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A quantum integrable system slightly perturbed away from integrability is typically expected to thermalize on
timescales of order τ ∼ λ−2, where λ is the perturbation strength. We here study classes of perturbations that
violate this scaling, and exhibit much longer thermalization times τ ∼ λ−2� where � > 1 is an integer. Systems
with these “weak integrability breaking” perturbations have an extensive number of quasiconserved quantities
that commute with the perturbed Hamiltonian up to corrections of order λ�. We demonstrate a systematic
construction to obtain families of such weak perturbations of a generic integrable model for arbitrary �. We
then apply the construction to various models, including the Heisenberg, XXZ, and XYZ chains, the Hubbard
model, models of spinless free fermions, and the quantum Ising chain. Our analytical framework explains the
previously observed evidence of weak integrability breaking in the Heisenberg and XXZ chains under certain
perturbations.
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I. INTRODUCTION

Understanding how a many-body system reaches thermal
equilibrium is one of the fundamental questions in statistical
mechanics. A generic (nonintegrable) quantum many-body
system that evolves under unitary dynamics is typically
expected to thermalize [1–6]: When thermalization occurs,
expectation values of local observables reach stationary values
that depend only on few properties of the initial state and
can be predicted with usual statistical mechanics ensembles.
An exception is represented by integrable models: These
models have a large number of extensive local conserved
quantities that retain information about the initial state. As a
consequence, integrable models do not thermalize in the usual
sense, but, in contrast, their time evolution can be described
as a relaxation to a stationary ensemble that includes all
conserved quantities, called a generalized Gibbs ensemble
(GGE) [7–12].

In the presence of a perturbation that breaks integrability,
usual thermalization is again expected to take place. However,
if the perturbation is small, the process may require a long
time. On a finite timescale, the dynamics is approximately
described by the evolution under the integrable unperturbed
Hamiltonian. The system initially relaxes to a stationary state
of the unperturbed Hamiltonian (prethermalization), while
genuine thermalization only occurs at later times [13–15].
This later thermalization is typically modeled using Fermi’s
golden rule, which prescribes a thermalization time τ ∼ λ−2,
where λ is the perturbation strength [16,17]. However, for
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specific Hamiltonians this timescale can be much longer.
For example, Abanin et al. [18] proved that for unperturbed
Hamiltonians with special structure producing equally spaced
sectors such as the Hubbard model in the limit of zero hop-
ping, the thermalization time has a lower bound τ ∼ ec/λ.
The result can be essentially proven by using local unitary
(Schrieffer-Wolff) transformations that, order by order, elim-
inate the perturbations in the rotated frame, stopping at a
“sweet” order where the combinatorial growth of the num-
ber of perturbation terms becomes the overpowering factor.
(The rigorous theory of prethermalization was also proved
for unperturbed Hamiltonians with energy sectors determined
by more than one frequency [19,20].) With this approach,
the conserved quantities of the unperturbed Hamiltonian that
label the equally spaced sectors (such as the doublon number
in the Hubbard model) are “dressed” by the perturbation,
and are conserved up to times that are exponentially large in
1/λ. There is no analog of this rigorous theory of prether-
malization for general unperturbed Hamiltonians, and it is
not possible, in general, to find such unitary Schrieffer-Wolff
transformations in the thermodynamic limit. Nevertheless,
the emergence of approximate conserved quantities was ob-
served in certain other models that do not belong to this
special class.

More specifically, Kurlov et al. [21] recently showed
that the Heisenberg chain perturbed with a next-nearest-
neighbor SU(2) symmetric interaction has several approxi-
mately conserved quantities that commute with the perturbed
Hamiltonian up to corrections of order λ2. A similar case
was observed for the Heisenberg and XXZ chains per-
turbed with isotropic next-nearest-neighbor interaction by
Jung et al. [22], where the authors found an anomalously
large heat conductivity that they explained from the pres-
ence of an approximate conservation law. In such cases,
the presence of approximate conservation laws can lead to
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longer thermalization times, of the order of τ ∼ λ−4. These
approximately conserved quantities were discovered through
the use of numerical methods or heuristic procedures, and
are typically limited to a small number of operators. It re-
mained unclear why approximate conservation laws appear in
these systems.

In this work we use a systematic analytical approach to
find models with approximately conserved quantities, and to
compute such quantities. This approach is based on recently
studied so-called long-range deformations of integrable spin
chains. These deformations were introduced in Refs. [23,24]
in the context of anti–de Sitter/conformal field theory. It was
later shown that some of them can be seen as generaliza-
tions of T T deformations of (1 + 1)-dimensional integrable
quantum field theories [25–27]. One can view these defor-
mations as produced by continuous unitary transformations
generated by special operators which are not necessarily
local but which produce local terms order by order in
the expansion in the continuous parameter. These special
operators (that include so-called boosted operators or bilo-
cal operators) are constructed from the original integrals
of motion.

In our work, we utilize the idea that truncations of these
deformations at finite order can be viewed as special pertur-
bations that break integrability but more weakly than generic
perturbations [28,29]; in what follows, we will often refer
to such weak integrability breaking perturbations as “weak
perturbations” in short (an alternative name which we will
sometimes use is “nearly integrable” [30]). Since the deforma-
tions are generated by unitary flows, the same transformations
apply to all integrals of motion of the original integrable
model, and the corresponding truncations then produce ap-
proximate conserved quantities [which we will often refer
to as quasiconserved quantities or quasi-integrals of motion
(quasi-IoMs)] of the perturbed model. We show that the
Heisenberg and XXZ chains perturbed by the second-nearest-
neighbor Heisenberg term can be cast as an example of this
approach. This explains the previous findings of few quasi-
integrals of motion in these chains and also shows that all
integrals of motion of the original integrable chains give rise
to quasi-integrals of motion of the perturbed chain, allowing
us to derive all of them.

The power of this approach is that it allows construc-
tion of large families of weak perturbations to a given
integrable model. Besides the Heisenberg and XXZ mod-
els, we show additional simple examples for a number
of well-known integrable models including the Hubbard
model, free-fermion models, and quantum Ising models.
Some of these examples—like the density-assisted hop-
ping perturbation for spinless fermions or a particular
self-dual deformation of the quantum Ising chain—have in
fact appeared in the literature in various contexts with-
out appreciating that they are weak integrability breaking
perturbations.

As another application of our systematic approach, we
provide an explicit demonstration how to construct weak
perturbations beyond leading order: Thus, we show that
the Heisenberg chain with second-nearest-neighbor and
third-nearest-neighbor interactions (with specific coupling
proportional to the square of the second-nearest-neighbor

coupling) is a second-order weak integrability breaking
perturbation.

The existence of approximate conserved quantities implies
that the relaxation to thermal equilibrium upon the introduc-
tion of a weak perturbation is slow: We provide a rigorous
bound on the thermalization rate that is linear in the effec-
tive strength of the remaining generic integrability breaking
perturbation. We also review and verify a nonrigorous “Fermi
golden rule”-type estimate which is believed to be quadratic in
the remaining perturbation strength. These types of estimates
apply to all weak integrability breaking perturbations consid-
ered here.

The paper is organized as follows. In Sec. II we review
the families of long-range deformations of integrable mod-
els introduced in Refs. [23,24], and the classes of operators
(extensive, boosted, bilocal, or a combination of the three)
that generate them. These deformations depend smoothly on
a parameter λ. In Sec. III we consider truncations of the
deformations to a finite order in λ, and thus derive families
of Hamiltonians with quasiconserved quantities. In Sec. IV
we examine several examples of weak perturbations gener-
ated by boosted operators to first order in λ: we apply the
construction to the Heisenberg, XYZ, and XXZ chains and
to the Hubbard model. In Sec. V we consider additional ex-
amples of first-order weak perturbations, that are generated
by bilocal operators: we focus on free spinless fermions, the
quantum Ising chain, and the Heisenberg chain. In Sec. VI
we demonstrate how to apply the procedure to obtain weak
perturbations beyond first order, and we consider for con-
creteness the case of the Heisenberg chain. In Sec. VII we
discuss how weak perturbations imply parametrically longer
thermalization times. Finally, in Sec. VIII we summarize our
conclusions and suggest future outlooks.

II. DEFORMATION OF LOCAL CONSERVED CHARGES

We consider a one-dimensional quantum system whose
Hamiltonian H commutes with a set of extensive local op-
erators (charges) {Qα} of the form

Qα =
∑

j

qα, j, (1)

where j labels the sites of a one-dimensional lattice and
the charge density qα, j is an operator with finite range
(i.e., acting on a finite number of sites around j). We
also assume that [Qα, Qβ ] = 0 for every pair of charges
Qα, Qβ , and the set of conserved charges also includes the
Hamiltonian H . This setting applies to integrable models,
as well as models with only a finite number of conserved
quantities.

We will now follow Refs. [23,24,28] and consider defor-
mations of the charges that depend smoothly on a parameter
λ. We define a set of conserved charges {Qα (λ)} (and their
charge densities {qα, j (λ)}), that for λ = 0 coincides with the
original set of (undeformed) charges. The deformed charges
are generated by an operator X (λ):

dQα (λ)

dλ
= i[X (λ), Qα (λ)]. (2)
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With this definition, {Qα (λ)} form a set of mutually commut-
ing charges for any λ, as can be proven by noting that

d[Qα (λ), Qβ (λ)]

dλ
= i[X (λ), [Qα (λ), Qβ (λ)]] (3)

and the initial condition [Qα (0), Qβ (0)] = 0.
There are various types of operator X (λ) that lead to

quasilocal deformations. This is clearly the case, for example,
when the operator X (λ) is a local or quasilocal extensive oper-
ator. However, more unconventional classes of operators can
also generate quasilocal deformations. We now consider three
classes of operators that generate quasilocal transformations
for a generic set of conserved charges.

A. Local extensive operators

We can consider arbitrary translationally invariant opera-
tors of the form

Xex(λ) =
∑

s

es(λ)Rs, Rs =
∑

j

rs, j, (4)

where s labels different such operators Rs that we may want
to consider (e.g., different types of Pauli strings up to some
range), and es(λ) can be arbitrary functions of λ.

B. Boosted operators

One example of nontrivial generators is the class of boosted
operators: we consider an operator X (λ) of the form

Xbo(λ) = −
∑

β

fβ (λ)B[Qβ (λ)], (5)

where fβ (λ) is a real function and B[Qβ (λ)] is the boosted
operator of the charge Qβ (λ), defined as

B[Qβ (λ)] =
∑

j

jqβ, j (λ). (6)

While B[Qβ (λ)] is not an extensive operator, it can
be proven that −i[B[Qβ (λ)], Qα (λ)] is extensive when
[Qα (λ), Qβ (λ)] = 0 is satisfied [28]: Because of the com-
mutation relations, we can define the generalized currents
Jβα, j (λ) such that

i[Qα (λ), qβ, j (λ)] = Jβα, j (λ) − Jβα, j+1(λ), (7)

from which we get

−i[B[Qβ (λ)], Qα (λ)] =
∑

j

Jβα, j (λ) ≡ Jβα;tot(λ). (8)

The deformed charges and the generalized currents are ex-
pected to be quasilocal in a finite range of λ close to λ = 0.

It is important to note that the charge densities (and hence
the current operators) are not uniquely defined. A charge
density q̃α, j = qα, j + oα, j+1 − oα, j corresponds to the same
extensive operator Qα . The corresponding boosted operator
then equals the original boosted operator shifted by an exten-
sive local operator:

X̃bo(λ) = Xbo(λ) +
∑

β

fβ (λ)
∑

j

oβ, j (λ). (9)

Thus, the nonuniqueness of the definition of the boost of
charge operators when defining Xbo(λ) is equivalent to allow-
ing adding an arbitrary extensive local operator to X (λ). In
the following, we will make a specific choice when defining
the boosted operators and will also make the above allowance
where needed.

C. Bilocal operators

Another example of nontrivial generators of quasilocal de-
formations is the class of bilocal operators, with X (λ) defined
as

Xbi(λ) =
∑
β,γ

gβγ (λ)[Qβ (λ)|Qγ (λ)] (10)

with

[Qβ (λ)|Qγ (λ)] =
∑
j<k

{qβ, j (λ), qγ ,k (λ)}

+ 1

2

∑
j

{qβ, j (λ), qγ , j (λ)}. (11)

Using Eq. (7) we get

i[[Qβ (λ)|Qγ (λ)], Qα (λ)]

= 1

2

∑
j

{qγ , j (λ), Jβα, j (λ) + Jβα, j+1(λ)}

− 1

2

∑
j

{qβ, j (λ), Jγα, j (λ) + Jγα, j+1(λ)}. (12)

We note that, similarly to the boosted operators case,
the nonuniqueness in the definition of the charge den-
sity of the form q̃β, j = qβ, j + oβ, j+1 − oβ, j leads to the
shift of Xbi by an extensive local operator. On the other
hand, shifting q̃β, j by a constant corresponds essentially to
adding a boosted operator to the bilocal operator; equiv-
alently, using a trivially conserved quantity—the identity
operator—as one of the operators in the bilocal construc-
tion gives [

∑
j 1|Qγ (λ)] = 2B[Qγ (λ)] + const × Qγ (λ). In

what follows, we are assuming making specific choices for
densities and currents when defining the bilocal operators,
while the nonuniqueness is taken care of since we are
separately including local extensive and boosted operators
as generators.

