Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2019 | metadata_only
Journal Article

Fractional strain-gradient plasticity


We develop a strain-gradient plasticity theory based on fractional derivatives of plastic strain and assess its ability to reproduce the scaling laws and size effects uncovered by the recent experiments of Mu et al. (2014, 2016, 2017) on copper thin layers undergoing plastically constrained simple shear. We show that the size-scaling discrepancy between conventional strain-gradient plasticity and the experimental data is resolved if the inhomogeneity of the plastic strain distribution is quantified by means of fractional derivatives of plastic strain. In particular, the theory predicts that the size scaling exponent is equal to the fractional order of the plastic-strain derivatives, which establishes a direct connection between the size scaling of the yield stress and fractionality.

Additional Information

© 2019 Elsevier Masson SAS. Received 1 November 2018, Revised 8 January 2019, Accepted 7 February 2019, Available online 22 February 2019.

Additional details

August 19, 2023
August 19, 2023