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Spectral properties of microcantilevers in viscous fluid

Matthew T. Clark
Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA

John E. Sader
Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia

Jason P. Cleveland
Asylum Research, 6310 Hollister Ave., Santa Barbara, California 93117, USA

Mark R. Paul™
Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA

(Received 28 December 2009; published 12 April 2010)

We explore analytically, numerically, and experimentally the spectral properties of the flexural vibrations of
micron scale cantilevers in a viscous fluid that are driven externally or by Brownian motion. Although the
physical origins of driven and thermal cantilever dynamics are quite different, we show that in each case the

dynamics can be calculated deterministically using an impulse or step force, respectively. The stochastic
dynamics of the cantilever are related to the removal of a step force by the fluctuation-dissipation theorem to
yield the autocorrelation and noise spectral density of equilibrium fluctuations. The dynamics of a cantilever
driven externally is related to an impulse in force by transfer function theory. Using this approach, we explore
the differences between the driven and thermal spectra of microcantilevers. We find that higher order cantilever

modes and the spatial distribution of the applied load for the external drive can be critical to the relationship

between the thermal and driven spectra.
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I. INTRODUCTION

The dynamics of micron scale elastic cantilevers in vis-
cous fluid are of broad scientific and technological interest
[1,2]. For example, experiments using atomic force micros-
copy continue to make significant contributions in a wide
variety of fields [3]. In practice, the cantilevers and their
configurations can be quite complex. For example, cantilever
geometries can be V-shaped [3], there are surrounding walls
[4-6], there are arrays of cantilevers [7,8], and the cantile-
vers can be placed in vacuum with fluid filled channels em-
bedded inside the cantilever [9,10].

Microcantilevers typically have rectangular or V-shaped
planforms. Figure 1 shows two geometries that we will ex-
plore in detail. The cantilever dynamics can be generated by
active or passive means. Common active drive techniques
include magnetomotive, acoustic, and piezolectric ap-
proaches [3]. We will also explore the dynamics of a
V-shaped cantilever that is actuated using a recently devel-
oped magnetomotive drive approach [11] that is shown sche-
matically in Fig. 1(b). A wire enters one leg of the V-shaped
cantilever and leaves through the other. An electric current is
passed through the wire while the cantilever is placed in a
magnetic field resulting in a spatially varying Lorentz force
that causes the cantilever to deflect. In a typical experiment,
the magnetic field is varied sinusoidally in time and swept
over a wide range of frequency, in order to measure the
amplitude-frequency response of the cantilever. The time
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variation in the angle of the cantilever tip is measured opti-
cally. On the other hand, passive actuation is the result of the
thermal motion of matter and yields stochastic cantilever dy-
namics [12]. Despite the fact that the physical origin of the
motion is seemingly quite different for active and passive
actuation, we will show that in both cases the precise canti-
lever dynamics can be quantified in a unified manner using
only deterministic calculations.

(a)

FIG. 1. Microcantilevers with rectangular and V-shaped plan-
forms with coordinate directions (x,y,z). (a) A rectangular cantile-
ver of length L, width b, and thickness 4. (b) A V-shaped cantilever
of length L, arm length L;, arm width b, and arm separation b,. The
V-shaped cantilever can be driven externally using magnetomoitve
actuation. The cantilever is placed in a sinusoidally varying mag-
netic field B(r) while a constant current / is applied, as shown,
resulting in flexural displacements in the z direction due to the
Lorentz force. Values for the material properties and geometry are
given in Table L.
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In an effort to keep the notation simple, we will refer to
the spectral properties of the cantilever displacement or angle
as the power spectrum P(w) or the noise spectral density
G(w) when the cantilever is driven actively or thermally,
respectively, where w is the frequency of oscillation. We note
that the noise spectral density G(w) is a power spectral den-
sity whereas the power spectrum P(w) is the squared mag-
nitude of the Fourier-transformed displacement/angle signal.
The driven oscillations of the cantilever are found using ba-
sic ideas from transfer function theory by computing the can-
tilever response to a force impulse. The stochastic Brownian
dynamics are determined from linear response theory and the
fluctuation-dissipation theorem [13,14] by computing the
cantilever response to the removal of a step force. The es-
sence of our approach is captured by the Onsager regression
hypothesis, which states that fluctuations at equilibrium are
governed by the same laws in which a finite perturbation
from equilibrium returns to equilibrium (cf. [15,16]). Al-
though we consider only flexural oscillations the approach is
quite general and can be applied to other modes of oscilla-
tion such as torsional or in-plane modes if desired. Using
deterministic finite element numerical simulations for the
precise geometries and conditions of interest allows us to
compare directly with experimental results.

