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Measurement of the power spectral density of (stochastic) Brownian fluctuations of micro- and nano-
devices is used frequently to gain insight into their mechanistic properties. Noise is always present
in these measurements and can directly influence any parameter estimation obtained through a least-
squares analysis. Importantly, measurements of the spectral density of stationary random signals,
such as Brownian motion, inherently contain multiplicative noise. In this article, we theoretically an-
alyze the impact of multiplicative noise on fit parameters extracted using a least-squares analysis. A
general analysis is presented that is valid for any fit function with any number of fit parameters. This
yields closed-form expressions for the expected value and variance in the fit parameters and provides
a rigorous theoretical framework for a priori determination of the effect of measurement uncertainty.
The theory is demonstrated and validated through Monte Carlo simulation of synthetic data and by
comparison to power spectral density measurements of the Brownian fluctuations of an atomic force
microscope cantilever – analytical formulas for the uncertainty in the fitted resonant frequency and
quality factor are presented. The results of this study demonstrate that precise measurements of fit pa-
rameters in the presence of noise are inherently problematic – individual measurements of the power
spectral density are capable of yielding fit parameters that are many standard deviations away from
the mean, with finite probability. This is of direct relevance to a host of applications in measurement
science, including those connected with the atomic force microscope. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4709496]

I. INTRODUCTION

Least-squares analysis is used widely to extract quantita-
tive information from experimental data.1–9 This is achieved
by formulating a residual function that is based on the mean-
squared difference between the measured data and a fit func-
tion (model).10, 11 This residual function is then minimized
with respect to the fit parameters of the chosen model. Knowl-
edge of the functional form of the experimental data ensures
selection of an appropriate fit function, and hence meaningful
interpretation of the extracted fit parameters.

Estimation of the spectral properties of stationary ran-
dom processes is required frequently in physical measure-
ments – for example, the Brownian motion of micro- and
nano-devices. This can provide fundamental insight into
the underlying thermodynamic and mechanical processes
within these devices, and is employed extensively in their
characterization.3, 4, 7, 12–18 Such studies often make use of
least-squares analysis to interpret the measured power spec-
tral density (PSD). The power spectral density is commonly
estimated from the Fourier transform of finite time series of
the stochastic (Brownian) motion of the device.4, 13–17, 19 This
inherently introduces noise into the estimate, which is propor-
tional to the PSD, i.e., the noise is multiplicative – its variance
is proportional to the square of the PSD.19 While this sam-
pling noise can be reduced by averaging multiple independent

a)E-mail address: jsader@unimelb.edu.au.

measurements, it is always present and must be considered in
any interpretation of experimental data.

Uncertainty in the fit parameters obtained from a least-
squares analysis, due to the presence of noise, can be esti-
mated through use of simplified formulas derived under the
assumption of linear regression and additive noise,20 and/or
Monte Carlo simulation which implicitly ignores the func-
tional form of the experimental data or fit function;21 the lat-
ter approach is computationally expensive. However, these
approaches do not allow for rigorous analysis of measure-
ment uncertainty and/or design of experimental protocols to
minimize the effect of noise. For example, the resonant fre-
quency and quality factor of atomic force microscope (AFM)
cantilevers are commonly deduced by fitting a Lorentzian
to the measured thermal noise spectrum of the device us-
ing a least-squares analysis. Yet no rigorous theory cur-
rently exists for determining the uncertainty in these mea-
sured (fit) parameters.18 Standard least-squares analyses are
commonly used in applications involving the atomic force mi-
croscope. While an alternate approach based on a weighted
least-squares analysis is also possible,22, 23 we do not consider
weighted least-squares here.

In this article, we address this issue and investigate
the effect of multiplicative noise on fit parameters deter-
mined through a least-squares analysis of data derived from
a stochastic process – a general fit function with an arbitrary
number of parameters is considered. The fit function and the
data are also considered arbitrary in this general formulation,
which is then applied to the special case where the noiseless

0034-6748/2012/83(5)/055106/6/$30.00 © 2012 American Institute of Physics83, 055106-1
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data and fit function have identical functional forms. Analyti-
cal formulas are derived for both the expected value and stan-
dard deviation of the fit parameters, due to the presence of
multiplicative noise. This allows for a priori analysis of the
fit procedure, its optimization, and evaluation of the standard
deviation of all fit parameters resulting from a least-squares
analysis.

