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Abstract 

 

 

A key feature of online gaming, which serves as an important measure of consumer 

engagement with a game, is level progression, wherein players make play-or-quit decisions at each 

level of the game. Understanding users’ level progression behavior is therefore fundamental to 

game designers. In this paper, we propose a dynamic model of consumer level-progression 

decisions to shed light on the underlying motivational drivers. We cast the individual play-or-quit 

decisions in a dynamic framework with forward-looking players and consumer learning about the 

evolution patterns of their operation efficiencies (defined as the average score earned per operation 

for passing a level). We develop a boundedly rational approach to model how individuals form 

predictions of their own operation efficiency and playing utility. This new approach allows 

researchers to flexibly capture players’ over/unbiased/under estimation tendencies and risk 

averse/neutral/seeking preferences, two features that are particularly relevant when modeling the 

game-playing behavior. We develop an algorithm for estimating such dynamic model, and apply 

our model to level-progression data from individual players with one online game. We find that 

players in the sample tend to overestimate their operation efficiency, as their predicted values are 

significantly higher than the mean estimates inferred from their playing history with their 

completed levels. Furthermore, players are found risk seeking with moderate amount of 

uncertainty. We uncover two segments of players labeled as “Experiencers” vs. “Achievers”: while 

the former tend to derive a higher utility from the playing process, the latter are more goal oriented 

and derive a higher benefit from completing the entire game. Two counterfactual simulations 

demonstrate that the proposed model can help adjust the uncertainty level and configure a more 

effective level-progression point schedule to better engage players and improve the game 

developer’s revenue.  
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1. Introduction 

The online game industry has enjoyed explosive growth since coming into being in the 1990’s, 

forming a highly valuable segment of the digital economy. Playing games online has now become 

a major pastime for a constantly broadening demographic. As of 2011, Americans reported 

spending more time playing video games on casual websites than with consoles. The sales revenue 

from online gaming reached 8.3 billion dollars in US in 2012, and China saw a 34% increase in 

games revenue in the same year where online gaming made up 94% of the pie (ESA Report 2013).  

Many online games nowadays incorporate a system of level progression, in which users 

complete missions, earn points, and get promoted to the next level once their performance satisfies 

a certain criterion. For example, in the popular game Candy Crush Saga, players swipe candies to 

create sets of matching candies. Each level has a target score and this can be reached by 

accomplishing certain goals such as forcing items to fall to the bottom. A player will be promoted 

to the next level when she gets the target score. In another popular game Alpha 8: Airborne, players 

virtually select different cars and race in different locations. Players will then progress through 

levels of the game based on a point system.  

A good understanding of user level progression is crucial for the success of online game 

developers. This is because level progression not only reflects user engagement, but also cultivates 

customer loyalty. From the firms’ perspective, the more they can engage users through level 

progression, the more profitable they will be via selling virtual goods and displaying ads, the two 

primary revenue sources for game companies. Insights gained from the underlying motivational 

drivers of level progression can help game companies improve their level design. For example, 

game companies can adjust the uncertainty level by changing how they issue bonus points, or 
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change the cutoff points associated with each level progression to better engage players and 

increase their revenue potential.  

To better understand these issues, we specify and estimate a model of game-players’ 

behavior as they progress through one online game. We consider a model in which a player decides 

to continue to play or quit the game at each level by maximizing the predicted utility accrued from 

the current period and the future. At each level, the player predicts her operation efficiency 

(defined as the average score earned per operation for passing a level), and weighs the utility 

benefits from continuing to play versus the costs and challenges of completing additional levels. 

These benefits and costs associated with game play change over levels, and the player also gets an 

extra utility after completing the entire game. Our premise is that the more levels the player 

completes, the more information she gains and learns about how her operation efficiency evolves. 

Before starting a new level, the player predicts her future operation efficiency and utility, and 

decides whether to continue to play or quit the game by maximizing the sum of the discounted 

utility from that point on.  

Our model differs from other forward-looking learning models in the literature by allowing 

players’ belief formation regarding their operation efficiency to be not fully rational, but rather 

incorporate features of bounded rationality to accommodate the quick split-second decisions which 

players must make in a computer game setting. Our empirical results further demonstrate that our 

model, with boundedly rational belief formation, explains the observed data substantially better 

than a standard model with beliefs formed via rational expectations. More importantly, our 

proposed boundedly rational approach is supported by psychological theories and captures two 

key features of user online gaming behavior. 
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First, under bounded rationality, players’ predictions of their future operation efficiency in 

the game can differ systematically from the expected values or the means based on past 

performance. For example, the self-serving bias (e.g. Folkes 1988), a well-established 

psychological theory, suggests that people tend to attribute successes to their own character or 

actions (i.e. internal attribution), but blame negative results to external factors (i.e. external 

attribution). Such self-serving bias can lead to overconfidence and overestimation of future 

performance (Libby and Rennekamp 2012). In this case, the player believes that the future event 

would unfold as a more positive outcome, and consequently her estimate of her future operation 

efficiency lies above her mean prediction based on her past performance. On the other hand, 

underestimation may also happen. For example, previous research finds that when people perceive 

a task with high difficulty, they may underestimate their ability (Kim et al. 2016). In that case, the 

player’s predicted efficiency tends to be lower than her mean estimate based on her past 

performance.  

Such systematic deviations between predicted and mean efficiency are especially relevant 

in the gaming context. This is because players may believe that they can partially influence the 

future outcomes. For instance, an overconfident player may readily attribute poor efficiency to 

playing mistakes which can be corrected in the future, leading to overestimation. Such systemic 

biases may be less relevant when consumers form expectations of the quality of a physical product. 

Imagining that when a consumer gets a low-quality product, she does not have much control over 

whether the same negative experience will repeat in the future; hence, her perception of the product 

quality in the future is likely to be objective, and not deviating systematically from the mean 

estimate inferred from her past experience. 
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Systematic biases in beliefs have been widely documented in the literature. For example, 

evidence shows that people tend to overestimate their ability in preventing personal risks 

(Weinstein 1989), the level of control they have on an outcome (Langer 1975), and precision of 

their estimates (Oskamp 1965). Prior research finds that people are unrealistically optimistic in 

making predictions regarding their future goal pursuit (Buehler, Griffin, and Ross 1994, 

Zauberman and Lynch 2005), and therefore believe more goal-congruent activities will be 

accomplished in the future than in the past and overestimate future performance. Literature also 

documents that people with high self-esteem are more likely to overestimate the likelihood of 

positive outcomes (Brown, Collins and Schmidt 1988, Taylor and Brown 1988). On the other hand, 

there is evidence suggesting people’s tendency to underestimate in some situations. For example, 

Billeter, Kalra and Loewenstein (2011) find that consumers tend to underestimate their skill 

learning ability after initially trying new products. However, our paper is among the first to 

incorporate these biases in beliefs into a structural dynamic choice model.  

Second, under bounded rationality, players can have a concave utility function with respect 

to operation efficiency while showing risk seeking. However, as a general property, expected 

utility maximization involving a concave utility function leads to risk aversion (Bernoulli 1954). 

Although risk aversion is a sensible assumption used in modeling decision makers’ risk attitudes 

in a wide range of situations, it may not be a universal behavioral tendency. A moderate amount 

of uncertainty can be beneficial to consumers in the gaming context, because players may enjoy 

some uncertainty since it allows new discovery and brings excitement. This is consistent with the 

sensation-seeking type of behavior as documented in the literature: individuals search for 

experiences and feelings that are varied, novel, complex and intense, and risk may be considered 

to add to the excitement of the activity (Zuckerman 1994). The literature has also shown that 
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decision makers’ risk seeking is associated with over confidence (e.g. Camerer and Lovallo 1999, 

Hirshleifer and Luo 2001). The findings from our preliminary data analysis show that while the 

play-or-quit decisions have an inverted-U relationship with the expected mean efficiency, players 

can be risk seeking. We specify the predicted utility as a function of the predicted efficiency in our 

boundedly rational framework, so that it allows us to flexibly capture the risk-averse, risk-neutral 

or risk-seeking behavior under a concave utility function. 

 We apply our proposed model to a panel dataset of consumer level progression with an 

online game. The game has multiple levels, and each level has a pre-specified required number of 

points for passing. For each player, we observe the level at which the user quit the game. For each 

completed level, we observe the number of operations the player performed. Our structural 

modeling approach allows us to identify two interesting segments of players: “Experiences” who 

derive a higher utility from the process of playing vs. “Achievers” who derive a higher benefit 

from completing the entire game. While both groups display overestimation of their operation 

efficiency, experiencers do so in a larger magnitude than achievers. These insights can help game 

companies more effectively design and market their products to players. Our two counterfactual 

analyses further dive deep into two design related issues. The first simulation illustrates the value 

of a reasonable amount of uncertainty (e.g. in the form of bonus points) in keeping consumers for 

playing more levels. The second simulation illustrates how our proposed model can be used to 

configure a more effective level-progression point schedule over game levels. The simulations can 

help game developers improve designs to better engage players and increase revenue.  

 With the proposed new model and managerial implications, our research contributes to a 

small yet growing body of marketing literature on user online gaming behavior. For example, 

Albuquerque and Nevskaya (2012) study player participation from an online computer game with 
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frequent product updates of additional content and features. Nevskaya and Albuquerque (2019) 

propose a continuous-demand model to analyze consumer screen usage with an application to 

online gaming. Huang, Jasin, and Manchanda (2019) build a Hidden Markov Model (HMM) to 

capture the evolution of gamers’ latent engagement states, and then use their findings to develop 

a matching algorithm to optimally pair up players to increase game-play. Our study is new in 

several aspects. First, while previous studies analyze consumer game playing activities, ours 

focuses on the player level-progression decision, a highly relevant metric to gaming companies. 

Second, we develop a new model to flexibly capture players’ over/unbiased/under estimation 

tendencies and risk averse/neutral/seeking preferences. Third, our proposed model can be used to 

configure a more effective point schedule of cutoff points over game levels to improve user 

engagement, an important game design issue which has not be studied in the past.  

The remainder of this paper is organized as follows. In section 2, we introduce the 

background information of the empirical context and features of our data. In Section 3, we develop 

a dynamic structural model of consumer play-or-quit decision, by proposing a boundedly rational 

approach that allows researchers to flexibly capture the key behavioral tendencies in online gaming. 

In section 4, we discuss our findings and derive managerial implications via counterfactual 

simulations. Section 5 concludes the paper with implications for future research. 

 

2. Empirical Context and Data 

We have applied our model to an online game with 24 levels. It is a simple cooking game launched 

around 2011. In this game, a player takes on the role as a bakery owner. The player fulfills 

customers’ requests/orders (or tasks) to earn points to advance to higher levels of the game. For 

example, if a customer orders a pound cake, the player needs to take the following steps: (1) Mix 
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together the butter and cream cheese until they are light and fluffy; (2) Add salt, sugar, flour, milk, 

eggs and baking powder, and mix to combine; (3) Spoon the batter into the prepared loaf pan; and 

(4) bake for 90 minutes at 325F. Each step requires one successful operation, and in this case, the 

player needs at least 4 operations to complete the task. If the player makes mistakes in any step, 

the system will provide hints and allow the player to redo it, which means that the player will need 

more than four operations for this task. In other words, an operation can be defined as an action 

for completing an intermediary step, and multiple operations may be needed for completing a step 

if any of the operations are unsuccessful. Each level of the game consists of a number of similar 

tasks. At higher game levels, the tasks become more difficult, and the possible operations expand 

to selection of materials, tools, bakery time and temperature, decorations, actions, etc. 