D. Generic deformation

In general we can define

X (λ) = Xex(λ) + Xbo(λ) + Xbi(λ). (13)

Given the deformed charges {Qα (λ)}, we can construct a fam-
ily of Hamiltonians that commute with them, of the form

H (λ) =
∑

α

cα (λ)Qα (λ). (14)

The coefficients cα (λ) are chosen such that H (λ = 0) coin-
cides with the original Hamiltonian H , but otherwise they can
be arbitrary functions of λ.
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III. FINITE ORDER

The construction above allows to define deformations
of local Hamiltonians that maintain the presence of a set
of conservation laws. However, the deformed charges and
Hamiltonians obtained with this procedure are not local, but
rather quasilocal: they contain arbitrary long-range contribu-
tions, with amplitudes that decrease exponentially with the
range. In this section we show how to construct families of
Hamiltonians that have strictly finite-range deformed charges
that are quasiconserved. More precisely, for any integer � > 1,
the quasiconserved charges Q<�

α (λ) and Hamiltonian H<�(λ)
satisfy [

Q<�
α (λ), Q<�

β (λ)
] = O(λ�), (15)[

Q<�
α (λ), H<�(λ)

] = O(λ�). (16)

To define the quasiconserved charges, we expand the de-
formed charges Qα (λ) defined by Eq. (2) as a power series in
the small parameter λ:

Qα (λ) =
∞∑

n=0

λn

n!
Q(n)

α . (17)

Similarly, we expand the functions es(λ), fβ (λ), gβγ (λ), and
cα (λ), yielding

es(λ) =
∞∑

n=0

λn

n!
e(n)

s , fβ (λ) =
∞∑

n=0

λn

n!
f (n)
β , (18)

gβγ (λ) =
∞∑

n=0

λn

n!
g(n)

βγ , cα (λ) =
∞∑

n=0

λn

n!
c(n)
α . (19)

Substituting Eqs. (4), (5), and (10) in Eq. (2) and equating the
two sides order by order in λ we get

Q(k+1)
α = i

k∑
m,n=0

k!

m!n!
δm+n,k

∑
s

e(m)
s

[
Rs, Q(n)

α

]

− i
k∑

m,n,p=0

k!

m!n!p!
δm+n+p,k

∑
β

f (m)
β

[
B

[
Q(n)

β

]
, Q(p)

α

]

+ i
k∑

m,n,p,t=0

k!

m!n!p!t!
δm+n+p+t,k

×
∑
β,γ

g(m)
βγ

[[
Q(n)

β

∣∣Q(p)
γ

]
, Q(t )

α

]
(20)

for k = 0, 1, 2, . . . .
The above equation shows how to construct the deformed

charges order by order in λ, given the real numbers e(n)
s , f (n)

β ,

and g(n)
βγ that parametrize the deformation.

The quasiconserved charges Q<�
α (λ) can then be defined as

the truncation of the quasilocal charges to a finite order:

Q<�
α (λ) =

�−1∑
n=0

λn

n!
Q(n)

α . (21)

Since these differ from Qα (λ) by O(λ�), they indeed satisfy
Eq. (15).

Similarly, the Hamiltonian H<�(λ) satisfying Eq. (16) can
be defined as a truncation of H (λ) in Eq. (14):

H<�(λ) =
�−1∑
n=0

λn

n!
H (n) (22)

with

H (k) =
k∑

m,n=0

k!

m!n!
δm+n,k

∑
α

c(m)
α Q(n)

α . (23)

The existence of a set of quasiconserved charges has
practical consequences for the dynamics generated by the
Hamiltonian H<�(λ), which we discuss in Sec. VII.

First order

We now focus on the case � = 2 and show how to construct
the quasi-IoMs Q<2

α (λ) = Q(0)
α + λQ(1)

α and the perturbed
Hamiltonian H<2(λ) = H (0) + λH (1). The leading correction
to the charge is particularly simple,

Q(1)
α = i

∑
s

e(0)
s

[
Rs, Q(0)

α

] − i
∑

β

f (0)
β

[
B

[
Q(0)

β

]
, Q(0)

α

]

+ i
∑
β,γ

g(0)
βγ

[[
Q(0)

β

∣∣Q(0)
γ

]
, Q(0)

α

]
, (24)

and involves only “data” of the unperturbed IoMs Q(0)
β .

In many examples we consider, the unperturbed Hamilto-
nian is commonly used to define the charge Q(0)

2 ; specializing
to c(0)

α = c(0)
2 δα,2 with some fixed number c(0)

2 , we have to
leading order

H (0) = c(0)
2 Q(0)

2 , (25)

H (1) = c(0)
2 Q(1)

2 +
∑

α

c(1)
α Q(0)

α . (26)

From Eqs. (24) and (26), we see that we can con-
struct a space of possible “weak perturbations” to first
order in λ as a linear space spanned by the unper-
turbed charges Q(0)

α , the operators i[Rs, Q(0)
2 ] (where Rs is

a generic extensive operator), the boosted-generated defor-
mations −i[B[Q(0)

β ], Q(0)
2 ] = Jβ,2;tot ≡ Jβ;tot (i.e., the summed

current associated to the charge Q(0)
β ), and the bilocal-

generated deformations i[[Q(0)
β |Q(0)

γ ], Q(0)
2 ] [computed as in

Eq. (12)]. The fact that current operators are “nearly inte-
grable” perturbations was recently noted by Durnin et al.
[30] by studying the nonequilibrium dynamics of charges.
Our approach extends this class beyond current operators.
Note, however, that we do not know if this exhausts the full
space of all weak integrability breaking perturbations to first
order—this is an interesting open question.

IV. EXAMPLES: DEFORMATIONS USING
BOOSTED OPERATORS

A. Heisenberg chain

As a first example, we here discuss a particular quasi-
integrable deformation of the spin-1/2 Heisenberg chain. The
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undeformed Hamiltonian has the form

H (0) =
∑

j

�σ j · �σ j+1, (27)

where �σ j = (σ x
j , σ

y
j , σ

z
j ) is the vector of Pauli operators on

site j. The model is integrable, and the densities of the first
few (i.e., with smallest range) conserved charges have the
form

q(0)
2, j = 1

2 �σ j · �σ j+1, (28)

q(0)
3, j = − 1

2 (�σ j × �σ j+1) · �σ j+2, (29)

q(0)
4, j = [(�σ j × �σ j+1) × �σ j+2] · �σ j+3

+ �σ j · �σ j+2 − 2�σ j · �σ j+1. (30)

The Hamiltonian is included as H (0) = 2Q(0)
2 . A systematic

way of obtaining the higher conserved charges in the Heisen-
berg chain is by applying the commutator with the boosted
operator B[Q(0)

2 ]:

Q(0)
α+1 = i

[
B

[
Q(0)

2

]
, Q(0)

α

]
(31)

(see Refs. [28,31,32]). Appendix A 1 shows densities of two
more conserved charges obtained this way.

We now want to construct an example of a simple defor-
mation of the Heisenberg Hamiltonian that is generated by
a boosted operator and is quasi-integrable to order � = 2.
We therefore need to define the parameters of the deforma-
tion f (0)

β : note that these are the only parameters that define
the deformation of the charges to first order in λ, Eq. (24),
since we are focusing on deformations generated by boosted
operators only.

We consider

f (0)
β = δβ,3 ⇒ Q(1)

α = −i
[
B

[
Q(0)

3

]
, Q(0)

α

]
, (32)

and for the first two charges we obtain

q(1)
2, j = − 1

2 [(�σ j × �σ j+1) × �σ j+2] · �σ j+3 − �σ j · �σ j+1, (33)

q(1)
3, j = {[(�σ j × �σ j+1) × �σ j+2] × �σ j+3} · �σ j+4

+ 1
2 (�σ j × �σ j+1 + �σ j × �σ j+2) · �σ j+3. (34)

We can now define the deformed Hamiltonian using
Eqs. (22) and (23). Since H (0) = 2Q(0)

2 we have c(0)
α = 2δα,2

and

H (1) = 2Q(1)
2 +

∑
α

c(1)
α Q(0)

α . (35)

The Hamiltonian H<2(λ) = H (0) + λH (1) is a quasi-
integrable deformation of the Heisenberg chain to order
� = 2 for any choice of coefficients c(1)

α . A particularly
relevant model is obtained for c(1)

α = 8δα,2 + δα,4, in which
case

H (1) = 2Q(1)
2 + 8Q(0)

2 + Q(0)
4 =

∑
j

�σ j · �σ j+2. (36)

Note that we obtained a range-3 term [33] by canceling
the range-4 part in q(1)

2 by a similar part in q(0)
4 ; this is a

general property of the deformation generated by Eq. (32)

when the unperturbed integrable model contains only nearest-
neighbor interactions and its IoMs are obtained using Eq. (31)
(see Appendix A 1 for details). All quantities Q<2

α = Q(0)
α +

λQ(1)
α are quasi-IoMs of the deformed model in the sense

of Eq. (16).
The fact that the Heisenberg chain perturbed by the second-

nearest-neighbor Heisenberg interactions is an example of
weak integrability breaking was first noticed in Ref. [22] in
their calculations of the thermal conductivity of the perturbed
Heisenberg chain, and they pointed to the presence of a qua-
siconserved quantity with density proportional to

q̃3, j = q(0)
3, j + λ 1

2 (�σ j+1 + �σ j+2) · (�σ j × �σ j+3), (37)

where we use our convention for writing the leading term.
In Appendix A 1 we show that this quasi-IoM is directly
related to q<2

3 = q(0)
3 + λq(1)

3 by adding a combination of the
unperturbed conserved densities multiplied by λ, namely,

q̃3, j = q<2
3, j + λ

[
6q(0)

3, j + 1
3 q(0)

5, j

]
, (38)

which indeed maintains the quasiconservation property
in Eq. (16).

Later work [21] used a brute-force search for quasicon-
served quantities in this model and found the same quasi-IoM,
Eq. (37), as well as several other longer-ranged quasi-IoMs,
and in Appendix A 1 we show that the next quasi-IoMs are
also reproduced by our approach. We thus suggest that the
specific unitary transformation explains all these results; our
approach proves that there are in fact as many quasi-IoMs as
in the original integrable model and provides a straightforward
recipe for obtaining all of them, without the need for brute-
force searches.

B. XYZ and XXZ chain

A generalization of the Heisenberg chain is represented by
the XYZ chain, with Hamiltonian

H (0) =
∑

j

(
txσ

x
j σ

x
j+1 + tyσ

y
j σ

y
j+1 + tzσ

z
j σ

z
j+1

)
. (39)

Similarly to the case of the Heisenberg chain, the set of con-
served charges can be obtained by defining H (0) = 2Q(0)

2 and
using Eq. (31). The first two charge densities have the form

q(0)
2, j = 1

2

∑
α∈{x,y,z}

tασα
j σα

j+1, (40)

q(0)
3, j = −1

2

∑
α,β,γ∈{x,y,z}

εαβγ tαtγ σ α
j σ

β

j+1σ
γ

j+2. (41)

Expressions for further conserved charges in the XYZ chain
can be found, e.g., in Ref. [34] (with proper translation from
their boost definition to ours). Explicit expressions were also
calculated in Ref. [35], and in Ref. [36] for the case of the
XXZ chain.

We again consider a deformation generated by a boost
operator, with f (0)

β = δβ,3, and compute the deformed charges
Q(1)

α to first order using Eq. (32); we list the expressions for
Q(1)

2 and Q(1)
3 in Appendix B. Using Eq. (26), the sum of Q(1)

2
with any linear combination of the unperturbed charges is then
a generic quasi-integrable perturbation to order � = 2.
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A possible choice of coefficients c(1)
α of the linear com-

bination that gives a simple (e.g., without three-body terms)
perturbation is c(1)

α = δα,4, in which case, using an appropriate
expression for Q(0)

4 , we get

H (1) = 2Q(1)
2 + Q(0)

4

=
∑

j

[
txtytz �σ j · �σ j+2 − 2

∑
α

tα
(�t 2 − t2

α

)
σα

j σα
j+1

]
,

(42)

where we have defined �t 2 ≡ ∑
α∈{x,y,z} t2

α . The reason the spe-
cific combination cancels range-4 terms so that only range-3
terms remain is the same as in the Heisenberg case (see
Appendix C).

We can readily write the corresponding quasiconserved
quantity q<2

3, j = q(0)
3, j + λq(1)

3, j . We have verified that we can

eliminate range-5 terms by combining with q(0)
5, j as in the

Heisenberg case, Eq. (38). Specifically, we find

q(1)
3, j + 1

3
q(0)

5, j =
∑
α,β,γ

εαβγ

[
tαtγ

(
2

3
�t 2 + t2

β

)
σα

j σ
β

j+1σ
γ

j+2

− 1

2
t2
αtβtγ σ α

j σ
β

j+1σ
γ

j+3

− 1

2
tαtβt2

γ σ α
j σ

β

j+2σ
γ

j+3

]
. (43)

Note that, unlike the Heisenberg case, combining with q(0)
3, j

does not fully eliminate the first term involving three consec-
utive sites, so we do not show such combinations.

A particularly relevant case is the XXZ chain, obtained
when tx = ty. To simplify the notation, we set tx = ty = 1, so
the unperturbed XXZ Hamiltonian reads

H (0) =
∑

j

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 + tzσ

z
j σ

z
j+1

)
. (44)

In this case, we can obtain a simpler perturbation with
the choice of coefficients c(1)

α = δα,4 + 4(1 + t2
z )δα,2, which

yields

H (1) =
∑

j

tz
[
�σ j · �σ j+2 + 2

(
t2
z − 1

)
σ z

j σ
z
j+1

]
. (45)

The nearest-neighbor term σ z
j σ

z
j+1 simply gives a correction

O(λ) to the parameter tz, while the next-nearest-neighbor
Heisenberg interaction can be regarded as the actual weak
integrability breaking perturbation.