In this article, we provide a comprehensive and general
approach capable of describing the deterministic and sto-
chastic dynamics of micron and nanoscale cantilevers in a
viscous fluid that is valid for a wide range of experimentally
relevant conditions. Although the physical origins of the can-
tilever motion are quite different when the driving force is an
external actuation or due to Brownian motion, we show that
the cantilever dynamics can be understood using straight for-
ward deterministic calculations. We develop this analytically
and describe a numerical approach to implement these ideas
to compare directly with experimental measurement. We find
that contributions of higher flexural modes of vibration and
the spatial variation in the driving force are essential to
building a physical understanding of the relationship be-
tween thermal and externally driven spectra.

The paper is organized into three main sections. First,
analytical expressions are developed for the power spectrum
and noise spectral density valid in the limit of long and thin
cantilevers undergoing small deflections. Next, a numerical
approach is presented for calculating the noise and power
spectra using simple deterministic calculations and we show
that these results yield the exact analytical expressions given
in Secs. I A and II B, respectively. We then present our find-
ings and compare analytical, numerical, and experimental
results to explore the driven and stochastic dynamics of a
rectangular cantilever and a V-shaped cantilever in fluid. The
ratio of the noise spectral density to the power spectrum is
used to explore the spectral properties of the cantilevers.

II. THEORY

We now consider the power spectrum and noise spectral
density of a rectangular cantilever undergoing flexural oscil-
lations in fluid. Our analytical description of a cantilever
oscillating in fluid follows that of Sader [17]. The resulting
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expressions are valid for long and thin cantilevers L>b>h
and for small displacements [17] where L is the cantilever
length, b is the cantilever width, and £ is the cantilever thick-
ness. In order to isolate the effects of higher flexural modes,
we formulate the solution as an eigenfunction expansion of
the cantilever mode shapes, in a manner similar to what is
found in Refs. [18,19].

The equation governing the flexural oscillations of the
cantilever is given by [17]

El a4W(x,t)+ PW(x,1)
Lt ox* K o

= F(x,1) + F(x,1), (1)

where W(x,1) is the transverse displacement of the cantilever
in the z direction as a function of its axial position x and time
t. The axial position x is nondimensionalized with the canti-
lever length L. On the right hand side F is the force per unit
length acting on the cantilever due to its interaction with the
surrounding fluid and F,; is the force per unit length driving
the cantilever motion. In our notation F,; is general and can
be either an externally applied force or the Brownian force.
For the remaining parameters, E is the Young’s modulus, 7 is
the area moment of inertia, and w is the mass per unit length
of the cantilever. Since we are interested in solutions with
dynamics oscillating in time, it is convenient to transform
into Fourier space to yield,

El g W(x, )

i o +,uw2W=I:"(x,w) +I:"d(x,a)), (2)

where w is the frequency of oscillation and we have used the
transform convention,

©

Wi,w)= | Wik, edt, (3)

—o0

©

1 . ,
W,)=—] Wxwedo. (4)
21

—o0

For the case of a cantilever beam of circular cross section
oscillating in an unbounded fluid, the expression for the fluid
force is [17,20,21],

Flx,0) = ;—Tplwzbzf‘c(a))ﬁ/(x, w), (5)

where p; is the density of the liquid and T, is the hydrody-
namic function for a circular cylinder. At large mode num-
bers, the hydrodynamic function depends on mode number
[18,22]. However, for moderate mode number n <3 the hy-
drodynamic function for a circular cylinder is independent of
mode number,

i
4iK (- iViRe)

l(w)=1+—————
\"%K o(—i V’%)

(6)
where i is the usual imaginary unit, K, and K; are Bessel
functions, and the subscript ¢ is used to denote the result for
a circular cylinder. The nondimensional parameter Re is the
frequency parameter and plays the role of a frequency based
Reynolds number,
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Re = 1 (7)
where v is the kinematic viscosity of the fluid. The hydrody-
namic force induced by an infinitely thin blade oscillating
perpendicular to its face is well approximated by that of a
circular cylinder of identical width; the maximum difference
is of the order of 10% [23]. The hydrodynamic function for
an oscillating flat blade can be expressed as,

I'(w) = Qo) (0), (8)

where the complex valued correction factor ((w) is given
explicitly in Ref. [17]. In all of our results we use the hydro-
dynamic function for a flat blade in Eq. (8).