The validity of this theoretical framework is explored us-
ing Monte Carlo simulation of synthetic data and experimen-
tal measurements of the PSD of stochastic fluctuations of an
AFM cantilever. An overriding practical question is how does
noise in the PSD affect the precision and distribution of fit pa-
rameters resulting from a least-squares analysis of these sig-
nals? Despite the well-defined properties of these mechanical
systems, the extracted fit parameters are observed to follow
Gaussian distributions. Thus, there exists a finite probability
of obtaining fit parameters from a single measurement that are
many standard deviations away from the true value (or mean).
This is true even in the case where the noise is uniformly dis-
tributed and of finite amplitude, as in the presented synthetic
data.

The theoretical origin of this property and its implication
to ‘single-shot measurements’ on seemingly well-defined
systems in the presence of noise are discussed. It has clear
implications to both quantitative and qualitative interpretation
of data obtained from a least-squares fit. By ‘single-shot
measurement’ we mean, for example, fit parameters extracted
from a single estimate of the PSD – as opposed to using
multiple estimates of the PSD and averaging the resulting
fit parameters. Note that any estimate of the PSD inherently
contains multiplicative noise due to finite sampling.19 Thus,
multiple estimates of the PSD from independent time series
measurements will each be different, and yield fit param-
eters that differ. This study highlights the importance of
performing statistically significant measurements on multiple
realizations of the PSD and the inherent uncertainty in all
physical measurements.

We commence by presenting a general theoretical frame-
work for calculating fit parameter uncertainty in the presence
of multiplicative noise. No restriction is placed on the data
to be fitted nor the fit function. This theory is then applied to
the case where the fit function and noiseless data are identi-
cal in form, and explicit results are derived for the expected
value and variance in fit parameter uncertainty. The practical
case of a Lorentzian distribution is considered and a compar-
ison to simulations of synthetic data is presented. The theory
is then applied to analysis of the PSD of a stationary random
signal, and compared to measurements of an atomic force mi-
croscope cantilever. Explicit formulas for the uncertainty in
the fitted resonant frequency and quality factor are derived,
which are found to be in excellent agreement with experi-
mental measurements. We conclude with a discussion of the
implications of this study to practical measurements.

Previous work on dynamic atomic force microscopy also
yielded an explicit formula for the uncertainty in the mea-
sured resonant frequency.24 However, in those applications
the cantilever is actively excited at or near its resonant fre-
quency, with finite oscillation amplitude. Brownian fluctua-
tions of the cantilever superimpose on this excited sinusoidal

motion, which limits the precision with which the oscillation
frequency can be determined. Increasing the oscillation am-
plitude thus reduces the relative effect of Brownian motion,
which improves measurement sensitivity. This previously ex-
amined problem differs fundamentally from the present study.
Here, we explore the effect of sampling noise in the PSD of
Brownian fluctuations on resulting fits to a specified function
– the cantilever is not actively excited. Thus, all formulas in
this article are independent of any oscillation amplitude, in
contrast to previous studies.24–27 This feature will be exam-
ined in Sec. III.

II. GENERAL THEORY

The general problem entails fitting a specified fit func-
tion to data that contains multiplicative noise. The (idealized)
noiseless data, G(x), depends on a single variable x that is
evaluated at discrete values x = xk; this is the frequency vari-
able in a PSD. The fit function, F(x,α), contains a vector α

with an arbitrary but specified number (N) of adjustable fit pa-
rameters. The (true) noisy data contains multiplicative noise.
The goal of the least-squares analysis is to determine the fit
parameter vector, α, such that the residual,

� ≡
∑

k

[F(xk,α) − (1 + εzk)G(xk)]2, (1)

is minimized, where ε is the noise amplitude, which is as-
sumed to be small (0 < ε � 1) and {zk} is a set of indepen-
dent O(1) random variables. Thus, the fit parameter vector α

satisfies the equation,∑
k

[F(xk,α) − (1 + εzk)G(xk)]∇F(xk,α) = 0, (2)

where ∇ is the gradient with respect to α, and ∇F(xk, τ ) de-
notes ∇F evaluated at x = xk and α = τ .

