso Universita
rio di Monte Sant’Angelo, I-80126 Napoli, Italy
62
Canadian Institute for Theoretical Astrophysics, Univers
ity of Toronto, Toronto, Ontario, M5S 3H8, Canada
63
Tsinghua University, Beijing 100084, China
64
University of Michigan, Ann Arbor, MI 48109, USA
65
INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy
66
National Tsing Hua University, Hsinchu Taiwan 300
67
Charles Sturt University, Wagga Wagga, NSW 2678, Australia
68
Caltech-CaRT, Pasadena, CA 91125, USA
69
Pusan National University, Busan 609-735, Korea
70
Australian National University, Canberra, ACT 0200, Austr
alia
71
Carleton College, Northfield, MN 55057, USA
72
Universit`a di Roma Tor Vergata, I-00133 Roma, Italy
73
INFN, Gran Sasso Science Institute, I-67100 L’Aquila, Ital
y
74
Universit`a di Roma ’La Sapienza’, I-00185 Roma, Italy
75
University of Brussels, Brussels 1050, Belgium
76
Sonoma State University, Rohnert Park, CA 94928, USA
77
Texas Tech University, Lubbock, TX 79409, USA
78
University of Minnesota, Minneapolis, MN 55455, USA
79
The University of Sheffield, Sheffield S10 2TN, United Kingdom
80
Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Mikl ́os ́u
t 29-33, Hungary
81
Montclair State University, Montclair, NJ 07043, USA
82
Argentinian Gravitational Wave Group, Cordoba Cordoba 500
0, Argentina
83
Universit`a di Trento, I-38123 Povo, Trento, Italy
84
INFN, Trento Institute for Fundamental Physics and Applica
tions, I-38123 Povo, Trento, Italy
85
Northwestern University, Evanston, IL 60208, USA
86
University of Cambridge, Cambridge, CB2 1TN, United Kingdo
m
87
University of Szeged, D ́om t ́er 9, Szeged 6720, Hungary
4
88
Rutherford Appleton Laboratory, HSIC, Chilton, Didcot, Ox
on, OX11 0QX, United Kingdom
89
Embry-Riddle Aeronautical University, Prescott, AZ 86301
, USA
90
The Pennsylvania State University, University Park, PA 168
02, USA
91
American University, Washington, DC 20016, USA
92
University of Adelaide, Adelaide, SA 5005, Australia
93
West Virginia University, Morgantown, WV 26506, USA
94
Raman Research Institute, Bangalore, Karnataka 560080, In
dia
95
Korea Institute of Science and Technology Information, Dae
jeon 305-806, Korea
96
University of Bia lystok, 15-424 Bia lystok, Poland
97
SUPA, University of Strathclyde, Glasgow, G1 1XQ, United Ki
ngdom
98
University of Southampton, Southampton, SO17 1BJ, United K
ingdom
99
IISER-TVM, CET Campus, Trivandrum Kerala 695016, India
100
Institute of Applied Physics, Nizhny Novgorod, 603950, Rus
sia
101
Seoul National University, Seoul 151-742, Korea
102
Hanyang University, Seoul 133-791, Korea
103
NCBJ, 05-400
́
Swierk-Otwock, Poland
104
IM-PAN, 00-956 Warsaw, Poland
105
Institute for Plasma Research, Bhat, Gandhinagar 382428, I
ndia
106
The University of Melbourne, Parkville, VIC 3010, Australi
a
107
INFN, Sezione di Padova, I-35131 Padova, Italy
108
Monash University, Victoria 3800, Australia
109
ESPCI, CNRS, F-75005 Paris, France
110
Universit`a di Camerino, Dipartimento di Fisica, I-62032 C
amerino, Italy
111
Southern University and A&M College, Baton Rouge, LA 70813,
USA
112
College of William and Mary, Williamsburg, VA 23187, USA
113
Abilene Christian University, Abilene, TX 79699, USA
114
Instituto de F ́ısica Te ́orica, University Estadual Paulis
ta/ICTP South American Institute for Fundamental Research
, S ̃ao Paulo SP
01140-070, Brazil
115
IISER-Kolkata, Mohanpur, West Bengal 741252, India
116
Whitman College, 280 Boyer Ave, Walla Walla, WA 9936, USA
117
National Institute for Mathematical Sciences, Daejeon 305
-390, Korea
118
Rochester Institute of Technology, Rochester, NY 14623, US
A
119
Hobart and William Smith Colleges, Geneva, NY 14456, USA
120
Tata Institute for Fundamental Research, Mumbai 400005, In
dia
121
SUPA, University of the West of Scotland, Paisley, PA1 2BE, U
nited Kingdom
122
Institute of Astronomy, 65-265 Zielona G ́ora, Poland
123
Universit ̈at Hamburg, D-22761 Hamburg, Germany
124
Indian Institute of Technology, Gandhinagar Ahmedabad Guj
arat 382424, India
125
Andrews University, Berrien Springs, MI 49104, USA
126
Trinity University, San Antonio, TX 78212, USA and
127
University of Washington, Seattle, WA 98195, USA
Draft version December 19, 2014
ABSTRACT
We describe directed searches for continuous gravitational wave
s in data from the sixth LIGO
science data run. The targets were nine young supernova remnan
ts not associated with pulsars; eight