We now construct an eigenfunction expansion,

W(x,0) = 2 f(@) ¢, (x), )
n=1

where n is the mode number, f,(w) is the frequency depen-
dence of the nth mode, and ¢,(x) is the normalized mode
shape for the nth mode given by,

¢, (x) = cos(C,x) — cosh(C,x)

C:EEEZ; : ;(:13}?(((3")) [sinh(C,x) = sin(C,.x)],
(10)
where C,, is the nth root of,
1 +cos C, cosh C,=0. (11)

Inserting Eq. (9) into Eq. (5), using the orthogonality of the
beam modes, and rearranging yields,

fn(w) )4)f (ZS,,(X)Fd(X a))dx (12)

EI(C4

where

W 1/2
B(w)=C1(;l>( 4pth(R)> (13)

Therefore, given a particular driving force F,(x,w) one has
the desired solution using Egs. (12) and (9).

A. Stochastic dynamics of a cantilever
due to Brownian motion

For the case where the cantilever is driven by Brownian
motion, we have

3

E,C4—B()4 Fg (o), (14)

folw) =

where
1
ﬁB,n(w) =Lf qsn(x)FB,n(x’ w)dx~ (15)
0

In our notation, F pa(x, ) is the Brownian force per unit
length acting on the nth mode of the cantilever and F palw) is

PHYSICAL REVIEW E 81, 046306 (2010)

the total Brownian force acting on mode n. Inserting Eq. (14)
into Eq. (9) yields,

2 ¢n(x FB n(w)

Wi X, 0 . 16
(x,0) = C4 () (16)
The noise spectral density is then,
b (F B,

G,(x,o Wx w)|? ( ) & - 17
(x, @) = [W(x,0)|* = E C“ Bw)* . (17)

From the fluctuation-dissipation theorem,
|Fp(w) 2 = 4ks Ty, (), (18)

where kj is Boltzmann’s constant, 7 is the temperature, and
v,(w) is the total damping acting on mode n. For small mode
number n =<3 the damping is approximately mode indepen-
dent to yield,

ﬂw=$w%mxm, (19)

where I'; is the imaginary part of I" and y(w) is the damping
over the entire length of the cantilever. For larger mode num-
ber the hydrodynamic function becomes a function of n and
this can be included if desired using the results of Ref. [18],
which includes tabulated values for the hydrodynamic func-
tion. Using the above expression for the damping yields a
noise spectral density given by,

o 2
Gt =kt = | Wo)| S G2l @
B(w)
and when evaluated at the cantilever tip yields,
3\2 * no |2
G,(x=1,0)= 16kBT<§ ) Yw) z m ,
(21)

where we have used ¢,(1)=2(=1)" for all n. The noise spec-
tral density for any single mode n is,

2

_ ) )

3\2
nw()C w) 4kBT(L ) 7( )

and a physically more transparent expression can be found
using Egs. (13) and (19) to yield,

ksT Toal; % (x)
ko, (1= &*(1+ ToL)* + (@ T’
(23)

Gn w ('x )

where w=w/ wy, is the reduced frequency for the nth mode,
®, , is the resonant frequency of the nth mode in vacuum, &,
is the dynamic spring constant of mode n, and T', is the real
part of I'. The mass loading parameter

7o

24
4 ph @)

0=

expresses the ratio of the mass of a cylinder of fluid with
radius b/2 to the mass of the cantilever.
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In the limit of small displacements the angle of the canti-
lever O(x,r) with respect to the horizontal is given by the
axial derivative of W(x,r). Therefore, the noise spectral den-
sity measured using the cantilever angle is,

[’

2
. (25)

__rmx7

B( )*

Gylx,w) = 4kBT( ) o )

where ¢/ (x) is the axial derivative of the mode shape. For a
single mode n,

2

L*\? &y (x)
G, olx,0) = 4kBT<EI> o )‘C4 B |’ (26)
which is equivalent to,
G ( )_ kBT TOGF,[(ML(X)]Z
O w0 11 = (1 + Tyl ) P+ (@21
(27)

We note that when evaluated at the tip, x=1, the noise spec-
tral density based upon angle will have larger magnitudes for
the higher modes because ¢, (1)/ ¢,(1) increases with n [6].