At the beginning of the game and during the process of playing, players are fully informed 

about the 24 levels and the incremental required passing points for each level (Gt) where t stands 

for game level. At each level, new tasks (e.g. cakes) are introduced, and these tasks are different 

but similar in terms of their difficulty level. As the game advances, the difficulty level of the tasks 

often increases. We get to observe operation quantity (Oit) each player completed at each level (i 

for player and t for game level), and at which level the player quit the game. When reaching the 

required points for a level, the player will be promoted to the next level. With data on both 

operation quantity Oit and incremental required passing points Gt, we define operation efficiency 

(Ait) as the ratio of the required points and the operation quantity incurred for passing a level, that 

is, Ait = Gt/Oit. 

This game, while relatively simple, offers a clean and good fit to our single-agent dynamic 

optimization framework for a number of reasons. It is a single-player game without team or multi-

player aspects. Hence one player’s play-or-quit decisions impose no externalities on other players’ 
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decisions. Moreover, there is no in-game spending as the gaming revenue derives completely from 

in-game advertising.   

However, the study game retains the key features of a gaming context where a player makes 

play-or-quit decisions. Number of operations is not only a cost but also a venue to enjoy the playing, 

and players make play-or-quit decisions based on the predicted number of operations (or predicted 

operation efficiency given the deterministic relationship between operation quantity and operation 

efficiency). Previous research used latent variables to statistically model player engagement and 

how it affects user game-playing activities (Huang, Jasin, and Manchanda 2019). The advantage 

of our data is that we observe individual players’ operation quantity/efficiency at each game level, 

which can be used to quantify user engagement with the game.  

Although our empirical context may not capture every single feature of any game, we 

believe that our model can be adapted to other gaming contexts where additional covariates and 

decision variables can be incorporated. The relatively simple context also allows us to cleanly 

illustrate that players may over/under estimate their future operation efficiency and utility, and can 

be risk seeking with a concave utility function. These empirical analyses also enable us to carry 

out two important counterfactual analyses regarding how to vary the uncertainty level (e.g. through 

creating surprising bonus points) and configure a more effective level-progression point schedule 

to increase user engagement.    

Table 1a reports the level-specific summary statistics on the incremental required passing 

point, the operation quantity, operation efficiency, and player attrition rate at each level from a 

random sample of 592 players who completed at least 3 levels of the game. We use data from 

levels 1-3 to construct the priors for initiating the player learning process, and data from levels 4-

24 (a total of 21 levels) to estimate the proposed level-progression model. For easier interpretation 
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of the data, we also present summary statistics on the same set of measures across different tiers 

of levels.1 In particular, we combine the first four levels, and for the remaining 20 levels, we group 

them into four tiers with 5 levels in each tier. To see clearly the variation of the data within the 

same game level, we also report the mean, standard deviation, minimum and maximum value of 

player operation quantity and operation efficiency in Table 1b and Table 1c respectively. 

= = Insert Tables 1a, 1b and 1c Here = = 

A close look at Table 1a reveals some key patterns. First, players’ average operation 

quantity increases with game level, which may indicate that the game is getting more demanding 

and requires more operations to complete a level. Second, player operation efficiency shows a 

clear increasing trend. Note that operation efficiency measures the number of points earned per 

operation for passing a level, and it may reflect a player’s ability as well as the game’s difficulty. 

Since both player ability and game difficulty should progress step by step, we believe that an 

autoregressive model with one lag, AR1, is a reasonable model to capture the evolution of Ait over 

game levels. Empirically, AR1 specification produces a good fit of players’ observed efficiency 

data with an R-squared of 0.94. Third, we observe that the average attrition rate is going down as 

players progress towards higher levels. This pattern may suggest that players are forward looking, 

and as they level up, they are more likely to stay as they care about future gains. We also notice 

that the attrition rate has a sharp decline in the last five levels (i.e. dropping from 0.15 to 0.1). This 

may suggest some additional utility gain from finishing the entire game, and furthermore, due to 

discounting of future utility, this additional utility affects the play-or-quit decisions more strongly 

towards the end of the game.  

 
1 This grouping is made just for the ease of observing data patterns, and we do not apply such level grouping in model 

calibration. 
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To more clearly see the operation efficiency trajectories for the same group of players 

without self-selection, we have plotted the average operation efficiencies for four groups. Group6 

represents the group of players who completed (and only completed) the first 6 levels, and similarly 

we define Group12, Group18 and Group24. We have two observations. First, in general, the 

operation efficiencies increase as players advance to higher levels, and this applies to all groups of 

players. Second, players in Group24 who completed the whole game have relative lower operation 

efficiency. A possible explanation is as follows. Given the same required passing points, low 

efficiency means more operations. We know that players have an overall net positive utility from 

an operation. Therefor players with low efficiency are more likely to continue to play the game. 

= = Insert Figure 1 Here = = 

A player makes a play-or-quit decision at each level of the game, and our premise is that 

the playing utility is affected by operation quantity or efficiency, because there is a deterministic 

relationship between the two (Ait = Gt/Oit) and the incremental required passing points Gt are given 

and fully observed by players at the beginning of the game. When the player makes a play-or-quit 

decision, the operation efficiency is not fully observed, and may require the player to make a 

prediction based on past experience. In order to draw insights from data to guide us in model 

development, we ran a preliminary data analysis to show how the play-or-quit decisions are related 

to the perceived mean and variance of the operation efficiency, by taking three steps: 1) Run the 

AR1 regression on the observed operation efficiency data and estimated the variance of the error 

term; 2) Use the Bayesian-updating formulation to construct the mean and variance of the 

efficiency at each level of the game; 3) Run a logistic regression on the play-or-quit decision (1 

for play and 0 for quit) at each level for each consumer, using the following covariates: mean 

efficiency (“Mean”), square term of the mean efficiency (“MeanSquare”), the variance of the 
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efficiency (“Variance”), and the game level dummies. All the covariates are rescaled by dividing 

them by 10.   

We find that the coefficient of “Mean” is significantly positive (Estimate = 2.824, P-value 

= 0.030), and “MeanSquare” has a significantly negative coefficient (Estimate = -0.396, P-value 

= 0.005), suggesting that players’ continuation decision has an inverted-U relationship with the 

expected efficiency. Most interestingly, we find that the perceived variance of the efficiency has a 

positive sign (Estimate = 0.798, P-value = 0.032), suggesting the possibility of risk seeking. There 

are two possible explanations for these data patterns: 1) Players make a forward-looking decision 

rather than myopic decision, because they are willing to take the current risk to reduce the future 

uncertainty to get a higher overall utility; 2) Players are likely over confident and overestimating 

their operation efficiency, casting doubts on the rational expectations assumption.   

Given the reported data patterns, we assume a utility function with diminishing return from 

the expected efficiency, and we propose a boundedly rational approach to flexibly capture players’ 

over/unbiased/under estimation tendencies and risk averse/neutral/seeking preferences under such 

concave utility function. We also allow for forward looking when players make the play-or-quit 

decisions over the game levels.  

 

3. Model Development 

Our general modeling context is online gaming with multiple levels indexed by t. Completion of 

level t requires earning a pre-specified number Gt of points.  For a player indexed by i (i = 1,…, 

I), we observe the level at which she quits denoted by Ti. For each completed level, we observe 

the number of operations (Oit) which player i incurred in finishing the level; since players with a 

higher operation efficiency will manage to earn the required points with a fewer number of 
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operations, we define player i’s operation efficiency as the ratio of required points to operations: 

Ait = Gt/Oit. Each player makes a play-or-quit decision at the beginning of each level t, which we 

denote as Dit. 

 

3.1. Per-Period Utility 

A player's per-period utility of finishing level t is:  

𝑈𝑖𝑡 = 𝛽𝑖𝑡 ln(1 + 𝑂𝑖𝑡) − 𝜅𝑖𝑡𝑂𝑖𝑡 + 𝑆𝑂𝐴𝑖𝑡 + 𝜂𝑖𝑡       (1) 

The first term, 𝛽𝑖𝑡 ln(1 + 𝑂𝑖𝑡), captures the player's gain or enjoyment from playing at level 

t, and we constrain 𝛽𝑖𝑡 to be positive. Diminishing returns from operations are imposed via the 

logarithmic functional form. The second term, 𝜅𝑖𝑡𝑂𝑖𝑡, captures the cost of time and energy incurred 

from those operations when playing level t, and we constrain the coefficient 𝜅𝑖𝑡 to be positive to 

reflect operations to be a cost. The third term, 𝑆𝑂𝐴𝑖𝑡, captures the sense of accomplishment or 

satisfaction from completing level t. The fourth term, 𝜂𝑖𝑡, is an idiosyncratic individual and level 

specific error term, capturing all other factors that affect a player’s utility unobserved by 

researchers, and we assume it follows a standard normal distribution:  𝜂𝑖𝑡 𝑖𝑖𝑑~𝑁(0,1). We can 

mathematically show that equation 1 is a concave utility function with respect to Oit and with 

respect to Ait given the deterministic relationship of  Ait = Gt/Oit, when 𝛽𝑖𝑡 > 0 and 𝜅𝑖𝑡 > 0.  

We allow the parameters in the utility function to be heterogeneous across consumers and 

game levels, taking the following specifications, 

𝛽𝑖𝑡 = exp(𝛾𝑖0 + 𝛾𝑖1𝑡)          (2a) 

𝜅𝑖𝑡 = exp (𝜔𝑖0 + 𝜔𝑖1𝑡)          (2b) 

𝑆𝑂𝐴𝑖𝑡 = 𝜏𝑖0 + 𝜏𝑖1𝑡          (2c) 

These parameterizations lead to interesting predictions of player preferences over the gaming 

process. For instance, 𝛾𝑖1 captures how the gain from an operation changes as the player progresses 
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over game levels. If 𝛾𝑖1 > 0, the player enjoys game more as she is advancing through the levels. 

If 𝛾𝑖1 < 0, the player becomes less engaged and gradually losing interest as she continues. We also 

expect the marginal cost of operation 𝜅𝑖𝑡 to decrease with game levels as the player is accumulating 

more experience. Finally, we postulate that sense of accomplishment 𝑆𝑂𝐴𝑖𝑡 may vary with respect 

to game levels t.  

At the beginning of level t, the player decides whether to continue or quit the game. We fix 

the utility from the outside option to zero:2  

𝑂𝑈𝑖𝑡 = 0           (3) 

In our setting, the player makes a play-or-quit decision without full knowledge of the 

number of operations she needs to pass the next level. Hence, she needs to form a prediction on 

the operation quantity. We discuss this next. 

 

3.2. Learning about Operation Efficiency 

Operation efficiency is unlikely to be constant, because players may learn from the evolution of 

the operation efficiency and game designs change over levels. Therefore, unlike most papers in 

the empirical learning literature in which decisions makers learn a constant (time-invariant) 

element, such as product match-quality, we model how gamers learn about the changes in, or 

evolution of, their time-varying operation efficiency.3 We model log efficiency as an evolving 

AR1 process: 

ln 𝐴𝑖𝑡 = 𝛼0𝑖 + 𝛼1𝑖 ln 𝐴𝑖,𝑡−1 + 𝜀𝑖𝑡         (4) 

where 𝜀𝑖𝑡  𝑖𝑖𝑑~𝑁(0, 𝜎𝑖
2). 𝛼0𝑖  and 𝛼1𝑖  are coefficients that determine the evolution of operation 

efficiency over levels. We make those coefficients individual-specific to allow players to have 

 
2 In the discrete choice framework, the value of the outside option cannot be separately identified from 𝜏𝑖0. 
3 This is related to the literature on learning-by-doing (e.g. Arrow 1962, and Chan, Li and Pierce 2014). 
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different evolution patterns due to different learning abilities. Since the AR1 process implies the 

mean log efficiency at a steady state to be 𝛼0𝑖/(1 − 𝛼1𝑖), 𝛼0𝑖 can be interpreted as the baseline 

and 𝛼1𝑖 as the persistence. 

