Published June 2023 | Version v2
Journal Article Open

Extracting probability in the absence of visual awareness

  • 1. ROR icon Waseda University
  • 2. ROR icon California Institute of Technology
  • 3. ROR icon National Taiwan University

Abstract

Extracting statistical regularities from the environment is crucial for survival. It allows us to learn cues for where and when future events will occur. Can we learn these associations even when the cues are not consciously perceived? Can these unconscious processes integrate information over long periods of time? We show that human visual system can track the probability of location contingency between an unconscious prime and a conscious target over a period of time of minutes. In a series of psychophysical experiments, we adopted an exogenous priming paradigm and manipulated the location contingency between a masked prime and a visible target (i.e., how likely the prime location predicted the target location). The prime's invisibility was verified both subjectively and objectively. Although the participants were unaware of both the existence of the prime and the prime-target contingency, our results showed that the probability of location contingency was tracked and manifested in the subsequent priming effect. When participants were first entrained into the fully predictive prime-target probability, they exhibited faster responses to the more predictive location. On the contrary, when no contingency existed between the prime and target initially, participants later showed faster responses to the less predictive location. These results were replicated in two more experiments with increased statistical power and a fine-grained delineation of prime awareness. Together, we report that the human visual system is capable of tracking unconscious probability over a period of time, demonstrating how implicit and uncertain regularity guides behavior.

Attached Files

Supplemental Material - 13415_2022_1057_MOESM1_ESM.docx

In Press - s13415-022-01057-1.pdf

Files

13415_2022_Article_1057.pdf

Files (1.1 MB)

Name Size Download all
md5:77afb48c8c294bbd38aea549703776b5
26.1 kB Download
md5:8a1f7921d2496837fc96b421fea09462
1.1 MB Preview Download

Additional details

Identifiers

Eprint ID
119310
Resolver ID
CaltechAUTHORS:20230215-30605800.14
PMCID
PMC10390606
DOI
10.3758/s13415-022-01057-1

Funding

James G. Boswell Foundation
Caltech Division of Biology and Biological Engineering
Yushan Young Scholar Program
NTU-110V0202
Ministry of Science and Technology (Taipei)
109-2410-H-002-004-MY3
NIH
R01AG063857

Dates

Created
2023-04-12
Created from EPrint's datestamp field
Updated
2023-04-12
Created from EPrint's last_modified field

Caltech Custom Metadata

Caltech groups
Tianqiao and Chrissy Chen Institute for Neuroscience, Division of Biology and Biological Engineering (BBE)