To proceed, the solution for α is expanded in the small
parameter ε,

α = α0 + εα1 + o(ε), (3)

where α0 is the solution in the absence of noise, i.e., when ε

= 0, and εα1 is the leading-order deviation that results from
the presence of noise. The fit function, F(x,α), then becomes

F(x,α) = F(x,α0) + εα1 · ∇F(x,α0) + o(ε). (4)

Substituting Eqs. (3) and (4) into Eq. (2) gives the required
solution for the deviation in the fit parameters due to multi-
plicative noise in the data,

α1 =
∑

k

zk G(xk) A−1 · ∇F(xk,α0), (5)

where the symmetric second-order tensor A is

A =
∑

k

[∇F(xk,α0)∇F(xk,α0)

+ (F(xk,α0) − G(xk))∇∇F(xk,α0)]. (6)

A. Identical data and fit function

We consider the special case where F(xk,α0) = G(x),
i.e., the noiseless data and fit function that minimizes the
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resulting residual, �, have identical forms. This case is often
encountered in practice.4, 8, 13, 15–18, 28, 29 The interval on which
the analysis is performed is xk ∈ [xmin, xmax] and we take xk

= xmin + kδx, where δx is the spacing between fitting points
in Eq. (1). Assuming the spacing to be sufficiently fine that
the sums can be replaced by integrals, and averaging over
the noise variables {zk}, yields the required results for the ex-
pected value and variance of the m-th component, α1|m, of α1,

E[α1|m] = E[z1]
∫ xmax

xmin

F(x,α0)

×[B−1 · ∇F(x,α0)]m dx,

Var[α1|m] = Var[z1]δx
∫ xmax

xmin

(F(x,α0)

×[B−1 · ∇F(x,α0)]m)2dx, (7)

where in the integrands, [v]m denotes the m-th component of
the vector v, and

B =
∫ xmax

xmin

∇F(x,α0)∇F(x,α0) dx . (8)

This theoretical framework can also be used to evaluate the
uncertainty in a function, H (α), that depends on the ex-
tracted fit parameters. Applying the above theory to the rel-
ative difference in H due to the presence of noise, i.e., γ

≡ H (α)/H (α0) − 1, yields the leading-order results,

E[γ ] = εE[z1]

H (α0)

∫ xmax

xmin

F(x,α0)

×[B−1 · ∇F(x,α0)] · ∇H (α0) dx,

Var[γ ] = ε2Var[z1]

H 2(α0)
δx

∫ xmax

xmin

{F(x,α0)

×[B−1 · ∇F(x,α0)] · ∇H (α0)}2dx . (9)

III. RESULTS AND DISCUSSION

We now explore application of the above formulas to
some cases of practical interest. One common application in-
volves fitting a Lorentzian function,

F(x, A, fR, Q) = A

4Q2

(
x

fR
− 1

)2

+ 1

, (10)

to noisy experimental data, e.g., estimates for the PSD of op-
tical and mechanical resonators.3, 4, 7, 13, 15, 28–31 Equation (10)
contains three adjustable fit parameters: the resonant fre-
quency, fR, quality factor, Q, and the amplitude at resonance,
A. The frequency variable is x.

We assume that the fit function and the noiseless data are
both Lorentzian; the noiseless data has the values fR = f0 and
Q = Q0, as per the above notation. The residual and related
formulas in Eqs. (7)–(9) are evaluated over the finite interval
xmin ≤ x ≤ xmax, with xmin = f0(1 − β/Q0) and xmax = f0(1
+ β/Q0), where β is a constant.