Following Chylinski, Roberts and Hardie (2012), we assume that each player is uncertain 

about the evolutionary pattern of her operation efficiency, as measured by the parameters 𝛼0𝑖 and 

𝛼1𝑖, and learns about them from her past performance. We define 

𝛼̃𝑖 = [
𝛼0𝑖
𝛼1𝑖
],            (5a) 

𝑌𝑖𝑡 = ln𝐴𝑖𝑡 ,            (5b) 

 𝑋𝑖𝑡 = [1 ln𝐴𝑖,𝑡−1] .          (5c) 

Given the normality assumptions, at the beginning of each level t, each player’s current beliefs 

about 𝛼̃𝑖 take the form of a bivariate normal distribution with mean  𝜇𝑖𝑡 and variance-covariance 

Σ𝑖𝑡 which vary across levels: 

𝛼̃𝑖|𝐼𝑖𝑡~𝑀𝑉𝑁(𝜇𝑖𝑡, Σ𝑖𝑡)           (6) 

where  𝐼𝑖𝑡 is the information set at the beginning of t. After finishing level t, the player observes 

her realized Ait = Gt/Oit. She then updates her evaluation on 𝛼̃𝑖 at the beginning of t+1 in a Bayesian 

fashion: 

𝛼̃𝑖|𝐼𝑖,𝑡+1~𝑀𝑉𝑁(𝜇𝑖,𝑡+1, Σ𝑖,𝑡+1)         (7a) 

where 

𝜇𝑖,𝑡+1 = Σ𝑖,𝑡+1(Σ𝑖𝑡
−1𝜇𝑖𝑡 + 𝑋𝑖𝑡′Yit/𝜎𝑖

2)         (7b) 

Σ𝑖,𝑡+1
−1 = Σ𝑖𝑡

−1 + 𝑋𝑖,𝑡′𝑋𝑖,𝑡/𝜎𝑖
2 .         (7c) 

Given the information set 𝐼𝑖𝑡, according to equations 4 and 6, the player's belief on her efficiency 

should follow: 

ln 𝐴𝑖𝑡 | 𝐼𝑖𝑡~𝑁(𝑚𝑖𝑡 , Δ𝑖𝑡
2 )                    (8) 
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where 𝑚𝑖𝑡 = 𝑋𝑖𝑡𝜇𝑖𝑡 and Δ𝑖𝑡
2 = 𝑋𝑖𝑡Σ𝑖𝑡𝑋𝑖𝑡

′ + 𝜎𝑖
2. 

 

3.3. Utility Specifications under Uncertainty 

The player faces uncertainty about her efficiency as well as the required operation quantity for 

completing the next level. Given the uncertainty on lnAit, how do players predict their playing 

utility in equation 1? We consider two alternative approaches in this paper. First, we assume 

players have rational expectations which they use to predict their playing utility. Second, we 

consider a novel boundedly rational approach to flexibly capture players’ over/under estimation 

behavior and risk preferences, which avoids the strong and restrictive assumptions of rational 

expectations. We describe each alternative in turn. 

3.3.1. Rational Expectation Approach 

In the expectation-based approach, the player forecasts her efficiency, and the associated operation 

quantity and utility. Specifically, 

𝐸𝑈𝑖𝑡   = 𝛽𝑖𝑡 𝐸 ln(1 + 𝑂𝑖𝑡) − 𝜅𝑖𝑡𝐸(𝑂𝑖𝑡) + 𝑆𝑂𝐴𝑖𝑡 + 𝜂𝑖𝑡     (9) 

The player forms an expectation on her playing utility based on the number of operations needed 

for promoting to the next level. Since operation quantity is uniquely determined by the incremental 

required passing points Gt and log efficiency lnAit (see equation 4), calculating expected utility 

with respect to operation quantity is equivalent to calculating expected utility with respect to the 

log efficiency, given the uncertainty on the player’s efficiency.4  

When Oit is reasonably large, say greater than 10, we have ln(1 + 𝑂𝑖𝑡) ≈ ln(𝑂𝑖𝑡) . 

Equation 9 can be then approximated as,   

 𝐸𝑈𝑖𝑡  ≈  𝛽𝑖𝑡 𝐸 ln(𝑂𝑖𝑡) − 𝜅𝑖𝑡𝐸(𝑂𝑖𝑡) + 𝑆𝑂𝐴𝑖𝑡 + 𝜂𝑖𝑡 

 
4 Note that error term 𝜂𝑖𝑡 is observed by player although not by the researcher, and therefore the player does not need 

to form expectation on the measurement error 𝜂𝑖𝑡. 
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             =  𝛽𝑖𝑡 𝐸 ln(𝐺𝑖𝑡/𝐴𝑖𝑡) − 𝜅𝑖𝑡𝐸(𝐺𝑖𝑡/𝐴𝑖𝑡) + 𝑆𝑂𝐴𝑖𝑡 + 𝜂𝑖𝑡 

             =  𝛽𝑖𝑡 (ln𝐺𝑡 − 𝐸 ln𝐴𝑖𝑡) − 𝜅𝑖𝑡𝐺𝑡𝐸𝑒
−ln 𝐴𝑖𝑡 + 𝑆𝑂𝐴𝑖𝑡 + 𝜂𝑖𝑡     (10a) 

Then using the property of the moment generating function (MGF) of lognormal distribution, we 

can derive the player’s expectation-based predicted utility (EU) at the beginning of level t as, 

𝐸𝑈𝑖𝑡  ≈  𝛽𝑖𝑡 (ln𝐺𝑡 −𝑚𝑖𝑡) − 𝜅𝑖𝑡𝐺𝑡𝑒
−𝑚𝑖𝑡+

Δ𝑖𝑡
2

2 + 𝑆𝑂𝐴𝑖𝑡 + 𝜂𝑖𝑡                                     (10b) 

where mit is the player’s belief on her mean log efficiency, and Δ𝑖𝑡
2  is the variance or uncertainty 

of the belief, according to equation 8. Players are assumed to evaluate the complicated utility 

function by integrating out the uncertainty. Moreover, equation 10b implies that 𝐸𝑈𝑖𝑡  decreases 

as uncertainty increases since 𝜅𝑖𝑡 > 0, suggesting that players are risk averse.  

 While risk aversion is a sensible one, and has been adopted in other empirical studies of 

dynamic choice under uncertainty (Erdem and Keane 1996, Chintagunta, Jiang and Jin 2009, 

Ching and Ishihara 2012, and Zhao et al. 2013), it may be less appropriate to impose in our online 

gaming context, where players may be risk seeking as they enjoy a moderate amount of uncertainty 

for new discovery and extra excitement (as demonstrated in our preliminary data analysis). In the 

next section, we extend the model to allow for a variety of risk preferences, as well as bounded 

rational beliefs and decision-making.  

3.3.2. Boundedly Rational Approach 

We now consider an alternative specification on the predicted utility which extends the previous 

specification to allow for bounded rationality in playing behavior. This specification 

accommodates a variety of risk preferences, and at the same time allows players’ beliefs about 

their efficiencies to be systematically higher or lower than would be warranted by strict Bayesian 

learning.  
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Based on the utility function in equation 1, we specify the predicted utility (PU) as a 

function of the predicted operation quantity POit where POit = Gt/PAit, PAit is the predicted 

efficiency, and Gt is the incremental points required for completing level t, which is fixed. We then 

specify the predicted efficiency PAit as 𝑒𝑚𝑖𝑡+𝑙𝑖Δ𝑖𝑡. This expression, with the extra parameter 𝑙𝑖, 

captures several types of biases in parsimonious fashion. According to equation 8, lnAit is 

distributed normal with mean 𝑚𝑖𝑡 and variance Δ𝑖𝑡
2 . Hence 𝑙𝑖 captures the player i’s attitude toward 

uncertainty: 𝑙𝑖 > 0 suggests that the player overestimates her log efficiency (lnAit) to be above the 

mean (𝑚𝑖𝑡). On the other hand,  𝑙𝑖 < 0 may indicate that the player predicts her log efficiency 

(lnAit) to be below the mean (𝑚𝑖𝑡 ). In the knife-edge case of 𝑙𝑖 = 0 , the player is neither 

systematically over or under estimating since she uses her mean predication based on her past 

performance to forecast her future efficiency. Our boundedly rational approach thus specifies the 

player predicted utility as, 

𝑃𝑈𝑖𝑡 = 𝛽𝑖𝑡 ln(1 + 𝑃𝑂𝑖𝑡) − 𝜅𝑖𝑡𝑃𝑂𝑖𝑡 + 𝑆𝑂𝐴𝑖𝑡 + 𝜂𝑖𝑡  

         = 𝛽𝑖𝑡 ln(1 + 𝐺𝑡/𝑒
𝑚𝑖𝑡+𝑙𝑖Δ𝑖𝑡) − 𝜅𝑖𝑡𝐺𝑡/𝑒

𝑚𝑖𝑡+𝑙𝑖Δ𝑖𝑡 + 𝑆𝑂𝐴𝑖𝑡 + 𝜂𝑖𝑡                 (11)  

Compared to equation 10b, we see that the standard deviation term Δ𝑖𝑡 now enters the predicted 

utility in equation 11 in the first two components: the predicted gains and the predicted losses. This 

accommodates a variety of risk preferences. When 𝑙𝑖 > 0, the first term decreases in uncertainty 

while the second term increases in uncertainty. Hence equation 11 is flexible in capturing all three 

types of risk preferences depending on the magnitude of model estimates: risk aversion, risk 

neutral, and risk seeking. The same logic applies to the case of 𝑙𝑖 < 0. This marks a key difference 

between the boundedly rational approach and the rational expectations approach.  

To further verify the flexibility of the model on players’ risk attitudes, we can derive the 

first-order condition of the predicted utility with respect to the uncertainty Δ
𝑖𝑡

as follows, 
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𝜕𝑃𝑈𝑖𝑡

𝜕 Δ𝑖𝑡
= −𝑙𝑖 (

𝛽𝑖𝑡

1+𝐺𝑡/𝑒
𝑚𝑖𝑡+𝑙𝑖Δ𝑖𝑡

− 𝜅𝑖𝑡) 𝐺𝑡/𝑒
𝑚𝑖𝑡+𝑙𝑖Δ𝑖𝑡                                           (12) 

This equation clearly indicates that individual players’ risk preference can be positive, zero or 

negative, and it is affected by 𝑙𝑖  (capturing the player’s attitude toward uncertainty) and Δ
𝑖𝑡

 

(capturing the magnitude of the uncertainty on efficiency) under the boundedly rational approach. 

For example, when 𝑙𝑖> 0 and Δ𝑖𝑡 is relatively small,  
𝛽𝑖𝑡

1+𝐺𝑡/𝑒
𝑚𝑖𝑡+𝑙𝑖Δ𝑖𝑡

− 𝜅𝑖𝑡 is likely to be smaller 

than zero and in turn 
𝜕𝑃𝑈𝑖𝑡

𝜕 Δ𝑖𝑡
 will be larger than zero (i.e. risk seeking). However, if Δ𝑖𝑡 passes a 

threshold value, 
𝛽𝑖𝑡

1+𝐺𝑡/𝑒
𝑚𝑖𝑡+𝑙𝑖Δ𝑖𝑡

− 𝜅𝑖𝑡  will turn positive, suggesting a negative value for the 

derivative (i.e. risk aversion).  