B. Dynamics of a cantilever driven externally

We now consider the spectral properties of the cantilever
oscillations when an external oscillating force is applied.
From Eq. (12), it is clear that the spatial variation in the
applied force is important. In order to connect directly with
our experimental measurements using the spatially varying
Lorentz force shown in Fig. 1(b) we consider an externally
applied driving force of the form,

Fyat) = E{Si“(‘”‘”) r=¢ (28)

0 x>&

This corresponds to a sinusoidally time-varying and spa-
tially uniform force applied over the region x = & where Fj, is
a constant force, w, is the frequency of the driving force, and
¢ is a nondimensional constant where: é=1 corresponds to a
uniform applied sinusoidal force over the entire length of the
beam, and £=0 corresponds to the absence of the applied
force. In our calculations, this is a three-dimensional force
applied to the entire bottom surface of the cantilever over the
axial range given by & Transforming into Fourier space
yields,

3

flw) =~ EIC4 B

Pl (RN
- 6(w - wd))f d)n(x)F(x)dx, (29)
0

where & is the Dirac delta. Inserting Eq. (29) into Eq. (9) and
solving for the power spectrum in terms of the cantilever
displacement yields
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Pw(x> wd) =

n

2

¢
w Du(x) J ¢,(x)dx
0

7TL3F0>2
= , (30
( EI 2;; C, - B(wy)* (30)
and for any single mode, this simplifies to,
7TF0)2 fg 2
P ,wg)=| — . (xX)d.
(X, @) <4kn [ . ba(x)dx
2
¢,(x) 31)

X .

{[1 - @31+ Tl P + (@7,
In an experiment, one would sweep over w, to generate the
desired amplitude-frequency curve. In light of this and for
simplicity of notation, we use w=wy, in the following expres-
sions. Again, in the limit of small displacement, the power
spectrum in terms of angle is given by the axial derivative to
yield,

LF, 0I5, x)dx |
Polxw) :< 0) 21 c —OB(w)4 . (32)
and for any single mode, this yields,
2| ¢ 2
Pn,&(x’w) = (ZTF:) |:J() ¢n(x)dxi|
(T2
[, ()] (33)

{1 - @1+ TL )P + (@°Tol)?

There are a few points to make about these expressions
for the power spectrum when evaluated for the dynamics of
the cantilever tip. Since |/ (1)|>|¢,
in terms of angle will have larger relative values of the spec-
tra peaks for the higher modes than what would be found for
displacement measurements [6]. Also, the integral involving
& will affect the relative magnitude of the spectral peaks.

The coefficients modifying the relative magnitude of the
spectral peaks for the higher modes are different when the
driving force is only applied to the cantilever tip. For this
case,

F(x,1) = Fy sin(wg) x - 1), (34)

where the force impulse is applied at the cantilever tip. The
power spectrum in terms of cantilever displacement is,

4wF0L3>2 S (D, |
P (x,w)=|——— 35
Ww(X, ) ( £l E ~ Blw)* (35)
When evaluated at the cantilever tip this yields,
oo 2
877F0L3>2 1
P,(x=1,w)= 36
W= 1,0) ( g ) |2 E e | 09

For any single mode n, this can be written as,
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FIG. 2. A schematic of the forces used in the deterministic cal-
culations to compute the noise spectral density G(w) and power
spectrum P(w) of a cantilever of length L, width b, and height A.
The deterministic displacement of the cantilever tip is given by W;.
(a) The removal of a step force F applied to the cantilever tip is
used to determine the noise spectral density. (b) A spatially varying
force impulse is used to numerically compute the power spectrum
of flexural oscillations.

w_F0>2 b,(1) ¢, (x)
2k, ) (1= &*(1+ ToL,))? + (@°To)%)
(37)

Pn,w(x7 w) = (

and when evaluated at the cantilever tip,
1
(1= @ (1 +T,l))* + (@°TT)?)
(38)

'7TFO

2
Pn,w(x: 1,(1)) = (k_)

The corresponding expression for Py(x,w) is given by the
axial derivative of Eq. (35). However, the slope of the mode
shapes at the cantilever tip are a function of n and therefore
do not yield a simple reduced expression in this case.