Results for the expected value and variance of deviations
in the fit parameters that result from multiplicative noise in
the data are calculated in the asymptotic limit of large Q and

β. The area under Eq. (10) over the interval xmin ≤ x ≤ xmax,
denoted �, is also calculated and the effect of deviations in
the fit parameters on � is determined using Eq. (9). Equa-
tions (7) and (9) give the required results for the expected val-
ues of the deviations,

E[A1]

A0
= E[�1]

�0
= E[z1],

E[ f1]

f0
= E[Q1]

Q0
= 0,

(11)
and for the standard deviations,

SD[A1]

A0
= SD[z1]

√
13Q0δx

2π f0

(
1 + 6

13πβ3
+ O

(
1

β5

))
,

SD[ f1]

f0
= SD[z1]

Q0

√
7Q0δx

8π f0

(
1 + 2

5πβ5
+ O

(
1

β7

))
,

SD[Q1]

Q0
= SD[z1]

√
6Q0δx

π f0

(
1 + 13

6πβ3
+ O

(
1

β5

))
,

SD[�1]

�0
= SD[z1]

√
3Q0δx

2π f0

(
1 + 16

9πβ3
+ O

(
1

β5

))
,

(12)

where the subscripts 0 and 1 are as defined in Eq. (3).
The standard deviations of all parameters increase as the

fit range is reduced, i.e., β decreases. It is therefore desir-
able to use the largest fitting range in practical applications.
The resonant frequency, fR, is most insensitive to the fit range,
which is not unexpected since this parameter defines the peak
position. The standard deviation of the fitted resonant fre-
quency decreases with increasing quality factor, since a higher
quality factor yields a sharper peak. Even so, the effect of
fit window is small, because the leading-order correction is
O(β−5) for the resonant frequency and O(β−3) for all other
parameters; see Eq. (12).

The parameter Q0δx/f0 appears in all formulas for the
standard deviation. This parameter is inversely proportional
to the number of sample points in the immediate vicinity of
the peak.32 Increasing its value leads to greater averaging of
the data noise and reduces uncertainty in fits, as reflected in
Eq. (12).

A. Comparison to synthetic noisy data

We now compare the predictions of Eq. (12) to syn-
thetic noisy data. This was generated by taking a reference
Lorentzian function (with specified f0, Q0, and A0), dis-
cretizing the function in x, multiplying each discrete value
by a uniformly distributed random variable, εzk, where zk

∈ [−1, 1] and ε is a specified small constant, and adding the
result to the reference Lorentzian. A total of 100 000 individ-
ual realizations of such noisy data were generated in this man-
ner. Each realization was then fitted to a second Lorentzian
function (with adjustable fit parameters fR, Q, and A) using a
least-squares analysis that incorporated a method of steepest
decent. All simulations were performed in Mathematica.

Representative data for the fitted parameters of the
100 000 noisy Lorentzians are given in Fig. 1. It is
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FIG. 1. Histogram of the quality factor, Q, obtained from fits to synthetic
data of a noisy Lorentzian; ε = 0.001, A0 = 1, f0 = 1, Q0 = 100 � 1,
and β = 5. Similar results are obtained for all other fit parameters, and
for a narrower fit range of β = 2 (not shown). Fit to Gaussian distribution
(solid line).

striking that histograms for all fit parameters precisely fol-
low Gaussian distributions, despite the noise being uniformly
distributed. This is in accord with the central limit theorem of
probability theory, which stipulates this property regardless of
the original noise distribution.33 This has important implica-
tions to interpretation of the resulting fit parameters, allowing
for fit values many standard deviations away from the mean,
e.g., the larger values in the histogram in Fig. 1 lie at ∼4.3
standard deviations from the true value. Since the histogram
is normally distributed, the probability of attaining a measure-
ment at least M standard deviations above the mean is

Pr[X − μ ≥ Mσ ] = 1

2
erfc

(
M√

2

)
, (13)

where X is the fit parameter and μ and σ are its mean and
standard deviation, respectively. Equation (13) thus yields a
probability of ∼1/120 000 of attaining a value that lies at least
4.3 standard deviations from the mean, which is consistent
with the large number of samples in Fig. 1. The implications
of this finding will be explored further below.

Table I provides a comparison of standard deviations in
the fit parameters, as obtained from Eq. (12) and the simu-
lation data (Fig. 1). Agreement between the presented the-
ory and simulations is excellent. Since the random variable
zk, used to generate the synthetic data has zero mean, the ex-
pected values in Eq. (11) are zero.