3.4.  Players’ Dynamic Optimization Problem 

Since exit decisions are irreversible, a player’s decision to quit the game at level t prevents her 

from enjoying higher levels of the game.  Hence, we assume players to be forward looking, that is, 

to make a play-or-quit decision at each level of the game to maximize the sum of current period 

utility and discounted future utility. The Forward-looking assumption has been adopted to model 

consumer decisions in a wide variety of marketing contexts (Erdem and Keane 1996, Hartmann 

2006, Albuquerque and Nevskaya 2012, and Lee, Kumar and Gupta 2014). Since a game has a 

finite number of levels, we consider a finite-horizon dynamic problem.  

For each level t, the timing is as follows: 1) The player observes mean 𝜇𝑖𝑡 and variance 

Σ𝑖𝑡 of the two coefficients α that determine her efficiency evolution and the log-efficiency realized 

at level t-1 ln𝐴𝑖,𝑡−1. 2) The player also observes 𝜂𝑖𝑡, the stochastic error term in the utility, which 

is unobservable to the researcher. 3) The player makes a play-or-quit decision based on the 

information set in the previous two steps. 4) If she chooses to quit at level t, she does not make 

any decisions onwards and her learning process discontinues; Otherwise, she finishes level t and 
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observes her realized efficiency at level t (𝐴𝑖𝑡). 5) The player updates her belief on the two 

coefficients that govern how her efficiency evolves over levels after completing level t. Posterior 

beliefs are formed after competing level t and will be used as the player’s prior at the beginning of 

level t+1. 6) We assume that if a player finishes all the T levels in the game, she will get an extra 

utility Ci, to reflect game players’ additional gain or loss due to finishing the entire game. It reflects 

a widely observed psychological phenomena: the need for closure (Kruglanski and Webster 

1996).We expect the parameter Ci to be positive, but will estimate this parameter freely and let 

data informs us of its sign and magnitude. The sharp decline of attribution in the last five levels as 

shown in Table 1a is consistent with the specification of Ci, and we have elaborated the rationale 

in Section 2. 

At the beginning of each level t, the player makes the play-or-quit decision by maximizing 

the sum of current period utility and discounted future utility, i.e. the present discounted value 

(PDV). Since PDV involves components the player is uncertain about (i.e. current and future 

efficiency and future random errors), she needs to form predictions on them. As a result, 

calculation of the PDV has to be based on player predictions on these uncertain components. At 

the beginning of level t, the player’s decision problem can be written as,   

Max
𝐷𝑖𝑡,… ,𝐷𝑖𝑇

∑ 𝛿𝑘−𝑡 𝐼(𝐷𝑖𝑘 = 1) x 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑈𝑖𝑘|𝑆𝑖𝑘 , 𝜂𝑖𝑡)
𝑇
𝑘=𝑡 + 𝐶𝑖𝐼(𝐷𝑖𝑇 = 1)   (13) 

where we use “Predicted” to denote predicted utility under observed state variables 𝑆𝑖𝑘 and latent 

state variables 𝜂𝑖𝑡 . To summarize, we have adopted the following notations in our dynamic model 

formulation. 

 𝑀𝑖𝑡 Deterministic part of the expected (or predicted) period utility  

𝐶𝑖 Extra utility if player finishes all levels. 

𝑆𝑖𝑡 Observed state variables.  
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𝛿 Discount factor 

𝑉𝑖𝑡(∙)  Value function for player i at level t, a function of all state variables. 

𝑉𝑖𝑡
∗(∙) Ex-ante Value function for player i at level t, a function of observed state variables. 

𝐷𝑖𝑡 Player i's decision at level t. If player i quit the game at task t, 𝐷𝑖𝑡 = 0; otherwise 𝐷𝑖𝑡 = 1. 

3.4.1. State Variables and Transition Probability 

Let {𝑆𝑖𝑡 , 𝜂𝑖𝑡} denote the set of state variables for player i at the beginning of level t, where 𝑆𝑖𝑡 =

{𝜇𝑖𝑡, Σ𝑖𝑡, ln𝐴𝑖,𝑡−1} is the set of observable state variables and 𝜂𝑖𝑡 is the unobservable state variable 

from the researcher’s perspective. Transition rules of 𝑆𝑖𝑡 = {𝜇𝑖𝑡, Σ𝑖𝑡, ln𝐴𝑖,𝑡−1}  to 𝑆𝑖,𝑡+1 =

{𝜇𝑖,𝑡+1, Σ𝑖,𝑡+1, ln𝐴𝑖𝑡}  have been defined in equations 7b, 7c and 8.  Note that, given 𝑆𝑖𝑡 , the  

𝜇𝑖,𝑡+1( Σ𝑖,𝑡+1) is determined by ln𝐴𝑖𝑡 according to equation 7b (equation 7c). Therefore, we have 

 𝑃(𝑆𝑖,𝑡+1|𝑆𝑖𝑡) 

= 𝑃(𝜇𝑖,𝑡+1, Σ𝑖,𝑡+1|ln𝐴𝑖𝑡 , 𝑆𝑖𝑡) 𝑃(ln𝐴𝑖𝑡|𝑆𝑖𝑡) 

= 𝑃(𝜇𝑖,𝑡+1, Σ𝑖,𝑡+1|ln𝐴𝑖𝑡 , 𝑆𝑖𝑡) 𝜑 (
ln𝐴𝑖𝑡−𝑋𝑖𝑡𝜇𝑖𝑡 

√𝑋𝑖𝑡Σ𝑖𝑡𝑋𝑖𝑡
′ +𝜎𝑖

2
)      (14) 

=

{
 
 

 
 
𝜑

(

 
ln𝐴𝑖𝑡 − 𝑋𝑖𝑡𝜇𝑖𝑡 

√𝑋𝑖𝑡Σ𝑖𝑡𝑋𝑖𝑡
′ + 𝜎𝑖

2

)

     𝑖𝑓 𝜇𝑖,𝑡+1 = Σ𝑖,𝑡+1 (Σ𝑖𝑡
−1𝜇𝑖𝑡 +

𝑋𝑖𝑡
′ 𝑌𝑖𝑡

𝜎𝑖
2 ) , Σ𝑖,𝑡+1

−1 = Σ𝑖𝑡
−1 +

𝑋𝑖𝑡
′ 𝑋𝑖𝑡

𝜎𝑖
2  

  0                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                         

 

where  𝜑 is the probability density function of the standard normal distribution.  

The unobserved state variables 𝜂𝑖𝑡 are the error terms in the period utility function. We 

assume that they are i.i.d. following the standard normal distribution, and orthogonal to other 

covariates and random variables in the model. Therefore, this specification satisfies the conditional 

independence requirement for solving the DP problem (Rust 1988).   

3.4.2. DP under the Rational Expectation Approach 
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We now derive the solution of the DP problem under the rational expectations approach. By 

Bellman’s principle of optimality, the value function can be obtained using the recursion. Define 

𝑉𝑖,𝑇+1 = 𝐶𝑖, which indicates that if player finishes all levels, she can get extra utility 𝐶𝑖. Then we 

have value function at t for t = 1,…,T as, 

𝑉𝑖𝑡(𝑆𝑖𝑡, 𝜂𝑖𝑡) = 𝑚𝑎𝑥{𝐸𝐴𝑖𝑡(𝑈𝑖𝑡|𝑆𝑖𝑡, 𝜂𝑖𝑡) + 𝛿𝐸𝑆𝑖,𝑡+1,𝜂𝑖,𝑡+1  𝑉𝑖,𝑡+1(𝑆𝑖,𝑡+1, 𝜂𝑖,𝑡+1|𝑆𝑖𝑡, 𝜂𝑖𝑡), 0} 

                      = 𝑚𝑎𝑥{𝑀𝑖𝑡 + 𝜂𝑖𝑡 + 𝛿𝐸𝐴𝑖𝑡𝐸𝜂𝑖,𝑡+1   𝑉𝑖,𝑡+1(𝑆𝑖,𝑡+1, 𝜂𝑖,𝑡+1|𝑆𝑖𝑡, 𝜂𝑖𝑡), 0}   (15) 

where 𝑀𝑖𝑡 = 𝛽𝑖𝑡 𝐸 ln(1 + 𝑂𝑖𝑡) − 𝜅𝑖𝑡𝐺𝑡𝑒
−𝑋𝑖𝑡𝜇𝑖𝑡+

1

2
( 𝑋𝑖𝑡Σ𝑖𝑡𝑋𝑖𝑡

′ +𝜎𝑖
2) + 𝑆𝑂𝐴𝑖𝑡. 

To reduce the dimension of the state space and simplify solving DP, we define the ex-ante value 

function, as follows: 

𝑉𝑖𝑡
∗(𝑆𝑖𝑡) = ∫ 𝑉𝑖𝑡(𝑆𝑖𝑡, 𝜂𝑖𝑡)𝑑𝐹(𝜂𝑖𝑡) = 𝐸𝜂𝑖𝑡𝑉𝑖𝑡(𝑆𝑖𝑡, 𝜂𝑖𝑡)      (16a) 

Vit
∗(Sit) is player i’s value of being in state Sit, after integrating out 𝜂𝑖𝑡. Applying the expected 

value of a truncated normal distribution, we have 

𝑉𝑖𝑡
∗(𝑆𝑖𝑡) =  𝐸𝜂𝑖𝑡𝑚𝑎𝑥{𝑀𝑖𝑡 + 𝜂𝑖𝑡 + 𝛿𝐸𝐴𝑖𝑡𝐸𝜂𝑖,𝑡+1𝑉𝑖,𝑡+1(𝑆𝑖,𝑡+1, 𝜂𝑖,𝑡+1|𝑆𝑖𝑡, 𝜂𝑖𝑡), 0} 

 = 𝛷 (𝑀𝑖𝑡 + 𝛿𝐸𝐴𝑖𝑡𝑉𝑖,𝑡+1
′ (𝑆𝑖,𝑡+1|𝑆𝑖𝑡)) × (𝑀𝑖𝑡 + 𝛿𝐸𝐴𝑖𝑡  𝑉𝑖,𝑡+1

′ (𝑆𝑖,𝑡+1|𝑆𝑖𝑡)) 

     +𝜙 (𝑀𝑖𝑡 + 𝛿𝐸𝐴𝑖𝑡  𝑉𝑖,𝑡+1
′ (𝑆𝑖,𝑡+1|𝑆𝑖𝑡))        (16b) 

Then we have the choice-specific value function as 

𝑣(𝑆𝑖𝑡, 𝜂𝑖𝑡, 𝐷𝑖𝑡) = {
𝑀𝑖𝑡 + 𝜂𝑖𝑡 + 𝛿𝐸𝐴𝑖𝑡  𝑉𝑖,𝑡+1

∗ (𝑆𝑖,𝑡+1|𝑆𝑖𝑡)                       𝑖𝑓 𝐷𝑖𝑡 = 1

0                                                                                     𝑖𝑓𝐷𝑖𝑡 = 0
   (17) 

Therefore, the probability of continuing to play is  

𝑃(𝐷𝑖𝑡 = 1|𝑆𝑖𝑡) = Φ(𝑀𝑖𝑡 + 𝛿𝐸𝐴𝑖𝑡 𝑉𝑖,𝑡+1
∗ (𝑆𝑖,𝑡+1|𝑆𝑖𝑡))      (18) 

3.4.3. DP under the Boundedly Rational Approach 
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We now derive the solution of the DP problem under our boundedly rational specification as 

explained in section 3.3.2. In this specification, the value function will be obtained following the 

standard formula, but conditional on  ln𝐴𝑖𝑡 = 𝑚𝑖𝑡 + 𝑙𝑖Δ𝑖𝑡. The value function is now, 

𝑉𝑖𝑡(𝑆𝑖𝑡, 𝜂𝑖𝑡) =

𝑚𝑎𝑥{𝑀𝑖𝑡 + 𝜂𝑖𝑡 + 𝛿𝐸𝜂𝑖,𝑡+1𝑉𝑖,𝑡+1(𝑆𝑖,𝑡+1, 𝜂𝑖,𝑡+1|𝑆𝑖𝑡, 𝜂𝑖𝑡, ln𝐴𝑖𝑡 = 𝑚𝑖𝑡 + 𝑙𝑖Δ𝑖𝑡), 0}  (19) 

where 𝑀𝑖𝑡 = 𝛽𝑖𝑡 ln(1 + 𝐺𝑡/𝑒
 𝑚𝑖𝑡+𝑙𝑖Δ𝑖𝑡) − 𝜅𝑖𝑡𝐺𝑡/𝑒

𝑚𝑖𝑡+𝑙𝑖Δ𝑖𝑡 + 𝑆𝑂𝐴𝑖𝑡  is the deterministic part of 

utility. 