of the remnants are associated with non-pulsing suspected neutr
on stars. One target’s parameters
are uncertain enough to warrant two searches, for a total of te
n. Each search covered a broad band
of frequencies and first and second frequency derivatives for a fi
xed sky direction. The searches
coherently integrated data from the two LIGO interferometers o
ver time spans from 5.3–25.3 days
using the matched-filtering
F
-statistic. We found no credible gravitational-wave signals. We set 9
5%
confidence upper limits as strong (low) as 4
×
10
25
on intrinsic strain, 2
×
10
7
on fiducial ellipticity,
and 4
×
10
5
on
r
-mode amplitude. These beat the indirect limits from energy conserv
ation and are
within the range of theoretical predictions for neutron-star ellipt
icities and
r
-mode amplitudes.
Subject headings:
gravitational waves — stars: neutron — supernova remnants
1.
INTRODUCTION
The LIGO Scientific Collaboration (LSC) and Virgo
Collaboration have published numerous searches for con-
tinuous gravitational waves (GW). Although none has
detected a signal, many have placed interesting up-
per limits. The first search, of data from the first
LIGO science run (S1), was for a single known pulsar
(Abbott et al. 2004). Such a search, guided by a precise
timing solution, is computationally cheap and achieves
the best sensitivity for a given amount of data. Since
then, searches of data up to the sixth LIGO science
run (S6) have targeted up to 195 pulsars (Abbott et al.
2005b, 2007c, 2008b; Abadie et al. 2011a; Abbott et al.
2010; Aasi et al. 2014d). The four most recent of these
papers have set direct upper limits on GW emission
stricter than the indirect “spin-down limits” derived from
energy conservation, for a few of the pulsars searched,
thereby marking the point at which the Laser Interferom-
eter Gravitational-wave Observatory (LIGO) and Virgo
began revealing new information about these pulsars.
Other continuous GW searches have surveyed the whole
sky for neutron stars not seen as pulsars, using great com-
putational power to cover wide frequency bands and large
ranges of spin-down parameters (Abbott et al. 2005a,
2007a, 2008a, 2009a,b,c; Abadie et al. 2012; Aasi et al.
2013b, 2014a,e) and recently possible binary parame-
ters too (Aasi et al. 2014c). Several of the recent all-sky
searches have set direct upper limits competitive with
indirect upper limits based on the galactic neutron-star
5
population (Knispel & Allen 2008).
Between these two extremes of computational cost and
sensitivity are the directed searches, where the sky loca-
tion (and thus the detector-frame Doppler modulation) is
known but the frequency and other parameters are not.
The first directed search was for the accreting neutron
star in the low-mass X-ray binary Sco X-1 (Abbott et al.
2007a,b; Abadie et al. 2011b). This type of search must
cover a range of GW frequencies since no pulsations are
observed, and a range of orbital parameters since there
are substantial uncertainties. Direct upper limits from
searches for Sco X-1 have not beaten the indirect limit de-
rived from accretion torque balance, but may with data
from interferometers upgraded to the “advanced” sensi-
tivity (Harry 2010; Sammut et al. 2014).
The search of the fifth LIGO science run (S5) data
for the central compact object (CCO) in the supernova
remnant (SNR) Cas A (Abadie et al. 2010) inaugurated
a new type, directed searches for young non-pulsing neu-
tron stars. Such a search is motivated by the idea that
young neutron stars might be the best emitters of con-
tinuous GW. It is made possible by the fact that a
known sky direction allows for searching a wide band
of frequencies and frequency derivatives with much less
computing power than the all-sky wide-band searches
(Wette et al. 2008), and for isolated neutron stars no
search over binary parameters is needed. The Cas A
search (Abadie et al. 2010) set upper limits on GW strain
which beat an indirect limit derived from energy conser-
vation and the age of the remnant (Wette et al. 2008)
over a wide frequency band. Upper limits on the fiducial
ellipticity of the neutron star were within the range of
theoretical predictions, as were upper limits on
r
-mode
amplitude (the first ever set in a GW search). Since
then similar searches, using different data analysis meth-
ods, have been performed for supernova 1987A and un-
seen stars near the galactic center (Abadie et al. 2011b;
Aasi et al. 2013a).