B. Power spectral density of stationary random signal

Next, we apply the theory to analysis of the PSD of a sta-
tionary random signal, for which we derive explicit analytical

TABLE I. Comparison of relative standard deviations SD[X1]/X0 of sim-
ulation data (Fig. 1) and Eq. (12), for all fit parameters, for β = 5 (similar
agreement found for β = 2). Variable X represents specified fit parameters
and ε = 0.001 has been normalized from the results.

X Simulation Eq. (12)

A 0.2627 0.2628
fR 9.630 × 10−4 9.636 × 10−4

Q 0.2534 0.2530
� 0.1265 0.1264

formulas. This PSD, P(x), is often estimated by computing
the discrete Fourier transform (DFT) of finite time series of
the signal, yielding the so-called periodogram.19 A consistent
estimate of P(x) is obtained by averaging Nave individual pe-
riodograms, giving S(x) with a variance,19

Var[S(x)] ≈ 1

Nave
P2(x). (14)

Comparing Eqs. (1) and (14) establishes that multiplicative
noise in S(x) is characterized by

ε SD[z1] = 1√
Nave

. (15)

Frequency division in the DFT is given by the reciprocal
of the time series duration, T. If a single time series is sub-
divided into Nave segments, and the DFT of each subdivision
computed, the frequency division of the resulting averaged
periodogram is δx = Nave/T. As such, the multiplicative noise
term in Eq. (12) is completely determined and given by

ε SD[z1]
√

δx = 1√
T

. (16)

The required leading-order results in the limit of large fit win-
dow, β � 1, are then obtained from Eqs. (12) and (16),

SD[ε A1]

A0
=

√
13Q0

2π f0T
,

SD[ε f1]

f0
= 1

Q0

√
7Q0

8π f0T
,

SD[εQ1]

Q0
=

√
6Q0

π f0T
,

SD[ε�1]

�0
=

√
3Q0

2π f0T
.

(17)
These formulas establish that standard deviations of the fit
parameters depend on the total duration of the measurement,
T, rather than the duration of each subdivision. Standard
deviations, and hence uncertainty in the fit parameters,
are thus independent of the number of averages, Nave, and
decrease as T−1/2.

1. Comparison to formula for frequency
modulation AFM

The above formula for the uncertainty in the resonant fre-
quency, Eq. (17), is similar in form to the corresponding clas-
sical result for frequency modulation AFM (FM-AFM),24

SD[ε f1]

f0
= 1

Q0

√
Q0 B

2π f0

〈
z2

thermal

〉
〈
z2

drive

〉 , (18)

where 〈z2
thermal〉 and 〈z2

drive〉 are the mean-square displacements
due to thermal (Brownian) motion and the self-excited (drive)
oscillation of the cantilever, respectively. The measurement
bandwidth, B, is often specified in dynamic AFM studies,
rather than measurement duration, T; these quantities are re-
ciprocally related.34

For FM-AFM, the uncertainty in the resonant frequency
decreases with increasing oscillation amplitude, zdrive, as dis-
cussed above; see Eq. (18). For Brownian motion of the can-
tilever, the new formula for the uncertainty in the resonant
frequency as obtained from a fit to the PSD, Eq. (17), has no
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FIG. 2. Histograms of the resonant frequencies, fR, and quality factors, Q,
obtained from fits to measurements of cantilever PSD. Measured means: f0
= 31.15 kHz, Q0 = 43.41. Amplitude histograms affected by thermal drift
(not shown). Fits to Gaussian distributions (solid lines).

dependence on oscillation amplitude. However, for no feed-
back the displacements in Eq. (18) are identical yielding a
similar result to Eq. (17).

2. Comparison to measurements of an AFM cantilever

The predictions of Eq. (17) are now compared to mea-
surements of the stochastic fluctuations of an AFM cantilever
in air.32, 35 The PSD of thermal fluctuations of the fundamen-
tal mode was measured from a single time series of duration T
= 30 min (sampling frequency, 100 kHz). This was divided
into 1 s intervals, each of which was subdivided into 50 inter-
vals of duration 20 ms. Periodograms of each 20 ms subdivi-
sion were computed and averaged together (Nave = 50). This
gave 1800 estimates of the PSD, which were individually fit-
ted to Lorentzian functions over 14.2 kHz ≤ x ≤ 48 kHz.