III. NUMERICAL APPROACH

A. Stochastic dynamics—Fluctuation-dissipation theorem
(step response)

The stochastic dynamics of cantilevers in a viscous fluid
can be calculated from deterministic numerical simulations
using linear response theory and the fluctuation-dissipation
theorem [7,19]. The theoretical approach used is quite gen-
eral, only the necessary details are included here and the
reader is referred to Ref. [19] for a detailed discussion. The
cantilever is released from a prescribed excursion from equi-
librium and using linear response theory this is directly re-
lated to the autocorrelation in equilibrium fluctuations. The
approach is general and can be used to compute the stochas-
tic dynamics of any variable as long as the applied perturba-
tion is conjugate to the dynamical variable of interest. The
approach was originally used to compute the stochastic dy-
namics of cantilever displacement by calculating the cantile-
ver ring down due to the removal of step force [7]. A point
force is applied to the cantilever tip in the distant past and
removed at time =0,

Fy t=0

, 39
0 t>0 (39)

Fd(X*,t) = {

where x*=(L,b/2,h/2) are the coordinates where the tip
force is applied as shown in Fig. 2(a). The deterministic ring-
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down of the cantilever tip displacement W(¢) is related to
the autocorrelation in equilibrium fluctuations in cantilever
displacement by,

W,(2)
(w1 (0w (1)) = kT— (40)
Fy
where w(¢) is the stochastic displacement of the cantilever
tip and the noise spectral density is given by,

Gl =4 f (i (Owy(0)dr. (41)

0

More recently, this approach was used to compute the dy-
namics in terms of the experimentally important quantity of
cantilever angle [6]. In this case, a step point-torque is ap-
plied to the cantilever tip,

¢ 7o tSO
7,(x",1) = 0 >0 (42)

and the deterministic ring-down of the cantilever tip angle
®,(7) is related to the autocorrelation in equilibrium fluctua-
tions in cantilever angle by,

(C]
(6,(0)6,(0) = kyT ;(’), 3)
0

where 6,(z) is the stochastic angle of the cantilever tip with
respect to the horizontal. The noise spectral density is,

Gylw) =4 f (6,(0)6,(1))dr. (44)
0

We emphasize that in our notation the upper case W,(r) and
®,(7) indicate the deterministic motion of the cantilever tip
as it rings down and the lower case w(r) and 6,(¢) indicate
the stochastic motion of the cantilever tip due to thermal
motion.

B. Driven dynamics—transfer function (impulse response)

In order to calculate the cantilever dynamics due to an
external driving force, we compute the cantilever’s response
to an appropriately chosen impulse in force. This has been
done using an impulse in velocity to explore the driven dy-
namics of cantilevers beams of varying geometry, near a
solid wall, and including the effects of higher modes of os-
cillation [24]. In what follows, we focus upon the dynamics
of the fundamental flexural mode and allow the driving force
to vary spatially given by,

Foot) x=¢

0 x>E° (45)

Fy(x*,1) = {
where again x*=(L,b/2,h/2) indicates the tip coordinates
where the force is applied as shown in Fig. 2(b) where F| is
a constant force. The time dependent displacement of the
cantilever W(x, 1) due to the application of the drive force is
computed numerically. The power spectrum in terms of can-
tilever displacement is then given by

046306-5



CLARK et al.

PHYSICAL REVIEW E 81, 046306 (2010)

TABLE 1. Properties of the rectangular (1) and V-shaped (2) cantilevers shown in Fig. 1. The rectangular
cantilever is the C2 cantilever of Ref. [17]. The V-shaped cantilever is an Olympus OMCL-TR400PSA lever.
Given are the length L, width b, height &, spring constant k, torsional spring constant k,, and the resonant
frequency in vacuum f{,. For the V-shaped cantilever, the distance between the two arms at the base is b
=106 um and the distance from the base to the paddle region is L;=40 wum. The values of &, k,, and f, have
been computed from finite element numerical simulations. Both cantilevers are mostly composed of silicon
nitride, the rectangular cantilever has a Youngs modulus £=174 GPa and a density p.=2320 kg and for the
V-shaped cantilever E=172 GPa and p.=2329 kg/m?. The cantilevers are placed in room temperature water
with temperature 7=298 K, density p;=997 kg/m?, and dynamic viscosity 7=8.59 X 107 kg/m-s.

