300
400
500
600
700
800
Wavelength (nm)
0.0
0.2
0.4
0.6
0.8
1.0
Fraction absorbed by CHL (-)
Figure S1: Fraction of UV and PAR absorbed by chlorophyll for a leaf with 40
휇
g cm
−
2
chlorophyll
and 0.012 g cm
−
2
dry matter.
50
100
150
R
net
(W m
2
)
0
2
4
6
8
10
12
Canopy Layer from Bottom
R=44.6 W m
2
(a)
25.0
27.5
Temperature (
)
0
2
4
6
8
10
12
(b)
5
10
A
g
(μmol m
2
s
1
)
0
2
4
6
8
10
12
(c)
UV
No UV
Figure S2: Implementing UV radiation in CliMA Land. This figure differs from the main text Fig.
3 in that we used the Johnson and Berry (2021) C3 model.
1
0.0
0.2
0.4
0.6
0.8
1.0
Ratio of Natural Radiation (-)
0
5
10
15
20
25
GPP (μmol m
2
s
1
)
(a)
UV+PAR
UV+PAR+FR
FR
FR+2%UV+2%PAR
0
200
400
Rad (W m
2
)
0
2
4
6
8
10
12
Canopy Layer from Bottom
(b)
UV
PAR
FR
5
10
A
g
( mol m
2
s
1
)
0
2
4
6
8
10
12
(c)
0.1
0.2
0.3
g
s
(mol m
2
s
1
)
0
2
4
6
8
10
12
(d)
750 nm
700 nm
Figure S3: Accounting for FR contribution to PPAR in CliMA Land. This figure differs from the
main text Fig. 5 in that we used the Johnson and Berry (2021) C3 model.
2
200
400
0
10
20
GPP
(μmol m
2
s
1
)
200
400
0
10
200
400
600
0
10
20
200
400
0
10
20
200
400
600
0
10
20
GPP
(μmol m
2
s
1
)
100
200
300
0
10
200
400
0
5
200
400
5
10
200
400
0
10
20
GPP
(μmol m
2
s
1
)
200
400
0
10
20
200
400
0
10
20
200
400
0
10
20
250
500
0
10
20
GPP
(μmol m
2
s
1
)
250
500
0
20
200
400
0
10
20
200
400
0
10
20
200
400
0
20
GPP
(μmol m
2
s
1
)
200
400
0
20
200
400
600
0
10
20
200
400
600
0
10
20
200
400
600
0
10
20
GPP
(μmol m
2
s
1
)
200
400
0
10
200
400
0
10
20
200
400
0
10
20
250
500
0
10
20
GPP
(μmol m
2
s
1
)
500
600
24
26
28
200
400
600
0
10
20
200
400
0
10
20
250
500
PAR (μmol m
2
s
1
)
0
10
20
GPP
(μmol m
2
s
1
)
500
600
PAR (μmol m
2
s
1
)
20
25
250
500
PAR (μmol m
2
s
1
)
0
10
20
200
400
PAR (μmol m
2
s
1
)
0
10
20
Figure S4: Comparison of modeled GPP to measured GPP per plant (data from Zhen and Bugbee
(2020)). The C3 photosynthesis model used was the Farquhar et al. (1980) model.
3
200
400
0
10
20
GPP
(μmol m
2
s
1
)
200
400
0
10
200
400
600
0
10
20
200
400
0
10
20
200
400
600
0
10
20
GPP
(μmol m
2
s
1
)
100
200
300
0
10
200
400
0
5
200
400
5
10
200
400
0
10
20
GPP
(μmol m
2
s
1
)
200
400
0
10
20
200
400
0
10
20
200
400
0
10
20
250
500
0
10
20
GPP
(μmol m
2
s
1
)
250
500
0
20
200
400
0
10
20
200
400
0
10
20
200
400
0
20
GPP
(μmol m
2
s
1
)
200
400
0
20
200
400
600
0
10
20
200
400
600
0
10
20
200
400
600
0
10
20
GPP
(μmol m
2
s
1
)
200
400
0
10
200
400
0
10
20
200
400
0
10
20
250
500
0
10
20
GPP
(μmol m
2
s
1
)
500
600
24
26
28
200
400
600
0
10
20
200
400
0
10
20
250
500
PAR (μmol m
2
s
1
)
0
10
20
GPP
(μmol m
2
s
1
)
500
600
PAR (μmol m
2
s
1
)
20
25
250
500
PAR (μmol m
2
s
1
)
0
10
20
200
400
PAR (μmol m
2
s
1
)
0
10
20
Figure S5: Comparison of modeled GPP to measured GPP per plant (data from Zhen and Bugbee
(2020)). The C3 photosynthesis model used was the Johnson and Berry (2021) model.
4
100
200
300
400
500
Farquhar Model Jmax25 (
mol m
² s
¹)
0.5
1.0
1.5
2.0
2.5
3.0
3.5
J&B Model b6f (
mol m
²)
Figure S6: Correlation between the fitted
퐽
max25
for the Farquhar et al. (1980) model and b
6
f for the
Johnson and Berry (2021) model (data from Zhen and Bugbee (2020)).
5
Figure S7: Seasonal changes of GPP when improving UV and FR representations in CliMA Land.
(a)
March, April, and May.
(b)
June, July, and August.
(c)
September, October, and November.
(d)
December, January, and February.
6
Figure S8: Surface albedo computed using annual mean CHL and annual maximum LAI.
(a)
PAR
albedo.
(b)
UV albedo.
(c)
Difference between PAR and UV albedo. This figure differs from the
main text Fig. 9 in that panel c has an upper bound of 0.02 instead of 0.1.
7
References
1
Farquhar, G. D., von Caemmerer, S., and Berry, J. A. (1980). A biochemical model
2
of photosynthetic CO
2
assimilation in leaves of C
3
species.
Planta
, 149(1):78–90.
3
https://doi.org/10.1007/BF00386231.
4
Johnson, J. and Berry, J. (2021). The role of cytochrome b
6
f in the control of steady-state
5
photosynthesis: a conceptual and quantitative model.
Photosynthesis Research
, 148:101–136.
6
https://doi.org/10.1007/s11120-021-00840-4.
7
Zhen, S. and Bugbee, B. (2020). Far-red photons have equivalent efficiency to traditional photo-
8
synthetic photons: Implications for redefining photosynthetically active radiation.
Plant, Cell &
9
Environment
, 43(5):1259–1272. https://doi.org/10.1111/pce.13730.
10
8