Similarly, we can derive the value function based only on observed state variables, 

 𝑉𝑖𝑡
∗(𝑆𝑖𝑡) = ∫ 𝑉𝑖𝑡(𝑆𝑖𝑡, 𝜂𝑖𝑡)𝑑𝐹(𝜂𝑖𝑡) = 𝐸𝜂𝑖𝑡𝑉𝑖𝑡(𝑆𝑖𝑡, 𝜂𝑖𝑡) 

= 𝐸𝜂𝑖𝑡𝑚𝑎𝑥{𝐸(𝑈𝑖𝑡|𝑆𝑖𝑡 , ln𝐴𝑖𝑡 = 𝑚𝑖𝑡 + 𝑙𝑖Δ𝑖𝑡)+𝛿𝑉𝑖,𝑡+1
∗ (𝑆𝑖,𝑡+1|𝑆𝑖𝑡 , ln𝐴𝑖𝑡 = 𝑚𝑖𝑡 + 𝑙𝑖Δ𝑖𝑡 ), 0}  

= Φ(𝑀𝑖𝑡 + 𝛿𝑉𝑖,𝑡+1
∗ (𝑆𝑖,𝑡+1|𝑆𝑖𝑡 , ln𝐴𝑖𝑡 = 𝑚𝑖𝑡 + 𝑙𝑖Δ𝑖𝑡 )) × (𝑀𝑖𝑡 + 𝛿𝑉𝑖,𝑡+1

∗ (𝑆𝑖,𝑡+1|𝑆𝑖𝑡 , ln𝐴𝑖𝑡 =

            𝑚𝑖𝑡 + 𝑙𝑖Δ𝑖𝑡 )) + 𝜙 (𝑀𝑖𝑡 + 𝛿𝑉𝑖,𝑡+1
∗ (𝑆𝑖,𝑡+1|𝑆𝑖𝑡 , ln𝐴𝑖𝑡 = 𝑚𝑖𝑡 + 𝑙𝑖Δ𝑖𝑡 )).                     (20)  

Then we have the choice-specific value function is 

𝑣(𝑆𝑖𝑡, 𝜂𝑖𝑡, 𝐷𝑖𝑡) = {
𝑀𝑖𝑡 + 𝜂𝑖𝑡 + 𝛿𝑉𝑖,𝑡+1

∗ (𝑆𝑖,𝑡+1|𝑆𝑖𝑡, ln𝐴𝑖𝑡 = 𝑚𝑖𝑡 + 𝑙𝑖Δ𝑖𝑡 )    𝑖𝑓 𝐷𝑖𝑘 = 1

0                                                                                                 𝑖𝑓𝐷𝑖𝑘 = 0
 (21) 

Therefore, the probability of playing is  

𝑃(𝐷𝑖𝑡 = 1|𝑆𝑖𝑡) = Φ(𝑀𝑖𝑡 + 𝛿 𝑉𝑖,𝑡+1
∗ (𝑆𝑖,𝑡+1|𝑆𝑖𝑡, ln𝐴𝑖𝑡 = 𝑚𝑖𝑡 + 𝑙𝑖Δ𝑖𝑡 ))   (22) 

  

4. Empirical Application 

4.1. Empirical Identification 

Several notes on the empirical identification of the model parameters are in order. First, unlike in 

other learning contexts where experience signals are unobserved to researchers, we directly 
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observe learning signals which are players’ realized efficiency after completing a level. Observing 

signals can greatly improve the identification of learning models (Ching, Erdem and Keane 2013). 

As such, equation 4 is a simple regression model where both dependent and independent variables 

are observed and vary across different levels. Furthermore, in order to strengthen the empirical 

identification, we have followed the learning model literature by estimating the initial conditions 

(i.e. mean and variance of α) using her realized efficiency during the first three levels and equation 

4. Given the initial conditions and observed signals, the mean and variance of a player’s operation 

efficiency at each level are therefore uniquely determined following equation 8. This is crucial 

because a player’s expected utility at each level is a function of the mean and variance of her 

efficiency as shown in equation 11. 

 Second, β and κ can be loosely interpreted as the gain and cost of operations, and they can 

be empirically identified for three reasons. First, players do not quit at the same level, and the 

distribution of quitting agents across levels identifies those parameters across segments. Second, 

gain and cost are modeled with different functional forms and vary over levels. Third, expected 

operation quantities are empirically identified given their deterministic relationship with expected 

operation efficiency which is shown to be empirically identifiable given the previous argument. 

Our preliminary data analysis suggests that operation efficiency and utility follow an inverted U 

relationship. This suggests that, given a fixed required point G and the relationship of O = G/A, a 

player’s utility reaches the maximum value under a moderate operation quantity O. With sufficient 

data on playing at each level, we can empirically infer the maximum utility (due to operation 

quantity) and the optimal operation quantity. Note that, with the functional form specified in our 

model, we have the optimal operation quantity as β/κ-1 and the maximum utility as β ln(β/κ)- 

κ(β/κ-1), that is, we have two equations (or two pieces of information) to identify two parameters. 
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Therefore, we can empirically identify β and κ for each game level. The corresponding 

parameters 𝛾0, 𝛾1 , 𝜔0, and 𝜔1 can be then identified through the co-variation between β and t and 

the co-variation between κ and t.  

Third, C is the extra utility gained by a player who completes the whole game. It captures 

a widely observed psychological phenomenon: the need for closure. Since we adopt the dynamic 

programming specification to capture player’s forward looking behavior, C will influence a 

player’s utility at all levels rather than just at the last level, and the impact of C decreases 

exponentially as the focal level is further away from the last level of the game. As shown from 

Table 1, the attrition rate declines sharply in the last five levels (i.e. dropping from 0.15 to 0.1). 

This may suggest some additional utility gain from finishing the game. Furthermore, due to 

discounting of future utility, this additional utility affects the play-or-quit decisions more strongly 

towards the end of the game. The sharp decline of attrition in the last five levels is consistent with 

the specification of C and the magnitude of this decline helps us empirically identify C.  

Finally, the other important parameter li which indicates the direction and magnitude of the 

expectation bias, is empirically identifiable because, as shown in equation 12, players’ risk 

preferences (i.e. the effect of the variance of the operation efficiency on the expected playing utility) 

are affected by l. According to our preliminary analysis, there exist significant risk seeking for 

many players, and this data pattern will help us identify l empirically.  

4.2. Model Estimation 

We now describe the model estimation procedure. We fix the discount factor 𝛿 to be 0.9. We also 

tried other values such as 0.85 and 0.95, and did not find any systematic changes of the results. Let 

𝑇𝑖 be the last level completed by player i and Θ𝑖 = {𝛾0𝑖, 𝛾1𝑖, 𝜔0𝑖, 𝜔1𝑖, 𝜏0𝑖, 𝜏1𝑖, 𝐶𝑖, 𝑙𝑖, 𝛼̃𝑖, 𝜎𝑖
2} be the 

set of player i specific parameters. As in Rust (1988), the likelihood function in our dynamic 

Electronic copy available at: https://ssrn.com/abstract=3922901



26 
 

optimization model consists of two components: the choice probabilities and probabilities of actual 

observed state evolution (rather than agents’ believed state evolution). Therefore, we have the 

likelihood for player i as below 

𝐿𝑖(Θ𝑖|𝐷𝑖, 𝑆𝑖) = ∏ 𝑃(𝐷𝑖𝑡|𝑆𝑖𝑡, Θ𝑖) ×  𝑃(𝑆𝑖,𝑡|𝑆𝑖,𝑡−1, Θ𝑖)
 𝑇𝑖
𝑡=1                                                                 

                      = ∏ 𝑃(𝐷𝑖𝑡|𝑆𝑖𝑡, Θ𝑖) ×  𝜑 (
𝑙𝑛𝐴𝑖𝑡−(𝛼0𝑖+𝛼1𝑖 𝑙𝑛 𝐴𝑖,𝑡−1) 

𝜎𝑖
)

 𝑇𝑖
𝑡=1                  (23)  

where 𝑃(𝐷𝑖𝑡|𝑆𝑖𝑡, Θ𝑖) is from equation (18) or equation (22) under the rational expectation or 

boundedly rational approach correspondingly. 

We model player unobserved heterogeneity by having Θ𝑖 follow a latent class distribution. 

This is widely known as the latent class approach and adopted in the marketing literature (e.g. 

Kamakura and Russell 1989). Specifically, we assume R number of latent classes and let 𝜋𝑟 be 

class weight and Θ𝑟 be the realized values of parameters for class r.  

We estimated the model parameters using a hierarchical Bayesian approach. To increase 

the efficiency of the MCMC algorithm, we introduce a latent classification variable 𝑔𝑖 for each 

player i, where 𝑔𝑖 = 𝑟 if player i belongs to class r. The estimation procedure can be divided into 

three main steps that constitute a “hybrid” algorithm. In the first step, for each player i, conditional 

on {𝜋1, … , 𝜋𝑅} and  {Θ1, … , Θ𝑅},  we draw latent classification variable 𝑔𝑖 based on the following 

full conditional posterior probability. 

𝑃(𝑔𝑖 = 𝑟) =
𝐿𝑖(Θ𝑖=Θ

𝑟|𝐷𝑖,𝑆𝑖)×π𝑟

∑ 𝐿𝑖(Θ𝑖=Θ
𝑘|𝐷𝑖,𝑆𝑖)×π𝑘

𝑅
𝑘=1

                                                              (24) 

In the second step, we draw {𝜋1, … , 𝜋𝑅} from Dirichlet distribution, Dir(𝑅, 𝑑1 + 𝑛1, … , 𝑑𝑅 + 𝑛𝑅), 

using Gibbs sampling based on 𝑔𝑖 , where 𝑑𝑟  (set to be 1) is the parameter of prior Dirichlet 

distribution and 𝑛𝑟 is the number of players that belong to class r (𝑔𝑖 = 𝑟). In the third step, for 
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each class r, conditional on 𝑔𝑖, we draw Θ𝑟 using random walk Metropolis-Hastings algorithm 

based on the following likelihood. 

𝐿𝑟 = ∏ 𝐿𝑖(Θ𝑖 = Θ𝑟|𝐷𝑖, 𝑆𝑖){𝑖: 𝑔𝑖=𝑟}
                                              (25)  

We let the MCMC chain run for 40,000 iterations, and used the first 30,000 interactions as 

burn-in period and the last 10,000 iterations to estimate the posterior means and standard 

deviations. We adopted two methods to ensure the convergence of the MCMC chain. First, we did 

the time-series inspection on trace plots, which has been often used in the marketing literature. 

Second, we conducted the Gelman-Rubin test. Both tests confirmed convergence.  

 We finally address how we treat the initial condition in constructing the player learning on 

operation efficiency evolution patterns. For empirical identification, we have followed the learning 

model literature (Mehta, Rajiv and Srinivasan 2004, and Zhao, Zhao, Helsen 2011) by using 

observations of Ai1 through Ai3 to estimate α̃  for each player and used these estimates as the prior 

for α for the same individual. We used data from level 4 to level 24 (a total of 21 levels) to estimate 

the model parameters. With the initial belief on α̃ , each player can form a new belief after 

completing a level with a new observation of her efficiency, in a deterministic way following the 

updating equations as explained in the model section.  

