of 17
Tests of general relativity with GW150914
B. P. Abbott,
1
R. Abbott,
1
T. D. Abbott,
2
M. R. Abernathy,
1
F. Acernese,
3
,
4
K. Ackley,
5
C. Adams,
6
T. Adams,
7
P. Addesso,
3
R. X. Adhikari,
1
V. B. Adya,
8
C. A
ff
eldt,
8
M. Agathos,
9
K. Agatsuma,
9
N. Aggarwal,
10
O. D. Aguiar,
11
L. Aiello,
12
,
13
A. Ain,
14
P. Ajith,
15
B. Allen,
8
,
16
,
17
A. Allocca,
18
,
19
P. A. Altin,
20
S. B. Anderson,
1
W. G. Anderson,
16
K. Arai,
1
M. C. Araya,
1
C. C. Arceneaux,
21
J. S. Areeda,
22
N. Arnaud,
23
K. G. Arun,
24
S. Ascenzi,
25
,
13
G. Ashton,
26
M. Ast,
27
S. M. Aston,
6
P. Astone,
28
P. Aufmuth,
8
C. Aulbert,
8
S. Babak,
29
P. Bacon,
30
M. K. M. Bader,
9
P. T. Baker,
31
F. Baldaccini,
32
,
33
G. Ballardin,
34
S. W. Ballmer,
35
J. C. Barayoga,
1
S. E. Barclay,
36
B. C. Barish,
1
D. Barker,
37
F. Barone,
3
,
4
B. Barr,
36
L. Barsotti,
10
M. Barsuglia,
30
D. Barta,
38
J. Bartlett,
37
I. Bartos,
39
R. Bassiri,
40
A. Basti,
18
,
19
J. C. Batch,
37
C. Baune,
8
V. Bavigadda,
34
M. Bazzan,
41
,
42
B. Behnke,
29
M. Bejger,
43
A. S. Bell,
36
C. J. Bell,
36
B. K. Berger,
1
J. Bergman,
37
G. Bergmann,
8
C. P. L. Berry,
44
D. Bersanetti,
45
,
46
A. Bertolini,
9
J. Betzwieser,
6
S. Bhagwat,
35
R. Bhandare,
47
I. A. Bilenko,
48
G. Billingsley,
1
J. Birch,
6
R. Birney,
49
O. Birnholtz,
8
S. Biscans,
10
A. Bisht,
8
,
17
M. Bitossi,
34
C. Biwer,
35
M. A. Bizouard,
23
J. K. Blackburn,
1
C. D. Blair,
50
D. G. Blair,
50
R. M. Blair,
37
S. Bloemen,
51
O. Bock,
8
T. P. Bodiya,
10
M. Boer,
52
G. Bogaert,
52
C. Bogan,
8
A. Bohe,
29
P. Bojtos,
53
C. Bond,
44
F. Bondu,
54
R. Bonnand,
7
B. A. Boom,
9
R. Bork,
1
V. Boschi,
18
,
19
S. Bose,
55
,
14
Y. Bou
ff
anais,
30
A. Bozzi,
34
C. Bradaschia,
19
P. R. Brady,
16
V. B. Braginsky,
48
M. Branchesi,
57
,
58
J. E. Brau,
59
T. Briant,
60
A. Brillet,
52
M. Brinkmann,
8
V. Brisson,
23
P. Brockill,
16
A. F. Brooks,
1
D. A. Brown,
35
D. D. Brown,
44
N. M. Brown,
10
C. C. Buchanan,
2
A. Buikema,
10
T. Bulik,
61
H. J. Bulten,
62
,
9
A. Buonanno,
29
,
63
D. Buskulic,
7
C. Buy,
30
R. L. Byer,
40
L. Cadonati,
64
G. Cagnoli,
65
,
66
C. Cahillane,
1
J. Calder
́
on Bustillo,
67
,
64
T. Callister,
1
E. Calloni,
68
,
4
J. B. Camp,
69
K. C. Cannon,
70
J. Cao,
71
C. D. Capano,
8
E. Capocasa,
30
F. Carbognani,
34
S. Caride,
72
J. Casanueva Diaz,
23
C. Casentini,
25
,
13
S. Caudill,
16
M. Cavagli
`
a,
21
F. Cavalier,
23
R. Cavalieri,
34
G. Cella,
19
C. B. Cepeda,
1
L. Cerboni Baiardi,
57
,
58
G. Cerretani,
18
,
19
E. Cesarini,
25
,
13
R. Chakraborty,
1
T. Chalermsongsak,
1
S. J. Chamberlin,
73
M. Chan,
36
S. Chao,
74
P. Charlton,
75
E. Chassande-Mottin,
30
H. Y. Chen,
76
Y. Chen,
77
C. Cheng,
74
A. Chincarini,
46
A. Chiummo,