To argue this precisely, we need to be careful that the IoMs
of the XXZ chain depend on the anisotropy parameter tz, so
we need to properly take into account the above shift of the
tz by O(λ) when finding the quasi-IoMs for the pure second-
nearest-neighbor Heisenberg interaction perturbation

H̃ (1) ≡
∑

j

�σ j · �σ j+2. (46)

To accomplish this, we start with the expected commutation
for the found quasi-IoMs for the perturbation H (1):[

H (0)(tz ) + λH (1)(tz ), Q(0)
α (tz ) + λQ(1)

α (tz )
] = O(λ2), (47)

where we have explicitly indicated that these operators have
the tz parameter in them. Next, we write

H (1) = g(tz )H̃ (1) + r(tz )
∑

j

σ z
j σ

z
j+1 ≡ H (1)(tz ),

g(tz ) ≡ tz, r(tz ) ≡ 2tz(t2
z − 1),

H (0)(tz ) + λH (1)(tz ) = H (0)[tz + λr(tz )] + λg(tz )H̃ (1)

= H (0)(t ′
z ) + λg[t ′

z − λr(tz )]H̃ (1)

= H (0)(t ′
z ) + λg(t ′

z )H̃ (1) + O(λ2),

where we introduced the parameter

t ′
z ≡ tz + λr(tz ) ↔ tz = t ′

z − λr(tz ) = t ′
z − λr(t ′

z ) + O(λ2),

and in the end expanded to the exhibited order in λ. Repeating
the same for the quasi-IoM parts and plugging into the above
commutator, we obtain[

H (0)(t ′
z ) + λg(t ′

z )H̃ (1), Q(0)
α (t ′

z )

+ λ

(
Q(1)

α (t ′
z ) − r(t ′

z )
∂Q(0)

α (t ′
z )

∂t ′
z

)]
= O(λ2).

At this point we can drop the prime on the parameter
t ′
z and conclude that indeed H̃ (1) is a weak integrability

breaking perturbation for the XXZ chain at any value of
the anisotropy parameter and also read off the correspond-
ing quasi-IoMs in terms of the ones obtained for H (1)

above.
We note that this isotropic next-nearest-neighbor pertur-

bation of the XXZ chain was considered in Refs. [22,37],
where slow relaxation was signaled by a heat conductivity of
order ∼λ−4 (much larger than the generically expected scaling
∼λ−2), and explained as the consequence of the existence of
a quasiconserved quantity. Here we found an explicit form of
the quasi-IoM derived from Q(0)

3 . Furthermore, our approach
shows that there is, in fact, an extensive number of such
quasiconserved quantities.

The above demonstration of a near integrability of H̃ (1)

[Eq. (46)] starting from the near integrability of H (1) [Eq. (45),
derived from the truncated deformations] in fact applies quite
generally for integrable models with a continuously varying
parameter. Specifically, suppose the unperturbed Hamiltonian
has the form

H (0)(u) = H (0)
I + uH (0)

II (48)

with a parameter u appearing as a coefficient of some part of
the Hamiltonian, where we assume that both H (0)

I and H (0)
II

have no u dependence in them (they may depend on some
other parameters, which, however, are kept fixed throughout).
Suppose that H (0)(u) has IoMs Q(0)

α (u), which in general
depend on u (and in more complicated ways than H (0)).
Then H (1) = HII can be considered a weak (nearly integrable)
perturbation of H (0)(u) at fixed u, with H = H (0)(u) + λHII

having the quasi-IoMs Q<�=2
α = Q(0)

α (u) + λ∂uQ(0)
α (u), which

is simply the first term in the Taylor expansion of Q(0)
α (u + λ).

Of course, by continuing the Taylor expansion we can write
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quasi-IoMs for the specific perturbation to arbitrary order �,
but our main interest is � = 2, where we can combine the
above H (1) with general nearly integrable perturbations since
these form a linear space: if H (1)′ and H (1)′′ are nearly inte-
grable perturbations with the quasi-IoM corrections Q(1)′

α and
Q(1)′′

α , respectively, then a′H (1)′ + a′′H (1)′′ is also a nearly in-
tegrable perturbation with the quasi-IoM correction a′Q(1)′

α +
a′′Q(1)′′

α , for arbitrary a′ and a′′.
As an immediate application, the unperturbed XYZ model

has parameters tx, ty, and tz, and hence we can add inde-
pendent nearest-neighbor terms σ x

j σ
x
j+1, σ

y
j σ

y
j+1, and σ z

j σ
z
j+1

while preserving � = 2 near integrability. In this way, starting
with Eq. (42) we conclude that the second-nearest-neighbor
Heisenberg interaction is a nearly integrable perturbation for
the XYZ chain with arbitrary anisotropies (with correspond-
ingly recalculated quasi-IoMs).

C. Hubbard model

The Hamiltonian of the Hubbard model reads

H (0) = −2
∑

j,s=↑,↓
(a†

j,sa j+1,s + a†
j+1,sa j,s)

+ 4U
∑

j

(
n j,↑ − 1

2

)(
n j,↓ − 1

2

)
. (49)

We use notation from Ref. [34] for easy referencing to their
expressions for the IoMs. We define Q(0)

2 = H (0). In contrast
to the Heisenberg, XYZ, and XXZ chains, where the con-
served charges can be obtained using B[Q(0)

2 ] as a “ladder”
operator [Eq. (31)], no similar systematic construction can be
used to find the conserved charges in the Hubbard model, and
brute-force methods have been used instead [34,38]. The first
IoM is

Q(0)
3 = − 2i

∑
j,s

(a†
j,sa j+2,s − H.c.)

+ 4iU
∑

j,s

(a†
j,sa j+1,s − H.c.)(n j,−s + n j+1,−s − 1),

(50)

where “−s” denotes the opposite spin to s, i.e., −s =↓,↑ for
s =↑,↓. This IoM is symmetric (even) under the physical
spin SU(2) and pseudospin (also known as η-pairing) SU(2)
symmetries of the Hubbard chain but is odd under the time-
reversal and inversion symmetries. In what follows, we define
the densities q(0)

2, j and q(0)
3, j such that they are respectively even

and odd under the inversion in the bond center between j and
j + 1 [see Eqs. (D1) and (D2) in Appendix D].

Since B[Q(0)
2 ] does not generate IoMs, we can con-

sider deformations generated by the boost operator B[Q(0)
2 ],

as they will correspond to proper perturbations of the
model, instead of integrals of motion. We can therefore
define

Q(1)
α = −i

[
B

[
Q(0)

2

]
, Q(0)

α

]
, H (1) = Q(1)

2 +
∑

α

c(1)
α Q(0)

α .

(51)

Some examples of such first-order weak integrability breaking
perturbations H (1) that can be generated in this way are

Q(1)
2 + Q(0)

3 = 2i
∑

j,s=↑,↓
(a†

j,sa j+2,s − H.c.) (52)

or

Q(1)
2 + 2Q(0)

3 = 4iU
∑

j,s

(a†
j,sa j+1,s − H.c.)

× (n j,−s + n j+1,−s − 1). (53)

These terms preserve the spin SU(2) and pseudospin SU(2)
symmetries but break the time-reversal and inversion sym-
metries. In particular, we see that the simplest hopping
modification of the Hubbard model that preserves both
SU(2) symmetries—namely, the second-nearest-neighbor
pure imaginary hopping—is in fact a weak integrability break-
ing perturbation.

Note that to obtain a weak perturbation V = i[X, Q(0)
2 ] that

respects both inversion and time-reversal symmetries, we need
X to be invariant under inversion but odd under time reversal.
Therefore, if X is an extensive local operator, it cannot be a
fermion bilinear and, as a consequence, V will contain terms
with more than four fermionic operators. Perturbations with
only two and four fermionic operators that respect both the
time-reversal and inversion symmetries can instead be gener-
ated using boosted operators, for example, B[Q(0)

3 ] with q(0)
3, j

given by Eq. (D2). We obtain the corresponding operator,
Eq. (8),

J (0)
3,2;tot = 4

∑
j,s

(a†
j,sa j+1,s − a†

j,sa j+3,s + H.c.)

− 32U
∑

j

(
n j,↑ − 1

2

)(
n j,↓ − 1

2

)

+ 4U
∑

j,s

[2(a†
j,sa j+1,s − H.c.)

× (a†
j+1,−sa j+2,−s − H.c.)

+ (a†
j,sa j+2,s + H.c.)(n j,−s + 2n j+1,−s

+ n j+2,−s − 2)]. (54)

This perturbation contains fermion hopping up to range 4 and
four-fermion interactions up to range 3. Note also that we can
absorb the nearest-neighbor hopping and the on-site Hubbard
terms into an O(λ) shift of the parameter U , and hence the
remaining parts of J (0)

3,2;tot can also be viewed as weak integra-
bility breaking perturbations. Furthermore, we can remove the
range-4 term by combining with Q(0)

4 listed in Appendix D,
Eq. (D3), at the expense of introducing additional range-3
terms, including also six-fermion terms. However, by combin-
ing with another weak integrability breaking term generated
using V = i[X, Q(0)

2 ] with an extensive local operator X with
only nearest-neighbor terms and that has both SU(2) symme-
tries and is invariant under the inversion but odd under the
time reversal, we can eliminate the six-fermion terms, leaving
only four-fermion terms up to range 3. The final result is listed
in Eq. (D5), showcasing how fairly complicated generalized
current perturbations can be turned into simpler perturbations
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using additional freedoms discussed in this paper. For details,
we refer the reader to Appendix D.

V. EXAMPLES: DEFORMATIONS USING
BILOCAL OPERATORS

A. Free spinless fermions

As a simple example to illustrate the deformations induced
by bilocal operators, we here consider a model of free spinless
fermions hopping on a chain:

H (0) = −
∑

j

(a†
j a j+1 + H.c.). (55)

For simplicity, we consider the case of real nearest-neighbor
hoppings, but our discussion can be extended to generic com-
plex hoppings of arbitrary ranges. We define the following set
of conserved quantities with densities:

q′(0)
1, j = n j,

q′(0)
2, j = −(a†

j a j+1 + H.c.), q′′(0)
2, j = −i(a†

j a j+1 − H.c.),

. . .

q′(0)
m, j = −(a†

j a j+m−1 + H.c.), q′′(0)
m, j = −i(a†

j a j+m−1−H.c.).

(56)

We are interested in the family of deformations of the Hamil-
tonian H (0) = Q′(0)

2 that are weak integrability breaking to
first order in λ. In particular, we focus on the contributions
in Q′(1)

2 that correspond to interaction terms. While boosted
operators of the charges Q′(0)

α , Q′′(0)
α can only generate fermion

bilinears, bilocal operators can generate interactions: since the
conserved quantities and the generalized currents are fermion
bilinears, from Eqs. (24) and (12) we see that the linear space
of deformations Q′(1)

2 generated by bilocal operators contains
in general four-fermion operators. Some examples are

(a) i
[[

Q′(0)
2

∣∣Q′(0)
1

]
, Q′(0)

2

] = −2
∑

j

q′′(0)
3, j · n j+1, (57)

(b) i
[[

Q′′(0)
2

∣∣Q′(0)
1

]
, Q′(0)

2

] = 2
∑

j

(
q′(0)

3, j + 2n j
)
n j+1, (58)

(c) i
[[

Q′(0)
2

∣∣Q′′(0)
2

]
, Q′(0)

2

] = −2
∑

j

q′(0)
2, j · (n j−1 + n j+2).

(59)

As an illustration, in Appendix E we show the corresponding
quasiconserved quantities in each case obtained by applying
the same deformations to Q′(0)

3 .
Note that there are total of eight linearly independent trans-

lationally invariant and U(1) charge-conserving Hermitian
four-fermion terms of range up to 3:∑

j

n jn j+1,
∑

j

n jn j+2, (60)

∑
j

n j (Ua†
j+1a j+2 + H.c.), U ∈ C, (61)

∑
j

(Va†
j a j+1 + H.c.)n j+2, V ∈ C, (62)

∑
j

n j+1(Wa†
j a j+2 + H.c.), W ∈ C. (63)

Thus we see that three of these eight directions in such
a space of range-3 perturbations are in fact weak integra-
bility breaking perturbations. In fact, we know one more
weak integrability breaking perturbation of range 3 obtained
by using an extensive local operator X = ∑

j n jn j+1 as a
generator:

(d) i
[
X, Q(0)

2

] =
∑

j

q′′(0)
2, j (n j−1 − n j+2). (64)

We can further organize these perturbations by their transfor-
mation properties under the lattice inversion and time reversal
(defined as complex conjugation in the number basis). Thus,
out of the eight terms, there are four terms that are invariant
under both the inversion and time reversal, namely, the two
density-density terms, the combination U = V ∈ R, and the
term W ∈ R. The U = V ∈ R term is in fact the weak inte-
grability breaking perturbation (c), while the W ∈ R term is
a combination of perturbation (b) and the nearest-neighbor
density-density term. Furthermore, adding just the nearest-
neighbor density-density interaction in fact leads to another
integrable model equivalent to the XXZ chain, and by argu-
ment similar to Sec. IV B any linear combination of this term
and the terms (b) and (c) will also be a weak integrability
breaking of the free-fermion chain. Hence we conclude that
among the inversion and time-reversal-invariant range-3 per-
turbations only the second-nearest-neighbor density-density
interaction truly breaks the integrability in the leading order.