L b h k k, fo

Cantilever (um) (um) (pm) (N/m) (N-m/rad) (kHz)
(1) 197 29 2 1.3 1.6Xx 1078 71
(2) 100 13.4 04 0.08 2.5% 10710 32

P, (x,») = |W(x,0)[%. (46)

The power spectrum in terms of cantilever angle is found by
computing the slope of W(x,?) at the region of interest to
yield O(x,) and

Pylx,0) = |0(x,w). (47)

An advantage of this approach is that the complete spectral
response over all frequency, and for all modes, is determined
from a single numerical simulation. The alternative of per-
forming many simulations at different frequencies is compu-
tationally prohibitive for these systems.

It is interesting to point out a convenient simplification for
the special case of an external actuation force applied to the
cantilever tip only. For this situation, the power spectrum of
cantilever oscillations can by found by applying a force im-
pulse to the cantilever tip using the approach described
above. However, in this case, the dynamics of the cantilever
due to the removal of a step force applied to the tip is cap-
tured by the imaginary part of the cantilever response to the
impulse [cf. Eq. (20) of Ref. [19]]. Therefore, for this case,
both the power spectrum and noise spectral density are con-

10°

210" E
\6 E
O ]
10%F E
r S .7 ]
L ] | T===q i
0 0.5 1 1.5 2

(a) (D/O)O

veniently found from a single deterministic calculation, the
response to a force impulse applied to the cantilever tip.

IV. DISCUSSION

A. Rectangular cantilever: Comparison of analytics
with numerics

We first quantify the driven and stochastic dynamics of
the rectangular cantilever described in Fig. 1(a) and Table I.
A comparison of the noise spectral density and power spec-
trum are shown in Fig. 3 where the solid lines are from full
numerical simulations and the dashed lines are analytical
predictions. The spectra have been normalized by their maxi-
mum values and the frequency is plotted relative to the reso-
nant frequency of the fundamental mode in vacuum. The
noise spectral densities are shown in panel (a) and the power
spectra are shown in panel (b). These results are for measure-
ments based upon the angle of the cantilever tip.

The analytical prediction of the noise spectral density is
given by Eq. (25) and the numerical results are computed
using the torque-angle formulation discussed in Sec. IIT A.
For the power spectrum, we have assumed a spatially uni-

10 .
§ 1
o’ |

10%E E

105 05 ] 15 2
(b) o/ (1)0

FIG. 3. A comparison of the computed noise spectral density and power spectrum with analytical predictions for the rectangular
cantilever. (a) The variation in the noise spectra Gy(x=1,w) with frequency. (b) The variation in the power spectra Pyx=1,w) with
frequency for the case of a spatially uniform driving force {=1. In both panels, the solid lines are results from numerical simulations and the
dashed lines are analytical predictions. The spectra have been normalized by their maximum values.
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10°F

FIG. 4. (Color online) A comparison of the computed power spectra and noise spectral densities with experimental measurements using
the V-shaped cantilever. (a) The variation in the noise spectral density Gy(x=1,w) with frequency where the solid line represents experi-
mental measurements and the dashed line are results from finite element numerical simulations. (b) The variation in the power spectra
Pyx=1,w) with frequency. The solid line are results from experimental measurements and the dashed line is from numerical simulations.
The simulations were conducted using a force impulse corresponding to the iDrive magnetomotive actuation. The blue circles are results
from long-time numerical simulations conducted at five different frequencies. (c) A closer view of the peak to allow a better comparison of

the experimental and numerical results.

form driving force that varies sinusoidally in time, which is
given by Eq. (28) where ¢=1. The analytical results are
found using Eq. (33) and the numerical results are computed
from the cantilever response to an impulse in force as dis-
cussed in Sec. III B. Overall, the agreement is very good
between the numerical and analytical results.