34
H. S. Cho,
78
M. Cho,
63
J. H. Chow,
20
N. Christensen,
79
Q. Chu,
50
S. Chua,
60
S. Chung,
50
G. Ciani,
5
F. Clara,
37
J. A. Clark,
64
F. Cleva,
52
E. Coccia,
25
,
12
,
13
P.-F. Cohadon,
60
A. Colla,
80
,
28
C. G. Collette,
81
L. Cominsky,
82
M. Constancio Jr.,
11
A. Conte,
80
,
28
L. Conti,
42
D. Cook,
37
T. R. Corbitt,
2
N. Cornish,
31
A. Corsi,
72
S. Cortese,
34
C. A. Costa,
11
M. W. Coughlin,
79
S. B. Coughlin,
83
J.-P. Coulon,
52
S. T. Countryman,
39
P. Couvares,
1
E. E. Cowan,
64
D. M. Coward,
50
M. J. Cowart,
6
D. C. Coyne,
1
R. Coyne,
72
K. Craig,
36
J. D. E. Creighton,
16
J. Cripe,
2
S. G. Crowder,
84
A. Cumming,
36
L. Cunningham,
36
E. Cuoco,
34
T. Dal Canton,
8
S. L. Danilishin,
36
S. D’Antonio,
13
K. Danzmann,
17
,
8
N. S. Darman,
85
V. Dattilo,
34
I. Dave,
47
H. P. Daveloza,
86
M. Davier,
23
G. S. Davies,
36
E. J. Daw,
87
R. Day,
34
D. DeBra,
40
G. Debreczeni,
38
J. Degallaix,
66
M. De Laurentis,
68
,
4
S. Del
́
eglise,
60
W. Del Pozzo,
44
T. Denker,
8
,
17
T. Dent,
8
H. Dereli,
52
V. Dergachev,
1
R. De Rosa,
68
,
4
R. T. DeRosa,
6
R. DeSalvo,
88
S. Dhurandhar,
14
M. C. D
́
ıaz,
86
L. Di Fiore,
4
M. Di Giovanni,
80
,
28
A. Di Lieto,
18
,
19
S. Di Pace,
80
,
28
I. Di Palma,
29
,
8
A. Di Virgilio,
19
G. Dojcinoski,
89
V. Dolique,
66
F. Donovan,
10
K. L. Dooley,
21
S. Doravari,
6
,
8
R. Douglas,
36
T. P. Downes,
16
M. Drago,
8
,
90
,
91
R. W. P. Drever,
1
J. C. Driggers,
37
Z. Du,
71
M. Ducrot,
7
S. E. Dwyer,
37
T. B. Edo,
87
M. C. Edwards,
79
A. E
ffl
er,
6
H.-B. Eggenstein,
8
P. Ehrens,
1
J. Eichholz,
5
S. S. Eikenberry,
5
W. Engels,
77
R. C. Essick,
10
T. Etzel,
1
M. Evans,
10
T. M. Evans,
6
R. Everett,
73
M. Factourovich,
39
V. Fafone,
25
,
13
,
12
H. Fair,
35
S. Fairhurst,
92
X. Fan,
71
Q. Fang,
50
S. Farinon,
46
B. Farr,
76
W. M. Farr,
44
M. Favata,
89
M. Fays,
92
H. Fehrmann,
8
M. M. Fejer,
40
I. Ferrante,
18
,
19
E. C. Ferreira,
11
F. Ferrini,
34
F. Fidecaro,
18
,
19
I. Fiori,
34
D. Fiorucci,
30
R. P. Fisher,
35
R. Flaminio,
66
,
93
M. Fletcher,
36
J.-D. Fournier,
52
S. Franco,
23
S. Frasca,
80
,
28
F. Frasconi,
19
Z. Frei,
53
A. Freise,
44
R. Frey,
59
V. Frey,
23
T. T. Fricke,
8
P. Fritschel,
10
V. V. Frolov,
6
P. Fulda,
5
M. Fy
ff
e,
6
H. A. G. Gabbard,
21
J. R. Gair,
94
L. Gammaitoni,
32
,
33
S. G. Gaonkar,
14
F. Garufi,
68
,
4
A. Gatto,
30
G. Gaur,
95
,
96
N. Gehrels,
69
G. Gemme,
46
B. Gendre,
52
E. Genin,
34
A. Gennai,
19
J. George,
47
L. Gergely,
97
V. Germain,
7
Abhirup Ghosh,
15
Archisman Ghosh,
15
S. Ghosh,
51
,
9
J. A. Giaime,
2
,
6
K. D. Giardina,
6
A. Giazotto,
19
K. Gill,
98
A. Glaefke,
36
E. Goetz,
99
R. Goetz,
5
L. Gondan,
53
G. Gonz
́
alez,
2
J. M. Gonzalez Castro,
18
,
19
A. Gopakumar,