B. Quantum Ising chain

The transverse field quantum Ising chain has the following
Hamiltonian:

H (0) = −J
∑

j

(
σ x

j σ
x
j+1 + hσ z

j

)
. (65)

The model can be solved by a Jordan-Wigner transformation,
which maps the Hamiltonian to a free fermionic model. We
here list the first few conserved quantities, with densities q(0)

α, j
[39]:

q(0)
2, j = σ x

j σ
x
j+1 + h

2

(
σ z

j + σ z
j+1

)
, (66)

q(0)
3, j = σ

y
j σ

x
j+1 − σ x

j σ
y
j+1, (67)

q(0)
4, j = 1

2

(
σ x

j−1σ
z
j σ

x
j+1 + σ x

j σ
z
j+1σ

x
j+2 − σ z

j − σ z
j+1

)
− h

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

)
. (68)

Similarly to the case of free spinless fermions, bilocal defor-
mations can be used to generate weak integrability breaking
perturbations of the quantum Ising chain that have the form
of fermion interactions. Boosted operators, on the other hand,
can only generate free-fermion terms.

As a first example of a perturbation induced by a bilocal
generator, we consider the operator

i
[[

Q(0)
2

∣∣Q(0)
3

]
, Q(0)

2

] = 4h
∑

j

(
σ x

j σ
x
j+2 + σ z

j σ
z
j+1

)
. (69)

Dropping the unimportant scale factor, we conclude that
V̂ ≡ ∑

j (σ
x
j σ

x
j+2 + σ z

j σ
z
j+1) is a weak integrability break-

ing perturbation. This perturbation is self-dual under the
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Kramers-Wannier transformation. Under the Jordan-Wigner
transformation, it gives four-fermion interactions consisting
of products of Majoranas on four consecutive sites. In-
terestingly, at the Ising critical point h = 1, the perturbed
Hamiltonian Ĥ0 + λV̂ maps precisely to the interacting Ma-
jorana chain studied in Ref. [40]. It would be interesting
to revisit their study in light of our conclusion that this
interaction breaks the integrability only in the next order.
For example, one may wonder if this may explain the
very large coupling needed to reach the tricritical point,
but this requires detailed considerations which we leave for
future work.

Another example of a weak perturbation of range 3 induced
by a bilocal deformation is

i
[[

Q(0)
2

∣∣Q(0)
4

]
, Q(0)

2 ] = 2h
∑

j

(−hσ x
j σ

y
j+2 + hσ

y
j σ

x
j+2

− σ x
j σ

y
j+1σ

z
j+2 + σ z

j σ
y
j+1σ

x
j+2

)
. (70)

Under the Ising duality [41], the first Pauli product (including
the sign) is interchanged with the fourth one and the second
is interchanged with the third. Thus, this perturbation is self-
dual only when h = 1, which is different from the previous
perturbation [Eq. (69)]. Furthermore, this perturbation is not
invariant under an antiunitary symmetry of the original Ising
model defined as a complex conjugation in the σ x basis, so it
is a bit less natural perturbation to consider.

C. Heisenberg chain

In Secs. IV A and IV B we considered weak perturba-
tions of the Heisenberg, XYZ, and XXZ chains generated
by boosted operators. Bilocal operators can be used as gen-
erators to obtain more examples of weak perturbations of
these models. Once again, we focus on the perturbations that
have the same symmetries as the original Hamiltonian. For
example, with the choice of generator X (λ) = [Q2(λ)|Q3(λ)],
the deformed charges preserve their parity under inversion
and time reversal. For concreteness, we consider the deformed
charges of the Heisenberg chain obtained with this generator.
The first-order deformation Q(1)

2 reads

i
[[

Q(0)
2

∣∣Q(0)
3

]
, Q(0)

2

] =
∑

j

[
�σ j · �σ j+2 − �σ j · �σ j+3

+ 1

2
(�σ j · �σ j+1)(�σ j+2 · �σ j+3)

+ 1

2
(�σ j · �σ j+3)(�σ j+1 · �σ j+2)

]
. (71)

This perturbation is manifestly invariant under inver-
sion and time reversal and preserves the SU(2) symme-
try of the Heisenberg Hamiltonian. We conjecture that
it is not possible to generate this weak integrability
breaking perturbation using the boosted IoMs as gener-
ators; i.e., it genuinely requires the bilocal operators as
generators.

To give some perspective on the above result, we note
that the space of range-4 terms that are symmetric under spin
SU(2), lattice translation and inversion, and time reversal

has dimension 6. Two directions in this space (Q(0)
2 and

Q(0)
4 ) are integrable, while the above four-spin term and the

second-nearest-neighbor Heisenberg interaction considered in
Sec. IV A are independent nearly integrable directions. Thus,
only two out of six directions truly break the integrability at
the leading order, so, even including range-4 perturbations,
the integrability of the Heisenberg chain is more robust than
one would naively expect.

VI. EXAMPLES: DEFORMATIONS TO HIGHER ORDERS

In the examples discussed so far we have examined various
types of weak perturbations of integrable Hamiltonians of the
form

H<2 = H (0) + λH (1), (72)

such that a set of quasiconserved quantities Q<2
α can

be defined with the property that [H<2, Q<2
α ] = O(λ2),

[Q<2
α , Q<2

β ] = O(λ2).
It is possible to apply the general procedure in Sec. III to

obtain perturbations of the Hamiltonian and of the quasicon-
served charges, such that they commute up to terms of order
λ� with � > 2. Specifically, for � = 3 we consider

H<3 = H (0) + λH (1) + λ2

2
H (2), (73)

where the H (k) are defined as in Eq. (23):

H (0) =
∑

α

c(0)
α Q(0)

α = c(0)
2 Q(0)

2 , (74)

H (1) = c(0)
2 Q(1)

2 +
∑

α

c(1)
α Q(0)

α , (75)

H (2) = c(0)
2 Q(2)

2 +
∑

α

(
2c(1)

α Q(1)
α + c(2)

α Q(0)
α

)
. (76)

Here we specialized to c(0)
α = c(0)

2 δα,2, intending to work
around the unperturbed Hamiltonian, which in the examples
we consider is commonly used to define the charge Q(0)

2 .

Heisenberg chain

In Sec. IV A we showed that a weak first-order perturbation
of the Heisenberg chain [H (0) in Eq. (27), with convention
c(0)

2 = 2] of the form H (1) = ∑
j �σ j · �σ j+2 can be obtained by

choosing f (0)
β = δβ,3 and c(1)

α = 8δα,2 + δα,4 [cf. Eq. (36)].
We now want to show how to construct H (2) such that H<3

has a set of quasiconserved quantities up to order λ3. From
Eq. (76) we get

H (2) = 2Q(2)
2 + 16Q(1)

2 + 2Q(1)
4 +

∑
α

c(2)
α Q(0)

α , (77)

where using Eq. (20) with f (0)
β = δβ,3 we have Q(1)

α =
−i[B[Q(0)

3 ], Q(0)
α ] and

Q(2)
2 = − i

[
B

[
Q(0)

3

]
, Q(1)

2

] − i
[
B

[
Q(1)

3

]
, Q(0)

2

]
− i

∑
β

f (1)
β

[
B

[
Q(0)

β

]
, Q(0)

2

]
. (78)

With this definition, H<3 satisfies the desired property for any
choice of coefficients f (1)

β and c(2)
α . We can use this freedom
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to look for perturbations that have small range and involve a
small number of spins. An example of a particularly simple
deformation of the Heisenberg chain that is quasi-integrable
to order � = 3 is

H<3(λ) =
∑

j

(�σ j · �σ j+1 + λ �σ j · �σ j+2 + λ2 �σ j · �σ j+3). (79)

We refer the reader to Appendix A 2 for details on the specific
choices of coefficients f (1)

β and c(2)
α and some intermediate

steps. The degree of simplification that we managed to
achieve is quite surprising given the complicated intermediate
expressions, and we are wondering if there may be some
reason for this. It would be interesting to check if one can
achieve comparable simplification at the next order.

VII. THERMALIZATION TIME

We now discuss the implications of the existence of quasi-
conserved quantities for the thermalization time. In a generic
quench (with an arbitrary initial state), the local quantities
Q<�

α (λ) are conserved by the Hamiltonian H<�(λ) for at least a
time t ∼ O(λ−�) (see Appendix F). We remark that this lower
bound on the thermalization time is a completely rigorous
bound using only the locality of the Hamiltonian and of the
quasiconserved observable.

On the other hand, if we use a perturbative calculation for
the time-averaged rate of decay of the conserved quantity in
the spirit of Fermi’s golden rule (see Appendix F for precise
meaning), we would get a (nonrigorous) estimate for the ther-
malization time as O(λ−2�). This estimate can be intuitively
understood by noting that in our construction the Hamiltonian
is H<�(λ) = H (λ) + O(λ�), with H (λ) integrable, and there-
fore the effective integrability breaking perturbation strength
is λ�. On a timescale t � λ−� the dynamics is determined by
H (λ), and the system prethermalizes to a generalized Gibbs
ensemble with conserved charges Qα (λ). Genuine thermaliza-
tion is triggered by the effective perturbation O(λ�), whose
effect on the dynamics becomes non-negligible at longer
times. Using standard estimates of the rate, but noting that
the perturbation strength is λ�, we then expect thermalization
after time τ ∼ λ−2�.

We note that this argument agrees with the direct pertur-
bative estimates of the rate in the important case � = 2: For
such special weak perturbations the formal Fermi golden rule
rate O(λ2) vanishes after a time O(1) (see Appendix F). The
vanishing of the λ2 order of the rate indicates that, after a
decay at small times, the expectation value of an observable
Q(0)

α (i.e., one of the original charges) reaches a plateau. Using
this observation, it was argued in Ref. [30] that these pertur-
bations do not lead to thermalization in the Boltzmann regime
(i.e., in the limit λ → 0, t → ∞ with λ2t = const), but lead
to hydrodynamic diffusion.

The observable Q(0)
α reaching a plateau after O(1) time is

consistent with a picture where Q(0)
α has a component onto the

quasiconserved Q<2
α = Q(0)

α + λQ(1)
α that does not thermalize

until a much later time. In fact, it is much easier to see the
vanishing O(λ2) rate by thinking directly about the quasicon-
served Q<2

α instead of the original Q(0)
α : the formal O(λ2) rate

of change of Q<2
α is identically zero at any time [and not just

after O(1) time].

In Appendix F we also consider the formal O(λ3) term in
the rate of change of Q<2

α and show that it vanishes after O(1)
time. Hence the leading nonvanishing rate after O(1) time is
actually O(λ4), in agreement with our picture and the intuition
based on the effective perturbation of the integrable model
H (λ). The above statements about the rates are for initial
states or ensembles generated by the unperturbed integrable
model (i.e., defined by {Q(0)

α }). In Appendix F we also show
initial ensembles where the rate of change of the quasicon-
served Q<2

α starts at O(λ4) for all times, which can be viewed
as formalizing the above intuition by also finding appropriate
“quasistationary” initial states. Thus we have established a
good understanding of the connection between direct pertur-
bation theory calculations in the case of such nearly integrable
perturbations and thinking in terms of the quasiconserved
quantities, observing both the physical intuition and analytical
power of the latter framework.

VIII. CONCLUSIONS

We have here demonstrated a general construction for
producing weak (i.e., nearly integrable) perturbations of in-
tegrable lattice models to arbitrary order λ�. These weakly
perturbed models have an extensive number of (extensive
local) approximate conserved quantities that commute with
the Hamiltonian up to corrections O(λ�). We have applied the
construction to several well-known spin chains and fermionic
models, focusing on finding particularly simple such exam-
ples and also putting some previously known instances and
their physics into a unified framework (e.g., the relation be-
tween the vanishing of the Fermi golden rule rate and the
presence of the quasi-IoM).

In the case of truncation to linear order, i.e., achieving
commutation up to corrections O(λ2), this approach produces
a linear space of weak integrability breaking perturbations
(“diffusive subspace” [30], as opposed to generic “ther-
malizing” perturbations). While this subspace is of course
measure zero in the full space of possible perturbations, it
may nevertheless play an important role in realistic physics
applications. For example, for the spin-1/2 Heisenberg chain,
it turns out that all SU(2)-spin-symmetric perturbations that
are translationally invariant and have range up to 3 (i.e.,
involving up to three consecutive spins) are in fact either
integrable or weak integrability breaking perturbations. As
discussed at the end of Sec. V C, for range-4 perturbations,
if we also require lattice inversion and time-reversal sym-
metry, three out of five perturbations (not counting Q(0)

2 )
of the Heisenberg chain are either integrable or weak inte-
grability breaking. Such unexpected paucity of natural true
integrability breaking perturbations of the Heisenberg chain
may help explain the robustness of the superdiffusion signa-
tures in numerical studies [42] as well as in physical world
experiments [43,44].

As another example in the same spirit, for the spinless
fermion chain, in the four-dimensional space of inversion-
and time-reversal-symmetric four-fermion interactions up to
range 3, three directions are in fact weak integrability break-
ing perturbations. In general, when we study effects of a
given perturbation, we would want to understand and/or
remove appropriate “components” onto the weak integrabil-
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ity breaking ones, since only the remaining part represents
generic integrability breaking perturbation that dominates
the thermalization rate of the system. Furthermore, in some
situations such a removal may not be possible, e.g., un-
der sufficiently restrictive range and symmetry conditions,
and it is important to understand the thermalization rates in
such cases as well. This shows the importance of systematic
constructions of weak integrability breaking perturbations,
and we hope that our work will stimulate further such
studies.