In this article, we describe searches of data from S6 for
Cas A and eight more supernova remnants with known or
suspected young isolated neutron stars with no observed
electromagnetic pulsations. These targets were chosen so
that a computationally feasible coherent search similar
to Abadie et al. (2010) could beat the age-based indirect
limits. Therefore each search had a chance of detecting
something, and non-detections could constrain the star’s
GW emission, provided that emission is at a frequency
in the band searched. No search found a plausible GW
signal, and hence the main result is a set of upper limits
similar to those presented in Abadie et al. (2010).
The rest of this article is structured as follows: In Sec. 2
we present the methods, implementation, and results of
the searches. The upper limits set in the absence of a
credible signal are presented in Sec. 3, and the results
are discussed in Sec. 4. In the Appendix we describe the
performance of the analysis pipeline on hardware injected
signals.
2.
SEARCHES
2.1.
Data selection
S6 ran from July 7 2009 21:00:00 UTC (GPS
931035615) to October 21 2010 00:00:00 UTC (GPS
971654415). It included two interferometers with 4-km
Table 1
Target objects and astronomical parameters used in each sea
rch
SNR
Other name
RA+dec
D
a
(G name)
(J2000)
(kpc)
(kyr)
1.9+0.3
174846.9
271016
8.5
0.1
18.9
1.1
182913.1
125113
2
4.4
93.3+6.9
DA 530
205214.0+551722
1.7
5
111.7
2.1
Cas A
232327.9+584842
3.3
0.3
189.1+3.0
IC 443
061705.3+222127
1.5
3
266.2
1.2
Vela Jr.
085201.4
461753
0.2
0.69
266.2
1.2
Vela Jr.
085201.4
461753
0.75
4.3
291.0
0.1
MSH 11
62
111148.6
603926
3.5
1.2
347.3
0.5
171328.3
394953
0.9
1.6
350.1
0.3
172054.5
372652
4.5
0.6
Values of distance
D
and age
a
are at the optimistic (nearby and
young) end of ranges given in the literature, except for the s
econd
search for Vela Jr. See text for details and references.
arm lengths, H1 at LIGO Hanford Observatory (LHO)
near Hanford, Washington and L1 at LIGO Livingston
Observatory (LLO) near Livingston, Louisiana. It did
not include the 2-km H2 interferometer that was present
at LHO during earlier runs. Plots of the noise power
spectral density (PSD) curves and descriptions of the
improvements over S5 can be found, for example, in
Aasi et al. (2014b). A description of the calibration and
uncertainties can be found in Bartos et al. (2011). The
phase calibration errors at the frequencies searched were
up to 7
and 10
for H1 and L1 respectively, small enough
not to affect the analysis. The corresponding amplitude
calibration errors were 16% and 19% respectively. For
reasons discussed in Aasi et al. (2014d) we estimate the
maximum amplitude uncertainty of our joint H1-L1 re-
sults to be 20%.
Concurrently with the LIGO S6 run, the Virgo inter-
ferometer near Cascina, Italy had its data runs VSR2
and VSR3. Although Virgo noise performance was bet-
ter than LIGO in a narrow band below roughly 40 Hz,
it was not as good as LIGO at the higher frequencies
of the searches described here, and hence the searches
described here used only LIGO data.
Like many other continuous-wave searches, those re-
ported here used GW data in the Short Fourier Trans-
form (SFT) format. The (discontinuous) series of
science-mode data, minus short segments which were
“category 1” vetoed (Aasi et al. 2014b) was broken into
segments of
T
SFT
= 1800 s. There were a total of
19 268 of these segments for H1 and L1 during the S6
run. Each 30-minute segment was band-pass filtered
from 40–2035 Hz, Tukey windowed in the time domain,
and Fourier transformed to produce an SFT. The power
loss due to windowing was of order 0.1%. The power lost
below 40 Hz is unimportant for most searches because
the LIGO noise PSD rises steeply below that frequency.
Also, for the searches described here, astrophysical con-
straints dictated higher frequencies (see below).
Although a directed search is computationally more
tractable than an all-sky search, computational costs
nonetheless restrict us to searching a limited time span
T
span
of the S6 data. The data selection criterion was the
same as in Abadie et al. (2010), maximizing the figure of