 

5. Findings 

We first discuss our empirical findings and then conduct counterfactual analysis to illustrate the 

value of our proposed model.  

Model Comparison. We first estimated our proposed model under three heterogeneity 

specifications: one class, two classes, and three classes. We report the model fit statistic (Deviance 
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Information Criterion or DIC) and parameter estimates under each of the three specifications in 

Table 2a. Comparison of DIC suggests that the two-class specification fits the data the best.  

= = Insert Table 2a Here = = 

We then test three alternative model specifications under the one-class assumption and 

under the two-class assumption respectively, with results being reported in Table 2b and Table 2c. 

Our proposed model assumes players to be forward-looking but are boundedly rational in 

predicting their playing efficiency and utility (as discussed in Section 3.3.2). The first alternative 

specification turns off the forward-looking aspect, by assuming that players are myopic in their 

decisions to continue or quit after each level, and they are boundedly rational. The second 

alternative specification allows forward-looking but assumes that players are fully rational in 

predicting their playing efficiency and utility (as discussed in Section 3.3.1). The third alternative 

model assumes that players are forward looking, but instead of behaving according to the proposed 

bounded rationality, they allow their perceptions to be systemically different from the true means 

(i.e. 𝑚𝑖𝑡 = 𝑋𝑖𝑡𝜇𝑖𝑡 + 𝑙). DIC values suggest that our proposed model outperforms the other three 

models under both the one-class and two-class assumptions. This implies that the data are best 

explained by a model in which players are forward-looking, but exhibit certain behavioral biases 

in forming beliefs about how their operation efficiency evolves over game levels. More 

specifically, we find that while myopic assumption reduces the model fit for about 1% compared 

to the proposed model, the full rational approach reduces the model fit for almost 10%, suggesting 

that the bounded rationality is more important than forward looking in explaining the observed 

user play-or-quit decisions over the game levels.  

= = Insert Tables 2b and 2c Here = = 
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This two-class specification performs very well in fitting the survival rate at each game 

level, as shown in Figure 2a. Figure 2b displays the simulated survival rate at each game level for 

these two groups of players respectively. As shown, the predicted survival/attrition rate for players 

in the second class is much higher/lower than that for those in the first class. 

= = Insert Figures 2a and 2b Here5 = = 

Estimation Results. We discuss the parameter estimates from the proposed model with the 

two-class specification reported in Table 2a, since it produces the best model fit. We find that 78% 

of players belong to Class 1 and the remaining 22% belong to Class 2. There are important 

differences in the gameplay preferences of these two groups of players. For convenience, we call 

players in Class 1 as type 1 and players in Class 2 as type 2.  

First, as shown from the estimates of γ0 and γ1, type 2 enjoy the game more than type 1 at 

the beginning, but as they level up, they become satiated with the game more quickly. Second, the 

estimates of ɷ0 and ɷ1 tell us that while the marginal cost of playing goes down in a similar rate 

as players level up for the two types, type 1 have a larger marginal cost than type 2 when they start 

the game. Third, the estimates of t0 and t1 reveal to us that the sense of accomplishment (SOA) 

goes down as type 2 advance to higher levels, but remains stable for type 1. Fourth, finishing the 

entire game brings a much higher extra utility for type 2 (C = 2.169) than type 1 (C = 0.472). Fifth, 

both types are found to be overestimating their operation efficiency since their estimated deviation 

parameter l is significantly positive with a larger magnitude for type 1 (l = 2.503) than type 2 (l = 

1.789).  

 
5 In Figure 2 and onwards, levels 1-21 are correspondent to Levels 4-24. Since data from Levels 1-3 are used for 

estimating the initial conditions (priors) for the learning process, we estimated the proposed level-progression model 

using 21 levels of data from Level 4 to Level 24. 
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To gain deeper insights on player preferences, we plot in Figures 3a-3d the average utility 

from operations, cost of operations, SOA, and future values over game levels for the two types of 

players. The blue solid line represents type 1 players and the orange broken line represents type 2 

players.   

We find that for type 1 players, their benefit from operation increases gradually but the 

corresponding cost from operation decreases quickly, suggesting that the net utility from operation 

plays an important role in their play-or-quit decisions. Meanwhile the SOA and future value are 

relatively low for type 1 in comparison to type 2, and they decrease over levels. Based on these 

patterns, we call type 1 players “Experiencers”.   

As for type 2 players, they get a large benefit from operations at the beginning, however, 

the benefit vanishes quickly and reaches zero after level 5. The cost of operation also decreases 

for type 2. Overall, operations play an important role for type 2 only for the first 3 levels, and after 

that, the net utility drops to zero (if not negative). The average SOA decreases over levels but is 

higher for type 2 than for type 1. Similarly, their future values are also higher. Note that for type 

2 players, the future value decreases at the beginning, likely due to the decreasing net utility from 

operations). However, the future value gradually increases in the second half of the game, likely 

due to a large extra utility C from finishing the whole game, as C becomes less discounted as the 

player progresses closer toward the end of the game. Given these findings, we believe that the 

major driver of the continuation decision for type 2 is the sense of achievement, and label type 2 

as “Achievers”.  

In summary, type 1 are players who enjoy the process of playing the game, whereas the 

type 2 care more about the achievement of finishing the whole game. This is also consistent with 

our finding of type 2 having a lower predicted attrition. From a managerial standpoint, type 2 are 
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the key contributors for the profits of the game company: since they are focused on completing the 

game, they finish more levels and this longer engagement can bring more revenue to the company.  

= = Insert Figures 3a, 3b, 3c and 3d Here = = 

To gain deeper insights on the dynamics of player learning, we have plotted in Figures 4a-

4d the average of perceived mean and variance for the two coefficients of the AR1 process over 

game levels. Recall that the AR1 process captures the evolution of a player’s operation efficiency. 

Note that ln 𝐴𝑖𝑡 = 𝛼0𝑖 + 𝛼1𝑖 ln 𝐴𝑖,𝑡−1 + 𝜀𝑖𝑡 where 𝛼0𝑖 can be viewed as the baseline efficiency and 

𝛼1𝑖  as the carryover. The blue solid line represents type 1 players and the orange broken line 

represents type 2 players. 

There are two main findings. First, the perceived means of both coefficients, converge to 

their steady states. Second, both perceived variances converge toward zero, but at different speeds. 

The perceived variance for the intercept decreases much more gradually than that for the slope, 

suggesting that players are learning the carryover of their operation efficiency faster than learning 

their baseline operation efficiency. These findings apply to both types of players. 

It is important to note that the role of li will not vanish quickly in the boundedly rational 

specification for three reasons. First, the perceived variance of the intercept converges toward zero 

slowly. Second, there is a substantial amount of variation on the Σit across players. Third, even if 

the Σit may be getting close or equal to zero, the perceived variance (  Δ𝑖𝑡
2 ) will not be zero 

because Δ𝑖𝑡
2 = 𝑋𝑖𝑡Σ𝑖𝑡𝑋𝑖𝑡

′ + 𝜎𝑖
2, and  𝜎𝑖

2 is always positive.  

= = Insert Figures 4a, 4b, 4c and 4d Here = = 

Robustness Tests. To further validate the model, we have considered several additional 

specifications. Table 3a and Table 3b report the model fit and parameter estimates from the 

proposed model and five alternative specifications (Models C1-C5). Model C1 tests an assumption 
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that players make unbiased prediction for their operation efficiency, that is, ln 𝐴𝑖𝑡
∗ = 𝑋𝑖𝑡𝜇𝑖𝑡 . 

Model C2 tests an assumption that players make biased prediction, that is, ln 𝐴𝑖𝑡
∗ = 𝑋𝑖𝑡𝜇𝑖𝑡 +

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and we estimate the constant. Model C3 estimates the proposed model without the 

additional utility gain from finishing the entire game. Model C4 assumes away higher order 

interaction terms by setting γ1 = ω1 = 0. Model C5 estimates the proposed model under a quadratic 

utility specification. The fits statistics suggest that our proposed model specification outperforms 

all the other four alternative specifications, and the main estimation results are robust to these 

alternative model specifications. We have also tested the quadratic specification on β, 𝜅 and SOA 

with respect to level t, in order to capture the potential satiation of players (Ishihara and Ching 

2012). However, the quadratic terms are found to be insignificant.   

= = Insert Tables 3a and 3b Here = = 

 Counterfactual Simulation 1. As discussed earlier, one advantage of the proposed model 

is its ability to capture consumer risk preferences in a flexible way including risk seeking, risk 

neutral and risk aversion. As we show in equation 12, the player’s sensitivity to uncertainty is a 

function of the model parameters as well as the state variables. This means, for different players 

at different levels, their attitudes toward risk are different. To demonstrate the effect of uncertainty 

on players, we conduct a simulation based on the estimates from our proposed model with two 

classes. Holding everything else being constant, we change the variance of the error term 𝜎𝑖
2 in the 

AR1 evolution of the player operation efficiency. For example, the game designer can give some 

unexpected bonus points during the process to increase the uncertainty. For risk-seeking players, 

this additional uncertainty may stimulate player interest and engagement. For all players, we 

simulate the average number of completed levels. Note that, the larger the variance, the more 

uncertain that a plyer’s operation efficiency in level t will be determined by the realized efficiency 
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in level t-1, and the larger the player’s perceived uncertainty (Δ𝑖𝑡 = √( 𝑋𝑖𝑡Σ𝑖𝑡𝑋𝑖𝑡
′ + 𝜎𝑖

2)) on the 

current operation efficiency.  

We describe the steps we took for simulating the number of completed levels.  

Step 1: Given an uncertainty level, we calculated the value function based on equation 16b.  

Step 2: Since we generated initial state for each player based on the observed efficiency in the first 

three levels, we used them as the empirical distribution of the initial state. Specifically, for each 

simulated player i, we drew initial states based on this empirical distribution, and then generated 

simulated player i’s initial belief on his/her efficiency according to equation 8.  

Step 3: For simulated player i at level t, we drew 𝜂𝑖𝑡, and calculated the choice-specific value 

function according to equation 21, and then generated i’s decision at level t.  

Step 4: If the generated decision was to quit the game, then simulation ended for i. If the generated 

decision was to continue the game, we drew 𝜀𝑖𝑡 and calculated efficiency based on equation 4. 

Since Ait = Gt/Oit, the computed efficiency will give us the simulated number of operations Oit. 

Then we let player i update her belief on (𝛼0𝑖 , 𝛼1𝑖) using equations 7a-7c and constructed the 

player i’s belief on efficiency according to equation 8 for the next level. 

Results are reported in Table 4. We have two findings. First, on average, we find that the 

players are risk-seeking, that is, unexpected surprises tend to increase the number of levels played. 

Second, when the perceived uncertainty gets too large, the players become risk averse. Taken 

together, an important managerial insight from our analysis is that game developers need to 

effectively manage user perceived uncertainty on their operation efficiency. The playing utility 

will increase when additional uncertainty is induced in a reasonable range. 

= = Insert Table 4 Here = = 
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 Counterfactual Simulation 2. We next conduct a counterfactual analysis to further 

demonstrate the use of our model for assisting level design. Level design is an important task for 

game developers, and the ultimate goal is to maximize some objective function by configuring the 

optimal level specifications such as cumulative required passing points (Ht) for each game level, 

where 𝐻𝑡 = ∑ 𝐺𝑗𝑗=1,…,𝑡 . With any one of the two (H and G) given, we can determine the other. For 

this counterfactual analysis, we propose two new designs, which are reasonably close to the current 

one, and compare the user engagement (measured by the operation quantity) under alternative 

designs to identify the potential for improving the current design. As users’ operation quantity 

increases, we anticipate that the game company would have more revenue potential. The 

assumption is that the game designer can alter the cutoff points within a reasonable range from the 

status quo to improve user engagement, while maintaining a similar pattern of the operation 

efficiency evolution.  