A very interesting Ref. [45] proposed to analyze
perturbations to integrable and nonintegrable systems by
constructing a so-called adiabatic gauge potential (AGP) [46],
which is an analog of the generator X (λ) in our formalism.
While a regularized AGP always exists, for true integrability
breaking perturbations it is expected to be highly nonlocal,
and they proposed that a particular norm of the AGP scales
exponentially with the system size and provided strong
evidences for this. On the other hand, for perturbations along
exact integrability-preserving directions like varying the
anisotropy in the XXZ chain, they found that the AGP norm
scales polynomially with the system size. They also noted that
perturbations like the ones here generated by Xe or Xbo, while
breaking the exact integrability and resulting eventually in the
chaotic behavior, nevertheless also have the AGP norm scaling
polynomially with system size, and they suggested to exclude
such special perturbations when checking for quantum
chaos [47].

Interestingly, in our formalism both the integrability
preserving perturbations and the integrability breaking pertur-
bations generated by Xe, Xbo, and Xbi are formally � = 2 weak
perturbations, i.e., they can be viewed as falling into the same
group; likewise, they share a similar polynomial scaling of the
AGP norm. Of course, the latter perturbations will eventually
lead to thermalization, and while they do not behave like other
“truly generic” perturbations, it is also interesting to explore
how thermalization happens under such “less generic” weak
perturbations: we discuss this in Appendix F, where we argue
that the relaxation times have different parametric dependence
on the perturbation strength λ. Furthermore, our formalism
provides recipes to tabulate families of such weak integrability
breaking perturbations beforehand, and such tables can then
be used to systematically exclude them when needed for stud-
ies of more generic thermalization phenomena. While we do
not provide complete tabulations (which is important future
work), we showcase many examples; interestingly, already
we find that the number of such special perturbations can be
significant enough for them to be of practical importance, as
discussed earlier.

Our results suggest several intriguing directions for further
studies. One interesting possibility is the study of trans-
port properties of integrable models with weak perturbations
[48,49]. Recent developments in the study of transport in
integrable systems, in particular within the framework of
generalized hydrodynamics, revealed different regimes, in-
cluding ballistic, diffusive, and also anomalous superdiffusive
[50–52]. Small integrability breaking perturbations induce
scattering of quasiparticles, affecting the transport properties
of the system. It is an interesting question to understand
how weak perturbations compare to ordinary perturbations in

this context [42,53]. For example, Ref. [42] showed that the
superdiffusive behavior of the Heisenberg model persists up
to all numerically accessible times when a small to sizable
next-nearest-neighbor Heisenberg interaction (a weak integra-
bility breaking perturbation) is included. However, it is not
clear whether the “weak property” of the perturbation plays
a role, since similar persistence is observed for other SU(2)
preserving perturbations that do not have this property.

One of the possibilities offered by our approach is the
ability to systematically compute all the approximately con-
served quantities. The construction could be applied also to
the quasilocal charges, that were first discovered in the XXZ
chain [54]. It was shown that, in many cases, taking into
account these quasilocal charges is crucial to obtain the cor-
rect results, for example, in the computation of the Drude
weight using Mazur bounds, and of the expectation values
of the generalized Gibbs ensembles [55,56]. We expect that
the approximately conserved quasilocal operators that can
be computed with our construction are similarly important
in determining the properties of weakly perturbed integrable
models.

Another interesting question regards systems with finite
size. We argued that weak perturbations correspond to longer
thermalization times in the nonequilibrium dynamics in the
thermodynamic limit. However, the signatures of thermaliza-
tion are present also in the opposite order of limits [57]: the
transition from an integrable to a thermalizing regime can be
captured from the energy spectrum at finite size, for example,
by studying the crossover in the level spacing distribution
from a Poisson to a Wigner-Dyson statistics. A recent work
[29] proposed that a weak perturbation (such as the ones
generated by boosted operators) corresponds to a different
scaling of the position of the crossover with system size
and provided numerical evidence in a perturbed XXZ chain.
The crossover to a Wigner-Dyson statistics was also studied
in Ref. [58] for the Heisenberg spin chain perturbed with
the next-nearest-neighbor interactions, which found that the
crossover occurs at larger coupling than for generic pertur-
bations. It would be interesting to study this for different
types of generators Xe, Xbo, and Xbi, for different models and
boundary conditions, and also see if there is a relation to the
AGP norms.

We note that, while we focused on translationally invariant
systems, weak integrability breaking perturbations can be also
inhomogeneous. The simplest example is when we turn an ex-
tensive local generator Xe into an inhomogeneous one or even
a strictly local operator, which produces an inhomogeneous
or a strictly local weak integrability breaking perturbation.
There are also variants starting from boosted generators [59],
but so far we have not been able to achieve this starting from
bilocal generators. We leave a systematic study of possible
inhomogeneous weak integrability breaking perturbations for
future work.

While we focus here on integrable Hamiltonians, some
of the most relevant experimental realizations of integrable
models are Floquet integrable models realized with circuits of
gates [60–63]. It would be interesting to extend our construc-
tion to such models: while the procedure can be immediately
generalized for deformations induced by extensive local op-
erators, it is unclear to us how to generate weak perturbations
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that preserve the simple gate structure using boosted or bilocal
operators.

We remark that the construction that is the object of our
study applies not only to integrable models, but it can also be
used to generate weak perturbations of one-dimensional mod-
els with a finite number of conserved quantities. A possible
question is whether a similar procedure can generate pertur-
bations that are weak only for a specific subspace, as such
perturbations would correspond to models with prominent
nonexact quantum many-body scars. In fact, the tower of scars
of the PXP model is an example of such nonexact quantum
many-body scars [64–71], and the mechanism that protects
their subspace is still unclear. We also note that numerical
results on some exact quantum-many body scars [72] show
that they might be robust to lowest order in the perturbation
strength [73,74], suggesting that a notion of weak perturbation
may be formulated also for single eigenstates. Moreover, a
recent experiment has found that some eigenstates of a Flo-
quet integrable model [62] decay very slowly in the presence
of an integrability breaking perturbation [63]. It is not yet
clear if these states are robust to first order in the perturbation
strength.

Finally, while we focused on the case of one-dimensional
integrable models, one can think of constructing similar weak
perturbations in higher dimensions. In this case, extensive
local and boosted operators can be used as generators [75],
but we are not aware of other classes of operators—analogous
to bilocal operators in one dimension—that would produce
physical (i.e., local and extensive) perturbations.
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APPENDIX A: DETAILS FOR THE HEISENBERG CHAIN

1. Quasiconserved quantities in the Heisenberg chain perturbed
by the second-nearest-neighbor interaction

Here we provide some details for the quasi-IoMs in the
Heisenberg chain perturbed by the second-nearest-neighbor
Heisenberg interaction, obtained using the generator in
Eq. (32).

To simplify the notation it is convenient to define a nested
vector product operator:

F i1i2
j = �σ j+i1 · �σ j+i2 (A1)

F i1i2...in
j = {[(�σ j+i1 × �σ j+i2 ) × · · · ] × �σ j+in−1} · �σ j+in . (A2)

In the following, we will need the densities for the original
conserved charges up to q(0)

6, j :

q(0)
2, j = 1

2 F 01
j , q(0)

3, j = − 1
2 F 012

j , (A3)

q(0)
4, j = F 0123

j + F 02
j − 2F 01

j , (A4)

q(0)
5, j = − 3F 01234

j − 3F 013
j − 3F 023

j + 9F 012
j , (A5)

q(0)
6, j = 12F 012345

j + 12F 0124
j + 12F 0134

j + 12F 0234
j

− 48F 0123
j + 12F 03

j − 36F 02
j + 36F 01

j . (A6)

While Q<2
α = Q(0)

α + λQ(1)
α are quasi-integrals of motion to

order � = 2 originating from Q(0)
α , in analogy to Eqs. (23) and

(26) for the Hamiltonian we in fact have more freedom in
writing down such quasi-IoMs:

Q̃<2
α = Q(0)

α + λQ(1)
α + λ

∑
β

d (1)
α,βQ(0)

β , (A7)

where d (1)
α,β can be any fixed real numbers. Starting with

q(1)
3, j = F 01234

j + 1
2 F 013

j + 1
2 F 023

j , (A8)

the following choice d (1)
3,3 = 6, d (1)

3,5 = 1/3 gives

q̃(1)
3, j = q(1)

3, j + 6q(0)
3, j + 1

3 q(0)
5, j = − 1

2

(
F 013

j + F 023
j

)
, (A9)

which matches the quasi-IoM in Eq. (37) found in previous
works [21,22].

Reference [21] also calculated several longer-ranged quasi-
conserved quantities. In our approach, we can obtain the next
quasiconserved quantity originating from Q(0)

4 using Eq. (32),
which gives

q(1)
4, j = − 3F 012345

j − 2F 0124
j − 2F 0134

j − 2F 0234
j

+ 3F 0123
j − F 0213

j − 2F 03
j − 4F 02

j + 18F 01
j . (A10)

Note that any linear combination of such Q<2
α is also a valid

quasi-IoM, and to match with the next quasi-IoM in Ref. [21]
we need to start with combination Q<2

4 + 4Q<2
1 to match their

conventions for the original IoMs. Furthermore, we can add
λ times any combination of the original IoMs while preserv-
ing the � = 2 quasiconservation. It is then straightforward to
check that the following combination,

Q(0)
4 + 4Q(0)

2 + λ
(
Q(1)

4 + 4Q(1)
2

)
+ λ

[
1
4 Q(0)

6 + (11 + a)Q(0)
4 + (2 + 4a)Q(0)

2

]
, (A11)

matches exactly Eq. (25) in Ref. [21]. They found this qua-
siconserved quantity by brute-force search over operators up
to fixed range (here range 5), which is one organizational
principle well suited for such search. This fixes the coefficient
of Q(0)

6 in the above equation, so as to cancel the range-6 term
in Q(1)

4 . The (linear-in-λ) terms proportional to Q(0)
4 and Q(0)

2
of course can be added with arbitrary coefficients. Reference
[21] found only one parameter family given by the above
equation with the parameter a, probably because their search
required the coefficient of �σ j · �σ j+1 in the very final expression
to be zero. While the appearance and count of such free
parameters is somewhat mysterious in their formalism, it is
not from our perspective where all operators of the form of
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Eq. (A7) are formally quasi-IoMs to order � = 2 in the sense
of Eq. (15).

Equation (A7) clearly shows that there can be infinitely
many quasi-IoMs associated with each original IoM Q(0)

α .
While formally for fixed α they are linearly independent for
linearly independent d (1)

α,β , it is not to say that physically they
are equally important (and they are not independent when
varying α). The perturbative setup keeping λ small works well
when λ multiplies objects that do not get large themselves,
and which specific quasi-IoM is best to use can depend on
the context (e.g., Ref. [21] used conditions of fixed range and
minimization of the Frobenius norm of the commutator with
the perturbed Hamiltonian, which is reasonable for certain
types of quenches [76]).

2. Details of constructing � = 3 nearly integrable perturbation
to the Heisenberg chain

Here we provide some details for constructing particu-
larly simple higher-order nearly integrable perturbation to the
Heisenberg chain. To evaluate Eq. (78), we first calculate

− i
[
B

[
Q(0)

3

]
, Q(1)

2

] − i
[
B

[
Q(1)

3

]
, Q(0)

2

]
=

∑
j

(
5

2
F 012345

j + 3

2
F 0124

j + 3

2
F 0134

j + 5

2
F 0123

j

+ F 0213
j + F 03

j + 3F 02
j − 4F 01

j

)
. (A12)

Note that i[B[Q(0)
3 ], Q(1)

2 ] and i[B[Q(1)
3 ], Q(0)

2 ] are in gen-
eral not extensive local operators, since [Q(0)

3 , Q(1)
2 ] �= 0 and

[Q(1)
3 , Q(0)

2 ] �= 0. However, their sum is properly extensive as
exhibited above, in agreement with the expectation that Q2(λ)
produced by the flow in Eq. (2) with the generators in Eq. (5)
is extensive order by order in λ.

Next, we choose the coefficients f (1)
β to make Eq. (78) more

simple. Taking

f (1)
β = 10δβ,3 + 1

2δβ,5 (A13)

and using the already calculated −i[B[Q(0)
3 ], Q(0)

2 ] = Q(1)
2

from Eq. (33) and

−i
[
B

[
Q(0)

5

]
, Q(0)

2

] =
∑

j

(−3F 012345
j − 3F 0124

j

− 3F 0134
j + 3F 0123

j − 6F 02
j + 18F 01

j

)
,

(A14)

we obtain for Eq. (78)

Q(2)
2 =

∑
j

(
F 012345

j − F 0123
j + F 0213

j + F 03
j − 5F 01

j

)
.

(A15)

Finally, we choose coefficients c(2)
α to make H (2) in Eq. (77)

as simple as possible:

c(2)
α = 36δα,2 + 20δα,4 + 1

3δα,6. (A16)

Using expressions for Q(0)
2 , Q(0)

4 , and Q(0)
6 [Eqs. (A3), (A4),

and (A6)], we find

H (2) =
∑

j

2F 03
j =

∑
j

2�σ j · �σ j+3, (A17)

which contains only the simple third-nearest-neighbor
Heisenberg interaction. Plugging this H (2) into Eq. (73) gives
the claimed H<3(λ) in Eq. (79).