100
N. A. Gordon,
36
M. L. Gorodetsky,
48
S. E. Gossan,
1
M. Gosselin,
34
R. Gouaty,
7
C. Graef,
36
P. B. Gra
ff
,
63
M. Granata,
66
A. Grant,
36
S. Gras,
10
C. Gray,
37
G. Greco,
57
,
58
A. C. Green,
44
P. Groot,
51
H. Grote,
8
S. Grunewald,
29
G. M. Guidi,
57
,
58
X. Guo,
71
A. Gupta,
14
M. K. Gupta,
96
K. E. Gushwa,
1
E. K. Gustafson,
1
R. Gustafson,
99
J. J. Hacker,
22
B. R. Hall,
55
E. D. Hall,
1
G. Hammond,
36
M. Haney,
100
M. M. Hanke,
8
J. Hanks,
37
C. Hanna,
73
M. D. Hannam,
92
J. Hanson,
6
T. Hardwick,
2
J. Harms,
57
,
58
G. M. Harry,
101
I. W. Harry,
29
M. J. Hart,
36
M. T. Hartman,
5
C.-J. Haster,
44
K. Haughian,
36
J. Healy,
102
A. Heidmann,
60
M. C. Heintze,
5
,
6
H. Heitmann,
52
P. Hello,
23
G. Hemming,
34
M. Hendry,
36
I. S. Heng,
36
J. Hennig,
36
A. W. Heptonstall,
1
M. Heurs,
8
,
17
S. Hild,
36
D. Hoak,
103
K. A. Hodge,
1
D. Hofman,
66
S. E. Hollitt,
104
K. Holt,
6
D. E. Holz,
76
P. Hopkins,
92
D. J. Hosken,
104
J. Hough,
36
E. A. Houston,
36
E. J. Howell,
50
Y. M. Hu,
36
S. Huang,
74
E. A. Huerta,
105
,
83
D. Huet,
23
B. Hughey,
98
S. Husa,
67
S. H. Huttner,
36
T. Huynh-Dinh,
6
A. Idrisy,
73
N. Indik,
8
D. R. Ingram,
37
R. Inta,
72
H. N. Isa,
36
J.-M. Isac,
60
M. Isi,
1
G. Islas,
22
T. Isogai,
10
B. R. Iyer,
15
K. Izumi,
37
T. Jacqmin,
60
H. Jang,
78
K. Jani,
64
P. Jaranowski,
106
S. Jawahar,
107
arXiv:1602.03841v2 [gr-qc] 9 Jun 2016
2
F. Jim
́
enez-Forteza,
67
W. W. Johnson,
2
N. K. Johnson-McDaniel,
15
D. I. Jones,
26
R. Jones,
36
R. J. G. Jonker,
9
L. Ju,
50
Haris K,
108
C. V. Kalaghatgi,
24
,
92
V. Kalogera,
83
S. Kandhasamy,
21
G. Kang,
78
J. B. Kanner,
1
S. Karki,
59
M. Kasprzack,
2
,
23
,
34
E. Katsavounidis,
10
W. Katzman,
6
S. Kaufer,
17
T. Kaur,
50
K. Kawabe,
37
F. Kawazoe,
8
,
17
F. K
́
ef
́
elian,
52
M. S. Kehl,
70
D. Keitel,
8
,
67
D. B. Kelley,
35
W. Kells,
1
R. Kennedy,
87
J. S. Key,
86
A. Khalaidovski,
8
F. Y. Khalili,
48
I. Khan,
12
S. Khan,
92
Z. Khan,
96
E. A. Khazanov,
109
N. Kijbunchoo,
37
C. Kim,
78
J. Kim,
110
K. Kim,
111
Nam-Gyu Kim,
78
Namjun Kim,
40
Y.-M. Kim,
110
E. J. King,
104
P. J. King,
37
D. L. Kinzel,
6
J. S. Kissel,
37
L. Kleybolte,
27
S. Klimenko,
5
S. M. Koehlenbeck,
8
K. Kokeyama,
2
S. Koley,
9
V. Kondrashov,
1
A. Kontos,
10
M. Korobko,
27
W. Z. Korth,
1
I. Kowalska,
61
D. B. Kozak,
1
V. Kringel,
8
B. Krishnan,
8
A. Kr
́
olak,
112
,
113
C. Krueger,
17
G. Kuehn,
8
P. Kumar,
70
L. Kuo,
74
A. Kutynia,
112
B. D. Lackey,
35
M. Landry,
37
J. Lange,
102
B. Lantz,
40
P. D. Lasky,
114
A. Lazzarini,
1
C. Lazzaro,
64
,
42
P. Leaci,
29
,
80
,
28
S. Leavey,
36
E. O. Lebigot,
30
,
71
C. H. Lee,
110
H. K. Lee,
111
H. M. Lee,
115
K. Lee,
36
A. Lenon,
35
M. Leonardi,
90
,
91
J. R. Leong,