Histograms of the fitted resonant frequencies, fR, and
quality factors, Q, are shown in Fig. 2. These also exhibit
Gaussian distributions, in agreement with the foregoing dis-
cussion. The standard deviation of the fitted resonant fre-
quency distribution is much smaller than for the quality factor
distribution. This is in agreement with the qualitative predic-
tions of Eq. (17), for high Q devices. Table II compares quan-
titative predictions of Eq. (17) (Ref. 36) to measurements,
where excellent agreement is observed. Combined with the
results in Table I, these findings illustrate the validity and ac-
curacy of the presented theory.

Histograms of the peak amplitude, A, and area under
the Lorentzian, �, were found to exhibit significant broad-
ening and non-Gaussian response due to (unavoidable) ther-
mal drift; this drift was not quantitatively characterized and
these amplitude histograms have thus been omitted from the
presentation. This additional systematic uncertainty increased
the true standard deviation in measurements of these fit pa-
rameters. Since such additional effects are not considered in
the present analysis, which only examines the effect of multi-
plicative noise, the derived formulas must be considered lower

TABLE II. Comparison of relative standard deviations SD[εX1]/X0 for
resonant frequency, fR, and quality factor, Q, of cantilever measurements
(Fig. 2) and Eq. (17). Variable X represents specified fit parameters.

X Measurement Eq. (17)

fR 4.7 × 10−4 4.5 × 10−4

Q 5.8 × 10−2 5.2 × 10−2

P
ow
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FIG. 3. Averaged periodograms (Nave = 50) of the cantilever, with
Lorentzian fits (solid lines), for minimum and maximum fitted quality fac-
tors: (a) Q = 36.10, and (b) Q = 53.49. Mean quality factor for the entire
sample set is Q0 = 43.41.

bounds to the true uncertainty. Nonetheless, fit parameters
that are insensitive to such additional effects, such as the reso-
nant frequency and quality factor, display excellent agreement
with the derived theory; see Table II.

Results in Fig. 2 highlight the fact that fits to individual
PSD measurements can exhibit significant uncertainty: 31.09
kHz ≤ fR ≤ 31.20 kHz and 36.10 ≤ Q ≤ 53.49. Actual fits
to the PSD data are given in Fig. 3 for minimum and maxi-
mum values of the fitted quality factors. These values corre-
spond to ∼3 and 4 standard deviations away from the mean –
the probabilities of attaining values at least at these extremes
are ∼1/740 and 1/32 000, respectively, according to Eq. (13).
Since 1800 samples were used, the observed deviations from
the mean are not unexpected.

Significantly, good visual fits to the PSD data are
achieved in both cases in Fig. 3, while yielding vastly differ-
ent fitted quality factors. Fluctuations in the PSD noise con-
spire to dramatically alter the form of the observed PSD, even
though the underlying physical system (the cantilever) is fixed
and well-defined. It is thus entirely possible to attain many
consecutive repeat measurements with similar fit parameters
(and excellent fits to experimental data) that lie many stan-
dard deviations away from the true system parameters. The
probability of such an event is small but finite, and can lead to
quantitative and/or qualitative misinterpretation of stochastic
measurements.

This demonstrates that goodness-of-fit may not necessar-
ily provide a measure of uncertainty in ‘single-shot measure-
ments’, as often reported. Proper statistical analysis of repeat
measurements is always warranted due to the unavoidable
presence of noise, even in such seemingly simple and well-
defined physical systems.

IV. CONCLUSIONS

We have presented a rigorous theoretical framework for
calculating the uncertainty in least-squares analysis of data
subject to multiplicative noise. This has direct applications
to modern micro- and nanoscale devices, where the PSD of
Brownian fluctuations is often interrogated. The validity of
this theory was demonstrated using Monte Carlo simulations
of synthetic data and actual measurements of an AFM can-
tilever – explicit analytical formulas for such Lorentzian pro-
cesses were derived. Uncertainty in fit parameters derived
from a single stochastic process was found to depend on
the total measurement time. This study highlights the
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uncertainty that can result from ‘single-shot measurements’
with seemingly excellent fits, and provides a framework for
optimization and development of robust experimental proto-
cols for least-squares analysis of data containing multiplica-
tive noise.
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