APPENDIX B: SOME DETAILS FOR THE XYZ
AND XXZ CHAINS

We report here the expressions for the deformations
Q(1)

2 and Q(1)
3 generated by B[Q(0)

3 ] in the XYZ chain in
Sec. IV B: We start with Q(1)

2 = −i[B[Q(0)
3 ], Q(0)

2 ], which is
a nearly integrable perturbation to the XYZ chain; the density
reads

q(1)
2, j = 1

2

∑
(α,β,γ )∈

t2
αtγ σ α

j σ
β

j+1σ
β

j+2σ
α
j+3

− 1

2
txtytz

∑
(α,β,γ )∈

σα
j σ

β

j+1σ
α
j+2σ

β

j+3

− 1

2

∑
α∈{x,y,z}

tα
(�t 2 − t2

α

)
σα

j σα
j+1,

where  in
∑

(α,β,γ )∈ is the set of permutations of (x, y, z)
(six terms in the sum). This nearly integrable perturbation
specialized to the XXZ chain (tx = ty = 1, tz = �) was con-
sidered in Ref. [29] (see Eq. (6) there [77]). As we discuss in
the main text, by combining with Q(0)

4 we can obtain a simpler
nearly integrable perturbation, which in turn can be traded for
a yet simpler perturbation by removing the nearest-neighbor
σα

j σα
j+1 terms, obtaining only the second-nearest-neighbor

Heisenberg interaction �σ j · �σ j+2.
Next, we calculate Q(1)

3 = −i[B[Q(0)
3 ], Q(0)

3 ], which gives
appropriate correction to Q(0)

3 to obtain the quasi-IoM
for the above nearly integrable perturbations. The density
reads

q(1)
3, j = −

∑
α,β,γ

εαβγ t2
αt2

γ σ α
j σ

β

j+1σ
β

j+2σ
β

j+3σ
γ

j+4

+ txtytz
∑
α,β,γ

εαβγ tασα
j σ

β

j+1σ
α
j+2σ

γ

j+3σ
α
j+4

+ txtytz
∑
α,β,γ

εαβγ tασα
j σ

β

j+1σ
β

j+2σ
γ

j+3σ
β

j+4

− txtytz
∑
α,β,γ

εαβγ tγ σ α
j σ

β

j+1σ
α
j+2σ

α
j+3σ

γ

j+4

+ 1

2
txtytz

∑
α,β,γ

εαβγ

(
tασα

j σ
β

j+1σ
γ

j+3 + tγ σ α
j σ

β

j+2σ
γ

j+3

)
.

(B1)

As we show in the main text, an appropriate combination with
Q(0)

5 eliminates all the range-4 terms, giving a simpler quasi-
IoM expression.

043019-13



FEDERICA MARIA SURACE AND OLEXEI MOTRUNICH PHYSICAL REVIEW RESEARCH 5, 043019 (2023)

APPENDIX C: SIMPLIFYING STRUCTURES FOR WEAK
PERTURBATIONS GENERATED BY X̂ ∼ B[Q̂3]

IN INTEGRABLE MODELS SATISFYING
RESHETIKHIN CRITERION

In this Appendix, we provide an explanation for the
cancellation of longer-range terms in the nearly integrable
perturbations in the Heisenberg and XYZ chains constructed
using generator X ∼ B[Q(0)

3 ] in Secs. IV A and IV B, showing
that this structure applies for more general integrable models
satisfying certain conditions. This also gives an alternative
derivation of the corresponding results for the Heisenberg and
XYZ chains.

Consider a one-dimensional (1D) Hamiltonian with two-
site terms,

H0 =
∑

j

h j, j+1. (C1)

Here and below, to make appearing structures more clear, we
use notation showing explicitly all sites involved in each term;
we will connect with the notation used in the main text when
appropriate. We have

[h j, j+1, H0] = [h j, j+1, h j+1, j+2] − [h j−1, j, h j, j+1] (C2)

≡ g j, j+1, j+2 − g j−1, j, j+1. (C3)

Hence, the commutator of the boosted Hamiltonian with the
Hamiltonian is an extensive local operator:⎡

⎣∑
j

jh j, j+1, H0

⎤
⎦ = −

∑
j

g j, j+1, j+2. (C4)

The underlying reason for this is the energy conservation, and
the right-hand side is (proportional to) a sum of local energy
currents. The above is valid for any Hamiltonian.

From now on we will consider integrable Hamiltonians
whose IoMs can be generated using the boosted Hamilto-
nian as Qn+1 ∼ [B[H0], Qn], n � 2, with Q2 ∼ H0, as in the
Heisenberg and XYZ spin chains in the main text. Following
Ref. [78], let us consider when thus defined Q3 can commute
with H0. We have

[h j, j+1, Q3] ∼
⎡
⎣h j, j+1,

∑
j′

g j′, j′+1, j′+2

⎤
⎦

= [h j, j+1, g j+1, j+2, j+3] − [h j−2, j−1, g j−1, j, j+1]

+ [h j, j+1, g j, j+1, j+2] + [h j, j+1, g j−1, j, j+1], (C5)

where we used the expression for g’s in terms of h’s
to rewrite [h j, j+1, g j−2, j−1, j] = −[h j−2, j−1, g j−1, j, j+1] (since
h j−2, j−1 and h j, j+2 commute). To evaluate [H0, Q3] we need
to sum Eq. (C5) over j. The first two terms have a “tele-
scoping structure,” hence their contributions will cancel upon
the summation. No such structure is present for the last two
terms for general Hamiltonians; however, we will have the
telescoping structure if the so-called Reshetikhin condition
[78] is satisfied: there exist two-site operators Rj, j+1 such that

[h j, j+1 + h j+1, j+2, g j, j+1, j+2] = Rj, j+1 − Rj+1, j+2. (C6)

This condition is satisfied for the Heisenberg and XYZ chains,
and in general it implies [H0, Q3] = 0.

If the Reshetikhin condition is satisfied, then it is also clear
that Q4 as defined above is an extensive local operator. A
straightforward calculation using Eqs. (C5) and (C6) gives⎡

⎣∑
j

jh j, j+1,
∑

j′
g j′, j′+1, j′+2

⎤
⎦

=
∑

j

(−2[h j, j+1, g j+1, j+2, j+3]

+ [hj+1, j+2, g j, j+1, j+2] + Rj, j+1). (C7)

In the main text we considered perturbed models gen-
erated using X ∼ B[Q3], which led to special perturbations
∼[B[Q3], H0]. Reusing some calculations behind Eq. (C5), we
have⎡

⎣h j, j+1,
∑

j′
j′g j′, j′+1, j′+2

⎤
⎦

= ( j + 1)[hj, j+1, g j+1, j+2, j+3]

− ( j − 2)[h j−2, j−1, g j−1, j, j+1]

+ j[h j, j+1, g j, j+1, j+2] + ( j − 1)[h j, j+1, g j−1, j, j+1].

(C8)

Summation over j using the telescoping structure in the first
two terms and the Reshetikhin condition for the second two
terms then gives⎡

⎣∑
j

h j, j+1,
∑

j′
j′g j′, j′+1, j′+2

⎤
⎦

=
∑

j

([h j, j+1, g j+1, j+2, j+3] + Rj, j+1). (C9)

We see that in this total current associated with the conserved
quantity Q3, the range-4 terms have exactly the same structure
as in Q4 in Eq. (C7). Hence we can obtain a simpler nearly
integrable perturbation by combining Eqs. (C9) and (C7):⎡

⎣∑
j

h j, j+1,
∑

j′
j′g j′, j′+1, j′+2

⎤
⎦

+ 1

2

⎡
⎣∑

j

jh j, j+1,
∑

j′
g j′, j′+1, j′+2

⎤
⎦

=
∑

j

(
1

2
[h j+1, j+2, g j, j+1, j+2] + 3

2
Rj, j+1

)
. (C10)

Connecting with the notation in the main text used in the
Heisenberg and XYZ cases, Secs. IV A and IV B, we have

Q(0)
2 ≡ 1

2
H0 = 1

2

∑
j

h j, j+1, (C11)

Q(0)
3 ≡ i

⎡
⎣∑

j

jq(0)
2, j, Q(0)

2

⎤
⎦ = − i

4

∑
j

g j, j+1, j+2, (C12)
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Q(0)
4 ≡ i

⎡
⎣∑

j

jq(0)
2, j, Q(0)

3

⎤
⎦

= 1

8

⎡
⎣∑

j

jh j, j+1,
∑

j′
g j′, j′+1, j′+2

⎤
⎦, (C13)

Q(1)
2 ≡ −i

⎡
⎣∑

j′
j′q(0)

3, j′ , Q(0)
2

⎤
⎦

= −1

8

⎡
⎣∑

j′
j′g j′, j′+1, j′+2,

∑
j

h j, j+1

⎤
⎦. (C14)

In the preceding discussions and expressions, everything is
still general other than the convention Q(0)

2 ≡ H0/2, i.e., ap-
plicable for any integrable model satisfying the Reshetikhin
condition. The specific combination of Q(1)

2 and Q(0)
4 used

to obtain more simple nearly integrable perturbations in the
Heisenberg and XYZ models in the main text, Eqs. (36) and
(42), respectively, in fact works for all such integrable models,
since it is precisely the combination in Eq. (C10) that cancels
the four-site terms:

2Q(1)
2 + Q(0)

4 = 1

4

∑
j

(
1

2
[h j+1, j+2, g j, j+1, j+2] + 3

2
Rj, j+1

)
.

(C15)

We can use these formulas to obtain alternative derivations
of the final results in the Heisenberg and XYZ chain, which
we provide here for easy reference. Specializing to the case of
the Heisenberg chain, h j, j+1 = �σ j · �σ j+1, we have

g j, j+1, j+2 = −2i(�σ j × �σ j+1) · �σ j+2, (C16)

[h j+1, j+2, g j, j+1, j+2] = 8(�σ j · �σ j+2 − �σ j · �σ j+1), (C17)

Rj, j+1 = −8�σ j · �σ j+1. (C18)

Plugging this into Eq. (C15) reproduces the result in the main
text, Eq. (36), where in addition we removed the nearest-
neighbor Heisenberg term by taking appropriate combination
with Q(0)

2 (this additional simplification is special for the
Heisenberg model).

In the XYZ chain case, h j, j+1 = ∑
α tασ α

j σα
j+1, we have

g j, j+1, j+2 = −2i
∑
αβγ

εαβγ tαtγ σ α
j σ

β

j+1σ
γ

j+2, (C19)

[h j+1, j+2, g j, j+1, j+2] = 8txtytz �σ j · �σ j+2 (C20)

−4
∑

α

tα
(�t 2 − t2

α

)
σα

j σα
j+1, (C21)

Rj, j+1 = −4
∑

α

tα
(�t 2 − t2

α

)
σα

j σα
j+1. (C22)

Plugging this into Eq. (C15) reproduces the XYZ chain result
in the main text, Eq. (42).

APPENDIX D: HUBBARD MODEL

In this Appendix, we collect some details behind the Hub-
bard model results in Sec. IV C. First, we list the IoM densities
q(0)

2, j and q(0)
3, j that are respectively even and odd under inversion

in the bond center between sites j and j + 1:

q(0)
2, j ≡ −2

∑
s=↑,↓

(a†
j,sa j+1,s + H.c.)

+ 2U

(
n j,↑ − 1

2

)(
n j,↓ − 1

2

)

+ 2U

(
n j+1,↑ − 1

2

)(
n j+1,↓ − 1

2

)
, (D1)

q(0)
3, j ≡ −i

∑
s

(a†
j,sa j+2,s − H.c.)

− i
∑

s

(a†
j−1,sa j+1,s − H.c.)

+ 4iU
∑

s

(a†
j,sa j+1,s − H.c.)(n j,−s + n j+1,−s − 1).

(D2)

We also list the next IoM of the Hubbard model from
Ref. [34]:

Q(0)
4 =

∑
j,s

[
−2(a†

j,sa j+3,s + H.c.) + 4U (a†
j,sa j+2,s + H.c.)

×
(

n j,−s + n j+1,−s + n j+2,−s − 3

2

)

+ 2U (a†
j,sa j+1,s − H.c.)(a†

j,−sa j+1,−s − H.c.)

+ 4U (a†
j,sa j+1,s − H.c.)(a†

j+1,−sa j+2,−s − H.c.)

− 4U

(
n j,s − 1

2

)(
n j+1,−s − 1

2

)

− 2U

(
n j,s − 1

2

)(
n j,−s − 1

2

)

− 4U 2(a†
j,sa j+1,s + H.c.)

× (2n j,−sn j+1,−s − n j,−s − n j+1,−s + 1)

]
. (D3)

This IoM can be used to eliminate the third-nearest-
neighbor hopping term from the weak integrability breaking
perturbation in the main text, Eq. (54), but at the expense of
introducing additional terms, including the six-fermion terms
in the last line.

We can eliminate the six-fermion terms by considering
weak integrability breaking perturbation generated by the fol-
lowing extensive local term:

X = 4i
∑

j,s

(a†
j,sa j+1,s − H.c.)(n j,−s − n j+1,−s). (D4)

This X is manifestly invariant under the inversion but is
odd under the time reversal, hence the corresponding V =
i[X, Q(0)

2 ] is invariant under both these symmetries. One can
also verify that X has both the spin SU(2) and pseudospin
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SU(2) symmetries, hence V has these symmetries too. Eval-
uating this V and constructing an appropriate combination
with Q(0)

4 , we can then eliminate the six-fermion terms, and
an appropriate combination with J (0)

3,2;tot, Eq. (54), then gives a
weak integrability breaking perturbation that is of range 3 and
has only four-fermion terms:

J (0)
3,2;tot − 2Q(0)

4 − 1

2
Ui

[
X, Q(0)

2

]
=

∑
j,s

(4 + 8U 2)(a†
j,sa j+1,s + H.c.)