All of our deterministic computations are performed using
transient three-dimensional finite element numerical simula-
tions [25] for the fluid-solid interaction problem that de-
scribes the motion of the cantilever in a viscous fluid. We
have performed extensive spatial and time resolution tests to
ensure the accuracy of our numerical results. We have cho-
sen the time step and spatial discretization in order to accu-
rately compute the first resonance in fluid while incurring a
reasonable computational overhead. For these simulations,
we used 250X 10° elements with a uniform rectangular ge-
ometry having an average side length of approximately Ax
~1.5 wm and the time step was chosen to be Ar=0.2 us. It
is useful to relate these values to properties of the beam in
vacuum to provide some insight into how to estimate these
values beforehand. The spatial resolution must be chosen to
effectively resolve the frequency dependent viscous bound-
ary layer that surrounds the cantilever. An estimate of the
required spatial discretization is Ax= &, where 5,=\v/w, is
the value of the Stokes length when measured using the reso-
nant frequency in vacuum. For temporal discretization, we
have found that ~70 time steps per period of oscillation of
the cantilever in vacuum is sufficient. In addition, care was
taken to ensure that the bounding no-slip side walls of the
computational domain were sufficiently distant so as to not
affect the results significantly. The nearest side wall from the
cantilever tip for these simulations was 30 wm.

The deviations between the numerical and analytical re-
sults for frequencies smaller and larger than the fundamental
resonance in fluid are due to limitations in the computations.
At low frequency, the numerical results are limited by the
finite simulation time used to compute the cantilever ring

down and the finite precision with which it is computed. At
large frequencies, the computational results are most limited
by spatial resolution constraints. The thickness of the viscous
boundary layer that surrounds an oscillating object in fluid
decreases with the inverse square root of the oscillation fre-
quency. This leads to a dramatic increase in the required
spatial resolution to compute the fluid-solid interactions at
large frequencies.

B. V-shaped Cantilever: Comparison of numerics
with experiment

We now quantify the dynamics of a V-shaped micron
scale cantilever that is used in the iDrive measurements. A
schematic of the cantilever is shown in Fig. 1(b) and it is
described further in Table I. Figure 4 illustrates a comparison
between numerical and experimental results for the noise
spectral density and the power spectrum. The numerical re-
sults for the noise spectral density are found using finite el-
ement simulations and the torque-angle formulation. The nu-
merical results for the power spectrum are found using a
force impulse corresponding to the magnetomotive actuation.
This is accomplished by applying a distributed force with
magnitude proportional to the angle of the wire in the ap-
plied magnetic field. Such a force distribution is similar to
the uniform distribution employed in our analytic derivation,
Eq. (28), and corresponds to an equivalent £=~0.5. Our
model of the iDrive is approximate; we do not solve for the
current flow to generate the Lorentz force. It is possible that
better agreement would be achieved using a different value
of £ However, we have not explored this in detail. For the
calculations, we used 260X 10* elements of rectangular ge-
ometry with a typical side length Ax=~2 um and a numeri-
cal time step Ar=0.4 wus. In addition, the nearest bounding
no-slip sidewall to the tip of the cantilever was at a distance
of 60 um.

In order to validate our numerical approach for the calcu-
lation of the power spectrum using the impulse in force, we
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FIG. 5. Analytical predictions of the noise spectral density G4(x=1,w) and power spectrum Py(x=1, w) for the rectangular cantilever. (a)
The noise spectral density is shown by the dashed line. The solid lines are the variation in the power spectrum with & The bounding values
of ¢ are labeled and the subsequent curves are given in increments of 0.1. (b) The ratio of the noise spectral density to the power spectrum.
The dashed line is the ratio using only the fundamental mode of vibration Gy y(w)/ P ¢(w). The solid lines are the ratio using the full solution
Gyw)/ Pyw) as a function of £ using the same convention as panel (a).

performed the following test. We computed five separate
long-time and fixed-frequency finite element numerical
simulations to compute the power spectrum near the funda-
mental resonance. These results are shown in Figs. 4(b) and
4(c). The circles are results from the fixed frequency simu-
lations, the dashed line is from simulations using an impulse
in force, and the solid line is from experimental measure-
ment. Overall, the agreement between the two numerical ap-
proaches is very good validating our approach using an im-
pulse in force.

C. Spectral properties of the power and noise spectra

The relative magnitudes of the peaks of the power spectra
depend upon the spatial variation in the external force that is
applied. This is shown in Fig. 5(a) for the first two modes
using analytical predictions for the rectangular cantilever.
The noise spectral density Ggyx=1,w) is shown as the
dashed line. The variation in the power spectra Pyx=1, )
with & are shown by the solid lines for 0.1 =¢=1 in incre-
ments of 0.1. Figure 5(a) indicates that as ¢ is increased the
relative magnitude of the higher mode peaks increase.