 To propose two candidate new point designs, we first try to empirically identity how the 

observed cumulative level-progression required points Ht vary over levels t. Since 𝐻𝑡 increases 

exponentially with respect to level t, we postulate the following relationship,  

𝐻𝑡 = 𝑓2 × (𝑒
𝑓0+𝑓1×(𝑡−1) − 1)          (25) 

where f0, f1 and f2 are coefficients of the function. f0 determines the required points to pass the first 

level that is H1; f1 determines the curvature of this function; and f2 determines how fast Ht increases. 

Define F = (f0,  f1 , f2), and we find that the estimated Fcurrent with actually observed H is (0.042, 

0.102 and 4624.312) with R2 as 0.999 based on equation 25. This suggests that the constructed 

functional form accurately captures how the cumulative required passing points vary over game 

levels. We assume that a manager will continue to use this function to design the specification of 

the game.  
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Next, we increase/decrease the coefficient of f1 (or the curvature of the function of F) by 

20%, rendering two different counterfactual scenarios: (i) the small curvature scenario (Fsmall), that 

is, the incremental required passing points Gt increase more slowly over game levels than in the 

current design; and (ii) the large curvature scenario (Flarge), that is, the incremental required passing 

points Gt increase more quickly over game levels than in the current design. To make those two 

new scenarios relatively comparable to the current design, we adjust f2 to ensure that the total 

required number of points to pass all the levels of the game to be the same as observed from the 

data (i.e. H24 is fixed to be the same as what we observe from the data). Figure 5a and figure 5b 

plot the cumulative required passing points (Ht) and the corresponding incremental required 

passing points (Gt) at each level, under the three alternative scenarios (Fcurrent, Fsmall
, F

large). The two 

new designs are comparable to the current one as shown from the figures.  

We then simulate the average total number of operations for the entire sample and for each 

of the two segments of players under the three point schedules (Fcurrent, Fsmall
, F

large), and report 

them in Table 5. For the two new designs, we find that Fsmall leads to an overall 15.8% increase of 

operation quantity, and Flarge leads to an overall 13.5% decrease of operation quantity, as compared 

to the current point system Fcurrent. This suggests that the game designer can benefit from allocating 

more passing points at lower levels and fewer passing points at higher levels compared to the 

current design.  

= = Insert Table 5 Here = = 

In the second counterfactual simulation, we simulate the play-or-quit decisions and number 

of operations under two new point designs. We model the development of operation efficiency Ait, 

which depends on both players’ ability and game difficulty at each level. In the counterfactual 

analysis, we do not change the game difficulty, and instead we change the cutoff points so that the 
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player needs to adjust the number of operations to pass a level. For example, imagine that there 

are 10 similar tasks available at level t, and a player needs to finish 2 tasks in order to pass a level 

in the previous setup. When the required points increase, players may need to finish 3 tasks to pass 

the level. Since the game is not a skill-heavy one, more operations at the same level may not lead 

to a substantial increase in player’s ability. Furthermore, available tasks at the same level are 

similar in terms of their difficulty level, and thus it is less likely for players to gain extra ability by 

completing more tasks at the same level. We also want to point out that the two new point designs 

are relatively comparable to the current one, as the total required number of points to pass all the 

levels of the game remain the same as what is observed from the data (i.e. H24 is fixed to be the 

same as what we observe from the data). Therefore, changing the cutoff points for level 

progression under these two similar point designs is unlikely to significantly change the evolution 

of player efficiency.  

 

6. Conclusion 

In this paper, we study player level-progression decisions in online gaming where behavioral 

biases and risk seeking are likely to exist. Players make play-or-quit decisions at each game level 

and, after completing each level, can observe their realized operation efficiency. We model players’ 

learning about the evolution of the game-playing operation efficiency, and consider two 

specifications of how players form predictions on their playing efficiency and utility: under 

rational expectations and under bounded rationality. The proposed boundedly rational approach 

can flexibly capture players’ over/unbiased/under estimation tendencies and risk 

averse/neutral/seeking preferences, two features that are particularly relevant when modeling the 

consumption of entertainment products. We cast the individual play-or-quit decisions in a forward-
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looking optimal stopping framework, and develop an algorithm for estimating such dynamic 

models that incorporate players’ bounded rationality. We find the boundedly rational approach 

substantially outperforms the rational expectation approach. 

The managerial contributions of this research are two-fold. First, our study helps game 

developers better understand users’ online gaming behavior. An interesting behavioral construct 

we have identified in our empirical context relates to how consumers predict their operation 

efficiency and utility. We have identified two types of game players: “Experiencers” vs. 

“Achievers”. While “Experiencers” derive more utility from playing the game and become satiated 

more slowly with their marginal return from operations as they advance game levels, “Achievers” 

are more ambitious and obtain a large boost from finishing the entire game, and hence may be 

more willing to spend money on “shortcuts” (such as coins or tools within the game) which will 

speed them towards the finish line.   

Second, our proposed modeling framework can help game developers to improve its 

current level-progression point schedule to more effectively engage players. Game marketers can 

also adopt our framework to configure surprising bonus points, a common marketing practice 

promotion in online gaming, based on player’s different perceived uncertainty, so that players 

could play more. 

One limitation of the current study relates to data constraints. For each completed level, we 

observe number of operations and required passing points. For any incomplete level which is the 

stopping point for a player, we do not know how much the person has played in that level. 

Furthermore, in the online gaming context, the level-progression decision can be also affected by 

the type of tasks completed in each level. Since we do not have task-specific information, we 

cannot study them in our context. Such additional data would allow us to estimate a richer model 
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of players’ gameplay decisions, potentially focusing not only on level progression but also on task 

choices within each level. Finally, it is likely that some players are using the boundedly rational 

decision-making whereas other are using the fully rational decision-making. With more 

information about individual players, a fruitful future research area is to model such structural 

heterogeneity.    
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Table 1a. Mean summary statistics 

 
Level Required 

Point 

Operation 

Quantity 

Operation 

Efficiency 

Attrition 

Rate 

Operation 

Quantity 

Operation 

Efficiency 

Attrition 

Rate 

1 8 3.304 2.535 
 

13.468 14.302 0.204 

2 42 15.341 3.568 
 

3 100 17.186 15.611 
 

4 200 18.040 35.495 0.204 

5 300 21.142 42.136 0.178 30.627 47.505 0.162 

6 430 26.846 43.875 0.145 

7 600 32.209 58.570 0.163 

8 720 36.374 41.001 0.152 

9 900 36.562 51.945 0.174 

10 1000 35.946 49.972 0.139 36.536 63.562 0.154 

11 1000 37.338 64.925 0.168 

12 1100 32.415 60.675 0.151 

13 1300 36.173 73.659 0.169 

14 1400 40.810 68.580 0.143 

15 1500 44.154 60.090 0.071 48.158 64.689 0.149 

16 1500 37.286 71.398 0.103 

17 1800 46.102 65.160 0.157 

18 2000 58.087 54.674 0.220 

19 2100 55.162 72.123 0.196 

20 2200 49.483 93.799 0.216 54.136 84.803 0.103 

21 2600 58.862 87.362 0.000 

22 2700 57.167 69.729 0.172 

23 2800 50.455 73.112 0.083 

24 2900 54.714 100.013 0.045 
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Table 1b. Summary statistics of operation quantity 

 
Level Mean Std. Dev. Min Max 

1 3.304 0.803 3.000 7.000 

2 15.341 6.538 5.000 38.000 

3 17.186 14.221 2.000 67.000 

4 18.040 18.348 2.000 125.000 

5 21.142 21.747 2.000 155.000 

6 26.846 25.568 3.000 171.000 

7 32.209 29.222 2.000 221.000 

8 36.374 30.043 6.000 218.000 

9 36.562 27.291 6.000 171.000 

10 35.946 30.302 8.000 215.000 

11 37.338 38.898 3.000 326.000 

12 32.415 22.430 9.000 136.000 

13 36.173 24.147 3.000 100.000 

14 40.810 27.475 5.000 124.000 

15 44.154 33.403 7.000 221.000 

16 37.286 21.107 10.000 116.000 

17 46.102 30.007 10.000 151.000 

18 58.087 48.602 14.000 283.000 

19 55.162 44.810 9.000 250.000 

20 49.483 30.731 4.000 138.000 

21 58.862 35.728 7.000 135.000 

22 57.167 37.064 18.000 174.000 

23 50.455 30.671 22.000 133.000 

24 54.714 33.956 12.000 114.000 
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Table 1c. Summary statistics of operation efficiency 

 
Level Mean Std. Dev. Min Max 

1 2.535 0.560 1.143 2.667 

2 3.568 2.806 1.105 8.400 

3 15.611 21.689 1.493 50.000 

4 35.495 51.086 1.600 200.000 

5 42.136 63.314 1.935 150.000 

6 43.875 74.252 2.515 143.333 

7 58.570 115.557 2.715 300.000 

8 41.001 54.561 3.303 120.000 

9 51.945 75.118 5.263 150.000 

10 49.972 55.083 4.651 125.000 

11 64.925 98.262 3.067 333.333 

12 60.675 85.336 8.088 122.222 

13 73.659 104.583 13.000 433.333 

14 68.580 106.348 11.290 280.000 

15 60.090 67.035 6.787 214.286 

16 71.398 108.849 12.931 150.000 

17 65.160 72.450 11.921 180.000 

18 54.674 37.823 7.067 142.857 

19 72.123 77.676 8.400 233.333 

20 93.799 132.734 15.942 550.000 

21 87.362 110.091 19.259 371.429 

22 69.729 45.487 15.517 150.000 

23 73.112 35.778 21.053 127.273 

24 100.013 122.734 25.439 241.667 
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Table 2a. Proposed model with different number of latent class 

  
Model - One Class Model - Two Classes (Best Fit) Model - Three Classes 

Log Marginal 

Likelihood 

-2751.976   -2633.42 
  

  -2630.1 
    

  

No. of Parameters 11   23 
  

  35 
    

  

DIC: 5503.666   5263.828 
  

  5267.846 
    

  
 

Class 1 
 

Class 1 
 

Class 2 
 

Class 1 
 

Class 2 
 

Class 3 
 

 
Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. 

Percent_of_Class NA NA 0.783 0.025 NA NA 0.296 0.042 0.017 0.005 NA NA 

γ0 -1.539 0.150 -1.850 0.157 0.961 0.047 -2.301 0.125 0.578 1.485 -1.733 0.114 

γ1 -0.017 0.032 -0.020 0.071 -0.713 0.057 0.044 0.020 0.560 0.292 -0.704 0.111 

ω0 -2.145 0.071 -1.884 0.072 -2.946 0.043 -2.715 0.067 -2.689 1.251 -2.495 0.079 

ω1 -0.157 0.034 -0.214 0.051 -0.248 0.036 -0.224 0.042 -0.028 0.168 -0.251 0.037 

t0 0.028 0.029 -0.026 0.041 0.361 0.041 0.376 0.077 -5.505 2.796 -0.037 0.025 

t1 -0.011 0.006 -0.007 0.010 -0.025 0.003 -0.050 0.010 0.007 0.172 0.002 0.003 

C 1.019 0.116 0.472 0.069 2.619 0.032 0.957 0.102 12.388 3.228 1.461 0.142 

l 2.450 0.089 2.503 0.087 1.789 0.070 2.101 0.180 0.255 1.266 2.163 0.110 

σ2 0.831 0.022 1.119 0.046 0.418 0.021 0.441 0.027 0.445 0.094 1.185 0.054 

α0 2.166 0.056 2.544 0.094 1.460 0.090 1.560 0.099 1.844 0.276 2.667 0.136 

α1 0.385 0.016 0.277 0.026 0.592 0.026 0.546 0.029 0.553 0.064 0.249 0.033 
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Table 2b. Model comparison by specification (one class - without heterogeneity)  

 
  Proposed Model – 

Forward Looking and 

Boundedly Rational 

Model A1 –  

Myopic and Boundedly 

Rational 

Model A2 – 

Forward Looking and 

Fully Rational  

Model A3 –  

Forward Looking, Biased 

Perceived Mean, and 

Fully Rational 

Log Marginal 

Likelihood -2751.976   -2768.933   -3086.040   -3057.4   

No. of Parameters 11   10   10   11   

DIC: 5503.666   5537.924   6047.047   5842.397   

 Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. 