+ 8U
∑

j

(
n j,↑ − 1

2

)(
n j,↓ − 1

2

)

− 8U
∑

j,s

(a†
j,sa j+1,s − H.c.)(a†

j+1,−sa j+2,−s − H.c.)

− 4U
∑

j,s

(a†
j,sa j+2,s + H.c.)(2n j+1,−s − 1)

+ 4U
∑

j,s

(a†
j,sa j+1,s − H.c.)(a†

j,−sa j+1,−s − H.c.)

− 8U
∑

j,s

(
n j,s − 1

2

)(
n j+1,−s − 1

2

)
. (D5)

Note that we can drop the nearest-neighbor hopping and
the on-site Hubbard terms and still maintain the weak in-
tegrability breaking property (the quasi-IoMs would need
to be adjusted when this is done). The final expression is
then a relatively simple one containing particular combina-
tions of current-current interactions for opposite spin species
on neighboring links, as well as correlated second-nearest-
neighbor hopping terms. The nearest-neighbor terms in the
last two lines can be combined together using the identity

2(�S j · �Sk − �Tj · �Tk ) = (a†
j↑ak↑ − H.c.)(a†

j↓ak↓ − H.c.)

− (
n j↑ − 1

2

)(
nk↓ − 1

2

) − (
n j↓ − 1

2

)(
nk↑ − 1

2

)
,

where �S j is the on-site spin operator [S+
j ≡ a†

j↑a j↓, Sz
j ≡

1
2 (n j↑ − n j↓)], while �Tj is the on-site pseudospin appro-
priate for real hopping on the bipartite lattice [T +

j ≡
(−1) jc†

j↑c†
j↓, T z

j ≡ 1
2 (n j↑ + n j↓ − 1)], and the sites j and k

are on the opposite sublattices. This form is manifestly spin
SU(2) and pseudospin SU(2) invariant.

APPENDIX E: QUASI-IOMs FOR NEARLY INTEGRABLE
PERTURBATIONS OF FREE SPINLESS FERMIONS

Here we provide the expressions of the deformations of the
quantity Q′

3 generated by the bilocal operators considered in
Sec. V A:

(a) i
[[

Q′(0)
2

∣∣Q′(0)
1

]
, Q′(0)

3

] = − 2
∑

j

q′′(0)
4, j · (n j+1 + n j+2)

− 2
∑

j

q′′(0)
2, j · (n j−1 + n j+2),

(E1)

(b) i
[[

Q′′(0)
2

∣∣Q′(0)
1

]
, Q′(0)

3 ] = 2
∑

j

q′(0)
4, j · (n j+1 + n j+2)

− 2
∑

j

q′(0)
2, j · (n j−1 + n j+2),

(E2)

(c) i
[[

Q′(0)
2

∣∣Q′′(0)
2

]
, Q′(0)

3

]
= −2

∑
j

q′(0)
3, j · (n j−1 − 2n j+1 + n j+3)

+ 2
∑

j

(
q′(0)

2, j q′(0)
2, j+2 − q′′(0)

2, j q′′(0)
2, j+2

)
.

(E3)

These are then corrections to Q′(0)
3 to produce quasi-IoMs for

the corresponding quasi-integrable perturbations in the main
text, and one can in principle calculate corrections to all Q′(0)

β

and Q′′(0)
β .

APPENDIX F: THERMALIZATION TIME

1. Rigorous bound on the thermalization time for nearly
conserved local observables

Suppose H and M are extensive local and translationally
invariant operators,

H =
∑

j

h j, M =
∑

j

m j, (F1)

with local terms h j and mj such that the ( j + 1)th terms are
translations of the jth terms. (Here and below we assume the
translational invariance only to simplify extraction of local
parts of the observables, but this is not fundamental and can
be relaxed under physically reasonable settings working with
extensive local operators.) For applications in the settings in
the main text, H is the full perturbed Hamiltonian with the per-
turbation characterized by the smallness parameter λ, while M
is an approximately conserved quantity that commutes with H
up to O(λ�) corrections, i.e.,

i[H, M] = λ�R = λ�
∑

j

r j, (F2)

where the local terms r j may have additional λ dependence in
them but have a bounded operator norm, ‖r j‖ � cr with cr an
O(1) number independent of λ, for some finite range of λ near
0. Then, for generic quench experiments the thermalization
time is rigorously upper bounded by O(1/λ�).

Indeed, consider quenching from some simple translation-
ally invariant initial state |�ini〉, e.g., a product state. At time t
we have

〈�(t )|mj |�(t )〉 − 〈�ini|mj |�ini〉

= 1

L
(〈�ini|eiHt Me−iHt |�ini〉 − 〈�ini|M|�ini〉)

= 1

L
〈�ini|

∫ t

0
dt ′ eiHt ′

i[H, M]e−iHt ′ |�ini〉

= λ�

∫ t

0
dt ′ 〈�ini|eiHt ′

r je
−iHt ′ |�ini〉, (F3)
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where in the intermediate steps L is the system size and we
have used the translational invariance of H , M, R, and |�ini〉.
We have |〈�ini|eiHt ′

r je−iHt ′ |�ini〉| � ‖r j‖ � cr , and hence

|〈�(t )|mj |�(t )〉 − 〈�ini|mj |�ini〉| � λ�crt . (F4)

Since we expect that the “thermalized” value of the local
observable at long time, limt→∞ 〈�(t )|mj |�(t )〉, differs from
the initial value, 〈�ini|mj |�ini〉, by a nonzero O(1) amount
�mth, we conclude that it will take at least time

t � |�mth|
crλ�

(F5)

to thermalize, which is parametrically large for small λ. Note
that this is a completely rigorous lower bound on the thermal-
ization time valid for any L (hence also in the thermodynamic
limit L → ∞) that makes no assumptions about the ther-
malization physics of H and M other than their extensive
local character and the near-commutation Eq. (F2). Note also
that no assumption is made about the initial state |�ini〉 with
respect to H and M; the bound on the rate of change of
the observable mj is always valid, and the “thermalization”
assumption is only made to convert the rate to a finite time as-
suming an O(1) change in the observable under the dynamics.

2. Vanishing of the rate of change of M at t = 0 for eigenstates
of the unperturbed H (0) and M (0)

In the above, the initial state |�ini〉 can be arbitrary, and
in such a general setting we are not able to make any further
arguments about the thermalization time. We will now spe-
cialize to the case � = 2, with

H = H (0) + λH (1), M = M (0) + λM (1), (F6)

[H (0), M (0)] = 0, (F7)

and consider |�ini〉 = |�0〉 which is a simultaneous eigenstate
of the unperturbed H (0) and M (0) [79,80]. The commutation
condition in Eq. (F2) gives

[H (0), M (1)] = [M (0), H (1)], R ≡ i[H (1), M (1)]. (F8)

The rate of change of the quasiconserved quantity M has
O(λ2) smallness prefactor:

d

dt
〈�(t )|M|�(t )〉 = λ2〈�(t )|R|�(t )〉. (F9)

We will now show that for initial states that are eigenstates of
H (0) and M (0), under some additional natural assumptions,

〈�0|R|�0〉 = 0, (F10)

and hence the rate of change of M vanishes for t = 0.
Consider an orthonormal basis {|φ(0)

k 〉} of states that simul-
taneously diagonalize H (0) and M (0) with eigenvalues {ε (0)

k }
and {μ(0)

k }, respectively. Denote the corresponding matrix ele-
ments of H (1) and M (1) as H (1)

kn ≡ 〈φ(0)
k |H (1)|φ(0)

n 〉 and M (1)
kn ≡

〈φ(0)
k |M (1)|φ(0)

n 〉. Condition (F8) implies(
ε

(0)
k − ε (0)

n

)
M (1)

kn = (
μ

(0)
k − μ(0)

n

)
H (1)

kn (F11)

for all k and n. Hence we have〈
φ

(0)
k

∣∣R∣∣φ(0)
k

〉 = i
∑

n

(
H (1)

kn M (1)
nk − M (1)

kn H (1)
nk

)
= i

∑
n, ε

(0)
n =ε

(0)
k , μ

(0)
n =μ

(0)
k

(
H (1)

kn M (1)
nk − M (1)

kn H (1)
nk

)
.

(F12)

In particular we see that if either ε
(0)
k or μ

(0)
k is nondegenerate

in the corresponding eigenspectrum, then 〈φ(0)
k |R|φ(0)

k 〉 = 0.
Hence for such initial states, Eq. (F9) gives the initial rate of
change of M as 0.

In the case of eigenvalue degeneracies, it is natural to
consider an initial ensemble where the states {|φ(0)

k 〉} appear
with probabilities that depend only on their H (0) and M (0)

eigenvalues, {pk = f (ε (0)
k , μ

(0)
k )}. For such an ensemble, using

Eq. (F12) we can easily see that∑
k

pk
〈
φ

(0)
k

∣∣R∣∣φ(0)
k

〉 = 0, (F13)

hence the initial rate of change of the observable M is 0.
Note that in the above we have only used the quasicom-

mutation condition of Eq. (F2), specialized to Eq. (F8) in the
present case. Suppose we further know that the quasicom-
mutation derives from a truncated unitary rotation, i.e., there
exists X such that

H (1) = i[X, H (0)], M (1) = i[X, M (0)]. (F14)

A straightforward calculation utilizing the commutation of
H (0) and M (0) and the common eigenstate condition on |φ(0)

k 〉
then gives 〈φ(0)

k |R|φ(0)
k 〉 = 0 without the nondegeneracy as-

sumption. Indeed, we simply write out

iR = XH (0)XM (0) − H (0)X 2M (0) + H (0)XM (0)X

− XM (0)XH (0) + M (0)X 2H (0) − M (0)XH (0)X (F15)

and observe that the above terms can be grouped in pairs that
cancel each other when evaluated on any common eigenstate
|φ(0)

k 〉, e.g., the first and the last term, etc.
A remark is in order. When X is a boosted or a bilocal

operator, while we can use it in an infinite system to gen-
erate such a quasicommuting Hamiltonian and IoMs, it is
not clear if we can turn this argument into a proper proof
in a finite system. On the other hand, the earlier arguments
with the additional eigenvalue nondegeneracy assumptions, or
with appropriately generalized initial ensembles, still work.
We presented the argument with the truncated unitary rotation
generated by X since its manipulations are purely algebraic
and extend more simply to some higher-order calculations
below, and we conjecture that the conclusions still hold even
when we cannot define such X in a finite system.

3. Perturbative treatment for the dynamics of M

We can evaluate the right-hand side of Eq. (F9) perturba-
tively in λ using

eiHt Re−iHt ≈ eiH (0)t Re−iH (0)t + iλ
∫ t

0
dseiH (0) (t−s)

× [H (1), eiH (0)sRe−iH (0)s]e−iH (0) (t−s)
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valid to formal O(λ2). When evaluated in an initial state |�0〉
that is an eigenstate of H (0), this gives

〈�0|eiHt Re−iHt |�0〉 ≈ 〈�0|R|�0〉 (F16)

+ iλ
∫ t

0
ds〈�0|[H (1), eiH (0)sR e−iH (0)s]|�0〉. (F17)

Assuming further that |�0〉 is an eigenstate of M (0), with addi-
tional natural assumptions considered in the previous section,
we showed that 〈�0|R|�0〉 = 0. Hence the leading term in the
formal powers of λ series for the right-hand side of Eq. (F9)
is O(λ3).

a. Connection with direct perturbative treatment for the dynamics
of M (0) and vanishing “Fermi’s golden rule” rate

In a direct perturbative treatment, we would calculate the
rate of change of the unperturbed observable M (0), rather than
M. A nonvanishing such rate at large t can be loosely referred
to as “Fermi’s golden rule” (FGR) in the many-body setting
[16,17]. For reference and comparison with literature, we list
expression for the O(λ2) term in d

dt 〈�(t )|M (0)|�(t )〉 obtained
in the direct perturbation theory simplified using the existence
of M (1) satisfying Eq. (F8):

d

dt
〈�(t )|M (0)|�(t )〉

= iλ2〈�0|[H (1), M (1) − eiH (0)t M (1)e−iH (0)t ]|�0〉 + O(λ3).

(F18)

In our treatment, the first (time-independent) term vanishes
by Eq. (F10), while we next focus on the second term. Note
that the same expression for the leading order in the formal
expansion in powers of λ can be obtained from M (0) = M −
λM (1) and using that the above-calculated d

dt 〈�(t )|M|�(t )〉 is
formally O(λ3):

d

dt
〈�(t )|M (0)|�(t )〉

= −λ
d

dt
〈�(t )|M (1)|�(t )〉 + O(λ3)

= −iλ2〈�0|[H (1), eiHt M (1)e−iHt ]|�0〉 + O(λ3)

≈ −iλ2〈�0|[H (1), eiH (0)t M (1)e−iH (0)t ]|�0〉 + O(λ3).

The time-dependent O(λ2) term can be expressed in terms
of dynamical correlation functions in the unperturbed prob-
lem: writing H (1) = ∑

j h(1)
j and M (1) = ∑

j m(1)
j , we have

contributions of the form

〈�0|
[
h(1)

j , eiH (0)t m(1)
j′ e−iH (0)t

]|�0〉
= 〈�0|h(1)

j eiH (0)t m(1)
j′ e−iH (0)t |�0〉

− 〈�0|eiH (0)t m(1)
j′ e−iH (0)t h(1)

j |�0〉, (F19)

which is a difference of the specific dynamical correlation
functions.