In fact, at a value of £=0.3 the noise spectral density and
power spectrum are nearly equal over a broad range in fre-
quency. This is shown more clearly in Fig. 5(b) where the
ratio Gy(w)/ Py w) is plotted. The solid line is the variation
in Gyw)/ Py w) with frequency as a function of & using the
same convention as in panel (a). The dashed line is the ratio
using only the fundamental mode G, 4(w)/P; 4(w), which
yields precisely the predicted frequency dependence of the
damping y(w) as given by Eq. (19). However, due to contri-
butions from the higher modes, the frequency dependence of
Gy(w)/ Pyw) is quite different. For £~ 0.3 the ratio is nearly
constant at unity for 0.5=< w/wy,=3.

Figure 6 shows a comparison of numerical and experi-
mental results for the ratio of G yw)/P 4 w) for the V-shaped
cantilever. The solid line are results from experiment and the
dashed line are numerical results using the model of iDrive

actuation with equivalent §=0.5. The ratio of the spectra is
nearly unity as predicted for a range of frequencies near the
fundamental resonance indicating the similarity of the power
and noise spectra for these conditions.

The frequency variation in the power spectra is quite dif-
ferent when the driving force is applied only at the cantilever
tip. We have quantified this in Fig. 7 for the rectangular
cantilever in terms of measurements of the cantilever angle
at the tip. Figure 7(a) illustrates the power spectrum and
noise spectrum. The solid lines are analytical predictions us-
ing Eq. (25) for the noise spectral density and the axial de-
rivative of Eq. (35) for the power spectrum. The dashed lines
are results from numerical simulations. For the power spec-
trum calculation, we have applied a force impulse at the
cantilever tip. The agreement between the analytical and nu-
merical spectra are quite good.

Figure 7(b) illustrates the ratio of the noise spectral den-
sity to the power spectrum. The dashed line is the ratio using
only the spectra for the fundamental mode of oscillation. The

FIG. 6. The ratio of the noise spectral density Gy(x=1, w) to the
power spectrum Py(x=1,w) for the V-shaped cantilever using mag-
netic actuation. The solid line is from experiment and the dashed
line are numerical results using finite element simulations.
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FIG. 7. (a) Using only sinusoidal tip-loading, the frequency variation in the noise spectral density G4(x=1,w) and power spectrum
Py(x=1,w) of the rectangular cantilever. The frequency is normalized with the resonant frequency of the fundamental mode in vacuum w,.
The solid lines are analytical predictions and the dashed lines are from numerical simulations. (b) The ratio G y(w)/ P ¢(w) where the solid line
is the analytical prediction, the dash-dotted line is the result from numerical simulation, and the dashed line is the analytical prediction using
only a single mode. The numerical results are only shown for w/wy =4 since higher frequencies are not resolved using the chosen simulation

parameters.

solid line represents analytical predictions and the dash-
dotted line are the results from numerical simulation. The
frequency range of the plot is quite large to include the con-
tributions from several modes of oscillation. The numerical
results are only shown for w/wy=4, which includes the
range of frequency that is resolved by the parameters of the
numerical simulations. Using our approach, to compute the
contributions from the higher modes numerically requires a
substantial increase in both the spatial and temporal reso-
lution. The large spikes in the magnitude of the spectra ratio
are due to the large difference in the magnitude of the spectra
between the peaks of the individual modes. In these regions
between the peaks, the contributions from the tails of the
higher modes are most significant. As a result, the ratio of the
spectra when including the contributions from only a single
mode is significantly different.

V. CONCLUSION

We have explored the spectral properties of oscillating
micron scale cantilevers in a viscous fluid. The analytical
expressions and the numerical approach discussed have a
broad range of applicability that can be used to gain physical
insights and guide future experiments. Despite the significant

physical differences between driving a cantilever externally
or using only thermal motion, we have described a unified
approach to quantify the dynamics that requires only straight
forward deterministic calculations. Using these ideas, we
have quantified the spectral properties of the cantilever for
the precise conditions of experiment. Our results reveal a
very strong dependence upon higher modes of oscillation
and on the precise spatial variation in the external actuation.
Surprisingly, there are interesting deviations from what one
would expect using a naive single mode approximation, even
for frequencies near the fundamental resonance. It is antici-
pated that our results will be useful in future theoretical stud-
ies as well as in the development of micro and nanoscale
technologies that exploit the high frequency oscillations of
elastic objects in viscous fluids.
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