Percent_of_Class NA NA NA NA NA NA NA NA 

γ0 -1.539 0.150 -1.350 0.062 -5.735 0.087 -5.852 0.107 

γ1 -0.017 0.032 -0.221 0.030 0.068 0.051 0.085 0.085 

ω0 -2.145 0.071 -3.282 0.142 -7.773 0.554 -7.501 0.42 

ω1 -0.157 0.034 -0.261 0.025 -0.285 0.020 -0.284 0.014 

t0 0.028 0.029 -0.005 0.022 0.043 0.018 0.035 0.021 

t1 -0.011 0.006 0.012 0.002 -0.004 0.003 -0.002 0.003 

C 1.019 0.116 NA NA 1.230 0.087 1.168 0.052 

l 2.450 0.089 1.129 0.057 NA NA 1.992 0.489 

σ2 0.831 0.022 0.831 0.023 0.816 0.025 0.807 0.022 

α0 2.166 0.056 2.166 0.055 2.166 0.055 2.166 0.055 

α1 0.385 0.016 0.385 0.016 0.384 0.016 0.385 0.016 
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Table 2c. Model comparison by specification (two classes – with heterogeneity) 

  
Proposed Model – 

Forward Looking and Boundedly Rational 

Model B1 –  

Myopic and Boundedly Rational 

Log Marginal 

Likelihood 

-2633.417 
  

  -2667.498 
  

  

No. of Parameters 23 
  

  21 
  

  

DIC: 5263.828 
  

  5338.341 
  

  
 

Class 1 
 

Class 2 
 

Class 1 
 

Class 2 
 

 
Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. 

Percent_of_Class 0.783 0.025 NA NA 0.876 0.018 NA NA 

γ0 -1.850 0.157 0.961 0.047 -2.197 0.076 2.021 0.055 

γ1 -0.020 0.071 -0.713 0.057 0.049 0.014 -0.260 0.013 

ω0 -1.884 0.072 -2.946 0.043 -3.288 0.100 -1.818 0.046 

ω1 -0.214 0.051 -0.248 0.036 -0.175 0.031 -0.258 0.021 

t0 -0.026 0.041 0.361 0.041 0.164 0.031 -2.863 0.185 

t1 -0.007 0.010 -0.025 0.003 -0.040 0.008 0.170 0.009 

C 0.472 0.069 2.619 0.032 NA NA NA NA 

l 2.503 0.087 1.789 0.070 1.151 0.037 -0.037 0.057 

σ2 1.119 0.046 0.418 0.021 1.005 0.028 0.396 0.022 

α0 2.544 0.094 1.460 0.090 2.412 0.074 1.341 0.107 

α1 0.277 0.026 0.592 0.026 0.306 0.021 0.637 0.030 
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Table 2c (continued). Model comparison by specification (two classes – with heterogeneity) 

  
Model B2 – 

Forward Looking and Fully Rational 

Model B3 –  

Forward Looking, Biased Perceived Mean, 

and Fully Rational 

Log Marginal 

Likelihood -2951.541     -2821.726     

No. of Parameters 21     23     

DIC: 5750.371     5465.286      

Class 1  Class 2   Class 1  Class 2    

Estimate 
Std. 

Err. 
Estimate 

Std. 

Err. 
Estimate 

Std. 

Err. 
Estimate 

Std. 

Err. 

Percent_of_Class 0.307 0.061 NA NA 0.301 0.044 NA NA 

γ0 -5.460 0.330 -6.083 0.147 -5.676 0.138 -5.494 0.184 

γ1 0.007 0.063 0.095 0.072 -0.268 0.108 -0.208 0.097 

ω0 -8.378 0.797 -8.071 0.399 -6.009 0.103 -8.559 0.711 

ω1 -0.277 0.022 -0.258 0.036 -0.211 0.052 -0.268 0.031 

t0 0.247 0.088 -0.019 0.037 0.184 0.043 0.006 0.024 

t1 -0.018 0.006 -0.004 0.006 -0.010 0.004 -0.002 0.003 

C 1.884 0.111 1.166 0.076 1.573 0.167 1.362 0.113 

l NA NA NA NA 0.644 0.109 2.549 0.175 

σ2 0.443 0.029 1.177 0.071 0.418 0.025 1.085 0.046 

α0 1.630 0.111 2.540 0.136 1.413 0.089 2.626 0.112 

α1 0.540 0.032 0.282 0.035 0.602 0.026 0.261 0.030 
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Table 3a. Model robustness check 

  
Proposed Model Model C1 - Unbiased Prediction Model C2 – Mean + Constant 

Log Marginal Likelihood -2633.417 
  

  -2644.781 
  

  -2637.322 
  

  

No. of Parameters 23 
  

  21 
  

  23 
  

  

DIC: 5263.828 
  

  5279.351 
  

  5267.590 
  

  
 

Class 1 
 

Class 2 
 

Class 1  Class 2  Class 1  Class 2  
 

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. 

Percent_of_Class 0.783 0.025 0.217 0.025 0.761 0.024 NA NA 0.755 0.032 NA NA 

γ0 -1.850 0.157 0.961 0.047 -2.593 0.120 0.722 0.072 -2.819 0.099 0.208 0.057 

γ1 -0.020 0.071 -0.713 0.057 0.049 0.018 -0.659 0.077 0.042 0.034 -0.581 0.106 

ω0 -1.884 0.072 -2.946 0.043 -4.831 0.123 -4.003 0.102 -3.457 0.171 -2.989 0.056 

ω1 -0.214 0.051 -0.248 0.036 -0.165 0.030 -0.283 0.013 -0.279 0.015 -0.271 0.025 

t0 -0.026 0.041 0.361 0.041 -0.022 0.043 0.279 0.047 0.037 0.060 0.220 0.042 

t1 -0.007 0.010 -0.025 0.003 -0.039 0.013 -0.017 0.004 -0.025 0.014 -0.012 0.003 

C 0.472 0.069 2.619 0.032 0.276 0.100 2.040 0.100 1.358 0.046 1.560 0.090 

l 2.503 0.087 1.789 0.070 NA NA NA NA 1.212 0.082 1.237 0.065 

σ2 1.119 0.046 0.418 0.021 1.197 0.049 0.431 0.018 1.141 0.037 0.429 0.022 

α0 2.544 0.094 1.460 0.090 2.597 0.095 1.485 0.082 2.607 0.104 1.466 0.081 

α1 0.277 0.026 0.592 0.026 0.265 0.026 0.582 0.023 0.263 0.028 0.588 0.023 
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Table 3b. Model robustness check (continued) 

  
Model C3 - No C Model C4 - No Interaction Model C5 - Quadratic 

Log Marginal Likelihood -2644.609 
  

  -2641.960 
  

  -2660.407 
  

  

No. of Parameters 21 
  

  15 
  

  21 
  

  

DIC: 5290.595 
  

  5284.107 
  

  5318.758 
  

  
 

Class 1  Class 2  Class 1  Class 2  Class 1  Class 2  
 

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. Estimate Std. Err. 

Percent_of_Class 0.748 0.032 NA NA 0.604 0.046 NA NA 0.793 0.028 NA NA 

γ0 -2.214 0.113 1.350 0.086 -2.943 0.557 -2.835 0.166 -2.835 0.185 0.118 0.060 

γ1 0.044 0.018 -0.808 0.089 -0.288 0.359 0.072 0.409 -0.966 0.026 -0.948 0.049 

ω0 -2.515 0.071 -3.563 0.094 -3.642 0.444 -4.572 0.231 -4.904 0.073 -3.951 0.040 

ω1 -0.205 0.034 -0.145 0.043 0.010 0.169 0.043 0.190 -0.258 0.044 -0.266 0.027 

t0 0.029 0.041 -0.001 0.050 -0.025 0.021 0.025 0.019 -0.099 0.025 0.264 0.081 

t1 -0.022 0.009 0.010 0.004 0.049 0.152 -0.007 0.154 0.007 0.003 -0.020 0.006 

C NA NA NA NA 1.444 0.323 1.441 0.254 0.036 0.079 2.094 0.075 

l 1.740 0.068 2.313 0.054 2.184 0.257 2.432 0.141 2.575 0.072 2.569 0.059 

σ2 1.128 0.058 0.416 0.023 1.199 0.055 0.441 0.021 1.212 0.046 0.420 0.019 

α0 2.591 0.099 1.461 0.081 2.734 0.123 1.478 0.082 2.344 0.083 1.746 0.087 

α1 0.268 0.027 0.590 0.024 0.235 0.032 0.581 0.023 0.322 0.024 0.518 0.025 
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 Table 4. The first counterfactual analysis by changing variance σ2 

 

 

 

Table 5. The second counterfactual analysis for improving the current cutoff point design  

 

  

Current Design 

(Fcurrent) 

Small Curvature 

Design (Fsmall) 

Large Curvature 

Design (Flarge) 

f0 (initial level coefficient) 0.042 0.042 0.042 

f1 (curvature coefficient) 0.102 0.081 (-20%) 0.122 (+20%) 

f2 (slope coefficient) 4624.312 7480.619 2939.540 

Operations – Overall 207.653 240.453 (+15.8%) 179.537 (-13.5%) 

Operations – Class 1 (Experiencers) 141.472 170.102 (+20.2%) 117.139 (-17.2%) 

Operations – Class 2 (Achievers) 447.138 495.030 (+10.7%) 405.336 (-9.3%) 

 

 

 

  

Simulated Number of Levels Played 

Change of  σ2 Overall Class 1 (Experiencers) Class 2 (Achievers) 

-0.400 5.375 4.255 9.118 

-0.200 5.547 4.320 9.648 

0.000 5.703 4.364 10.176 

0.200 5.778 4.396 10.395 

0.400 5.831 4.417 10.554 

1.000 5.900 4.446 10.761 

2.000 5.925 4.455 10.833 

3.000 5.922 4.455 10.823 

4.000 5.916 4.454 10.800 
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Figure 1. Average operating efficiency of different groups of players 
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Figure 2a. Observed and fitted overall survival rate by game level 

 

 

 

 

 

Figure 2b. Simulated survival rate by game level and by class 
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Figure 3a. Average gain from operation over game level over game levels 

 

 
 

 

 

 

Figure 3b. Average loss from operation over game levels 
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Figure 3c. Average SOA over game levels 

 

 
 

 

 

 

Figure 3d. Average future value over game levels 
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Figure 4a. Average of the individual perceived mean for the intercept over game levels 

 

 

 

 

 

 

Figure 4b. Average of the individual perceived mean for the slope over game levels 
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Figure 4c. Average of the individual perceived variance for the intercept over game levels 

 

 
 

 

 

 

Figure 4d. Average of the individual perceived variance for the slope over game levels 
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Figure 5a. Cumulative required passing point designs 

 

 
 

 

 

Figure 5b. Incremental required passing point designs 
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