At this point, if we assume “factorization” of dynami-
cal correlation functions of local observables aj and b j′ at

large t ,

〈�0|a je
iH (0)t b j′e

−iH (0)t |�0〉
≈ 〈�0|a j |�0〉 〈�0|eiH (0)t b j′e

−iH (0)t |�0〉
= 〈�0|a j |�0〉 〈�0|b j′ |�0〉, (F20)

and similarly for 〈�0|eiH (0)t b j′e−iH (0)t a j |�0〉, then the two
parts in Eq. (F19) cancel each other at large t and such con-
tributions vanish. That is, we assume that the corresponding
connected correlation functions decay to zero at large t , and
we also need this decay to be sufficiently fast for the next
step (see below for a discussion of these assumptions). If we
further assume that the correlations also decay sufficiently fast
in real space, we could conjecture that∑

j′
〈�0|[a j, eiH (0)t b j′e

−iH (0)t ]|�0〉 ≈ 0 (F21)

at large t and would conclude that the O(λ2) contribution to
the rate of change of m(0)

j vanishes at large t [where we went
from the extensive local operator M (0) to its local part in the
spirit of Eq. (F3)]. Note that the calculated quantity is solely
a property of the unperturbed Hamiltonian H (0) and the initial
state |�0〉 (or the initial ensemble ρ0 in general). As such,
“large enough t” is in the units of (inverse) energy scale of
H (0), which we take to be O(1). So the conjectured conclusion
is that the formal O(λ2) rate of change of M (0) vanishes after
O(1) time.

b. Assumptions about the dynamical correlation functions

Let us be more specific about the precise conjecture used to
argue the vanishing of the FGR rate and various assumptions
motivating it.

First, because of the locality of H (0) (which we always
assume), the Lieb-Robinson bound implies that at any fixed
t the dynamical correlation functions like Eq. (F20) are well
defined in the thermodynamic limit, and that with such corre-
lation functions the left-hand side of Eq. (F21) is a convergent
sum over the real-space separations | j′ − j|; this means that
we have a well-defined formal O(λ2) FGR rate of change
of the local observable m(0)

j at any t in the thermodynamic
limit. Our main conjecture is that the sum in Eq. (F21)—
and hence this FGR rate—vanishes for sufficiently
large t .

Next, we discuss the underlying assumptions about the
dynamical correlation functions. While the “factorization” in
Eq. (F20) (i.e., vanishing of the connected correlation func-
tions) is intuitively reasonable, we do not know of a proof in
general. Several recent papers [81–83] obtained some rigorous
results about such “factorization” for general Hamiltonians.
However, these results are either in different regimes (e.g.,
correlations of local observables in the t → ∞ limit first
before the thermodynamic limit) or are too weak for us to use
(e.g., bounds on correlations of extensive local observables).
Nevertheless, our situation is better in that we actually need
the specific difference of correlation functions which corre-
sponds to the commutator in Eq. (F20). For fixed t and large
enough | j′ − j| > vLRt , i.e., outside the Lieb-Robinson cone
where vLR is the corresponding velocity, we expect this to
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decay exponentially with | j′ − j|, so the sum in Eq. (F21)
is convergent at any t . Whether this sum indeed approaches
zero at large t depends on the behavior of the correlation
functions within the Lieb-Robinson cone | j′ − j| � vLRt . Un-
fortunately, we do not know sufficiently strong general results
for such correlations. Still, if we can establish that, e.g.,
correlations at the same location j′ = j decay sufficiently
quickly with time, it is reasonable to assume that the to-
tal contribution from all | j′ − j| � vLRt also decays to zero
with time.

Furthermore, as already mentioned, these are solely ques-
tions about the unperturbed H (0) and may be directly
answerable for solvable H (0) like all the integrable models
considered in this paper. Thus, for free-fermion unperturbed
Hamiltonians like the ones in Sec. V, either for the ground
state or thermal initial ensembles, one can employ Wick’s
theorem and carry out such calculations exactly. While we
have not done the full calculations for the corresponding near-
integrable perturbations H (1) and M (1) as observables, toy
calculations with simpler local observables (e.g., aj = c†

j c
†
j+1,

b j′ = c j′c j′+1, for the spinless fermion hopping problem) sug-
gest that the above conjecture indeed holds, and we leave full
calculations for future work.

For interacting integrable models, Ref. [22] studied
thermal conductivity in the nearest-neighbor Heisenberg
chain perturbed by the second-nearest-neighbor Heisenberg
terms; using numerical high-temperature series and exact
diagonalization estimates they found that the corresponding
FGR-like O(λ2) contribution indeed vanishes in this case.
Also, Ref. [30] appealed to the hydrodynamic projection
principle calculations of the dynamical correlation functions
in integrable models to argue that the FGR-like rate of change
of an unperturbed IoM indeed vanishes after some initial
time, for special perturbations that are equivalent to the ones
in our work obtained using generators X that are boosted
operators. More precisely, one can start with Eq. (F18) and
use the relation 〈�0|[H (1), M (1) − eiH (0)t M (1)e−iH (0)t ]|�0〉 =
〈�0|H (1)(e−iH (0)t M (1)eiH (0)t − eiH (0)t M (1)e−iH (0)t )|�0〉, which
can be checked, e.g., by differentiating both sides with
respect to t and utilizing Eq. (F8). The latter form matches
the expression analyzed in Ref. [30], which then appealed
to the hydrodynamic projection principle to suggest that the
corresponding positive time and negative time correlations
effectively cancel each other at large t .

While these calculations are specific for integrable models,
we think that our conjecture does not require integrability and
holds for generic local Hamiltonians H (0), perhaps under mild
additional conditions, but leave more tests (e.g., by numerical
methods) to future work.

Finally, we emphasize that while fully justifying the van-
ishing of the O(λ2) rate for the M (0) required additional
arguments like the ones in this section, no such arguments
were needed when considering the O(λ2) rate for the properly
corrected (i.e., quasiconserved) observable M.

c. Vanishing of the O(λ3) term in the rate of change
of M at long time

Returning to the dynamics of the full M and
Eq. (F17), in the case H (1) = i[X, H (0)] and using that

〈�0|[i[X, H (0)], •]|�0〉 = 〈�0|[X, i[H (0), •]]|�0〉, we have

〈�0|[H (1), eiH (0)sRe−iH (0)s]|�0〉
= 〈�0|[X, i[H (0), eiH (0)sRe−iH (0)s]]|�0〉

= 〈�0|
[

X,
d

ds
(eiH (0)sRe−iH (0)s)

]
|�0〉, (F22)

and hence
d

dt
〈�(t )|M|�(t )〉

= iλ3〈�0|[X, eiH (0)t Re−iH (0)t − R]|�0〉 + O(λ4). (F23)

Using Eq. (F15) and writing out [X, R], we can similarly
pair terms such that their expectation values in the state |�0〉
cancel each other, giving

〈�0|[X, R]|�0〉 = 0. (F24)

Furthermore, if we assume “factorization” of the dynamical
correlation functions at long times, similar to Eq. (F20) and
conjecture Eq. (F21), we then have

〈�0|[X, eiH (0)t Re−iH (0)t ]|�0〉 ≈ 0 (F25)

for large t . Hence, after some initial time, the formal O(λ3)
term in the rate of change of M vanishes. The nonvanishing
rate is then O(λ4), in agreement with the expectations of FGR
reasoning applied to an effective strength of true integrability
breaking being O(λ2).

Some remarks are in order. Note that we also needed such
arguments appealing to “factorization” of the dynamical cor-
relations to show the vanishing of the O(λ2) rate of change
of M (0) after some initial time, while we did not need such
arguments for the O(λ2) rate of change of the “corrected”
(quasi-IoM) M—the formal O(λ2) rate of change of M is
identically zero at any time. We think that we need such
arguments for the O(λ3) rate of change of the corrected M
because the initial state |�0〉 is not “corrected” to reflect
that the true integrability breaking perturbation has effective
strength O(λ2).

Indeed, let us return to Eq. (F9) valid for any initial state,
and instead of |�0〉 [a common eigenstate of H (0) and M (0) as
before], and let us start with

|�ini〉 = eiλX |�0〉 or ρini = eiλX ρ0e−iλX (F26)

(assuming as before that [ρ0, H (0)] = [ρ0, M (0)] = 0). In this
case we have

d

dt
〈�(t )|M|�(t )〉 = λ2〈�0|eiH̃t R̃e−iH̃t |�0〉 (F27)

with

H̃ ≡ e−iλX HeiλX = H (0) + O(λ2), (F28)

R̃ ≡ e−iλX ReiλX = R − iλ[X, R] + O(λ2). (F29)

Hence
d

dt
〈�(t )|M|�(t )〉 = λ2〈�0|eiH (0)t R̃e−iH (0)t |�0〉 + O(λ4)

= λ2〈�0|(R − iλ[X, R])|�0〉 + O(λ4)

= O(λ4), (F30)
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where the O(λ2) and O(λ3) terms vanish by Eqs. (F10) and
(F24). Thus, for such initial states or ensembles, the leading
contribution to the rate of change of M is O(λ4) at any time t .

One may worry that such |�ini〉 or ρini are not readily
preparable (e.g., experimentally preparable) from |�0〉 or ρ0.
However, if X is a sum of on-site terms (as in the example
in Sec. VIII of the on-site Hubbard term used as a genera-
tor starting with free fermions in any dimension), then eiλX

is a product of on-site unitaries and therefore is a depth-1
unitary circuit, hence such initial states or ensembles can be
viewed as preparable from the unperturbed ones. For a general
extensive local X , we can appropriately Trotterize eiλX and
obtain a finite-depth unitary circuit U ′(λ) that reproduces eiλX

with O(λ2) accuracy (e.g., eiλX ≈ eiλXeven bonds eiλXodd bonds ≡ U ′(λ)
familiar for a 1D chain with only nearest-neighbor bond terms
in X ); in this case we can initialize with the corresponding
|� ′

ini〉 = U ′(λ)|�0〉 or ρ ′
ini = U ′(λ)ρ0U ′(λ)† differing from

the above |�ini〉 or ρini by O(λ2), and observe that with such
preparable initial states or ensembles we also obtain vanishing
formal O(λ2) and O(λ3) terms in the rate of change of M.
[Note that these |� ′

ini〉 or ρ ′
ini are not the naive truncated series

approximations |�0〉 + iλX |�0〉 or ρ0 + iλ[X, ρ0] that would
be problematic since X is an extensive operator.]

One should worry more about the case where the generator
X is a boosted or bilocal operator, hence is not a regular local
extensive operator. While we do not have a full resolution of
this concern, we observe that the commutator of such X with
H (0) and M (0) gives regular extensive local operators; hence,
the nonlocality of X is mitigated when one considers, e.g., ρ0

that is an equilibrium ensemble under H (0) and M (0):

ρ0 ≡ 1

Z0
e−βH (0)−γ M (0)

, Z0 ≡ Tr(e−βH (0)−γ M (0)
),

⇒ ρini = 1

Z0
e−βeiλX H (0)e−iλX −γ eiλX M (0)e−iλX

≈ 1

Z0
e−β(H (0)+λH (1) )−γ (M (0)+λM (1) ) + O(λ2), (F31)

where O(λ2) means in formal series in λ. In particular, this
implies that in such series

Z ′
0 ≡ Tr(e−β(H (0)+λH (1) )−γ (M (0)+λM (1) ) ) ≈ Z0 + O(λ2),

ρ ′
ini ≡ 1

Z ′
0

e−β(H (0)+λH (1) )−γ (M (0)+λM (1) ) = ρini + O(λ2). (F32)

Hence, for such ρ ′
ini we expect the formal rate of change of

M is O(λ4). Note that this is not an equilibrium ensemble
for H = H (0) + H (1), since H does not commute exactly with
M = M (0) + M (1). Intuitively, we expect such ensembles to
describe prethermalized states in our system with quasicon-
served M, while here we use ρ ′

ini to illustrate initial ensembles
that will “know” from the outset that the true integrability
breaking strength is O(λ2) and where any reference to X has
dropped out.

Indeed, we can verify this by a direct calculation:
d

dt
Tr(ρ ′

inie
iHt Me−iHt ) = λ2Tr(ρ ′

inie
iHt Re−iHt ) (F33)

= λ2Tr(ρ ′
iniR) + O(λ4), (F34)

since H and the operator in the exponent of ρ ′
ini commute to

O(λ2). Furthermore, using [ρ ′
ini, βH + γ M] = 0, we have

Tr(ρ ′
iniλ

2R) = Tr(ρ ′
inii[H, M]) = iTr

(
ρ ′

ini

[
H + γ

β
M, M

])

= iTr

([
ρ ′

ini, H + γ

β
M

]
M

)
= 0. (F35)

Hence, for such initial ensembles, the rate of change of M at
any time t is formally O(λ4).

It is not clear if this ρ ′
ini can be viewed as preparable

from ρ0 by a finite-depth local unitary circuit and perhaps a
better treatment can be found. Here were are content with the
above arguments of how to more readily see that the leading
“thermalization” rate in perturbation theory, after some initial
relaxation, should indeed be set by O(λ4).

The above readily generalizes to a situation with multiple
IoMs that become quasi-IoMs upon adding special perturba-
tions. In this case in the unperturbed problem we can consider
ρ0 in the form of a generalized Gibbs ensemble

ρ0 = ρGGE ∝ exp

(
−

∑
α

γαQ(0)
α

)
, (F36)

where H (0) is included as one of the Qα’s. A suitable initial
state with formal rate of change of order O(λ4) in all the quasi-
IoMs can then be obtained as

ρ ′
ini ∝ exp

[
−

∑
α

γα

(
Q(0)

α + λQ(1)
α

)]
. (F37)
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