8
N. Leroy,
23
N. Letendre,
7
Y. Levin,
114
B. M. Levine,
37
T. G. F. Li,
1
A. Libson,
10
T. B. Littenberg,
116
N. A. Lockerbie,
107
J. Logue,
36
A. L. Lombardi,
103
L. T. London,
92
J. E. Lord,
35
M. Lorenzini,
12
,
13
V. Loriette,
117
M. Lormand,
6
G. Losurdo,
58
J. D. Lough,
8
,
17
C. O. Lousto,
102
G. Lovelace,
22
H. L
̈
uck,
17
,
8
A. P. Lundgren,
8
J. Luo,
79
R. Lynch,
10
Y. Ma,
50
T. MacDonald,
40
B. Machenschalk,
8
M. MacInnis,
10
D. M. Macleod,
2
F. Maga
̃
na-Sandoval,
35
R. M. Magee,
55
M. Mageswaran,
1
E. Majorana,
28
I. Maksimovic,
117
V. Malvezzi,
25
,
13
N. Man,
52
I. Mandel,
44
V. Mandic,
84
V. Mangano,
36
G. L. Mansell,
20
M. Manske,
16
M. Mantovani,
34
F. Marchesoni,
118
,
33
F. Marion,
7
S. M
́
arka,
39
Z. M
́
arka,
39
A. S. Markosyan,
40
E. Maros,
1
F. Martelli,
57
,
58
L. Martellini,
52
I. W. Martin,
36
R. M. Martin,
5
D. V. Martynov,
1
J. N. Marx,
1
K. Mason,
10
A. Masserot,
7
T. J. Massinger,
35
M. Masso-Reid,
36
F. Matichard,
10
L. Matone,
39
N. Mavalvala,
10
N. Mazumder,
55
G. Mazzolo,
8
R. McCarthy,
37
D. E. McClelland,
20
S. McCormick,
6
S. C. McGuire,
119
G. McIntyre,
1
J. McIver,
1
D. J. McManus,
20
S. T. McWilliams,
105
D. Meacher,
73
G. D. Meadors,
29
,
8
J. Meidam,
9
A. Melatos,
85
G. Mendell,
37
D. Mendoza-Gandara,
8
R. A. Mercer,
16
E. Merilh,
37
M. Merzougui,
52
S. Meshkov,
1
C. Messenger,
36
C. Messick,
73
P. M. Meyers,
84
F. Mezzani,
28
,
80
H. Miao,
44
C. Michel,
66
H. Middleton,
44
E. E. Mikhailov,
120
L. Milano,
68
,
4
J. Miller,
10
M. Millhouse,
31
Y. Minenkov,
13
J. Ming,
29
,
8
S. Mirshekari,
121
C. Mishra,
15
S. Mitra,
14
V. P. Mitrofanov,
48
G. Mitselmakher,
5
R. Mittleman,
10
A. Moggi,
19
M. Mohan,
34
S. R. P. Mohapatra,
10
M. Montani,
57
,
58
B. C. Moore,
89
C. J. Moore,
122
D. Moraru,
37
G. Moreno,
37
S. R. Morriss,
86
K. Mossavi,
8
B. Mours,
7
C. M. Mow-Lowry,
44
C. L. Mueller,
5
G. Mueller,
5
A. W. Muir,
92
Arunava Mukherjee,
15
D. Mukherjee,
16
S. Mukherjee,
86
N. Mukund,
14
A. Mullavey,
6
J. Munch,
104
D. J. Murphy,
39
P. G. Murray,
36
A. Mytidis,
5
I. Nardecchia,
25
,
13
L. Naticchioni,
80
,
28
R. K. Nayak,
123
V. Necula,
5
K. Nedkova,
103
G. Nelemans,
51
,
9
M. Neri,
45
,
46
A. Neunzert,
99
G. Newton,
36
T. T. Nguyen,
20
A. B. Nielsen,
8
S. Nissanke,
51
,
9
A. Nitz,
8
F. Nocera,
34
D. Nolting,
6
M. E. Normandin,
86
L. K. Nuttall,
35
J. Oberling,
37
E. Ochsner,
16
J. O’Dell,
124
E. Oelker,
10
G. H. Ogin,
125
J. J. Oh,
126
S. H. Oh,
126
F. Ohme,
92
M. Oliver,
67
P. Oppermann,
8
Richard J. Oram,
6
B. O’Reilly,
6
R. O’Shaughnessy,
102
D. J. Ottaway,
104
R. S. Ottens,
5
H. Overmier,
6
B. J. Owen,
72
A. Pai,
108
S. A. Pai,
47
J. R. Palamos,
59
O. Palashov,
109
C. Palomba,
28
A. Pal-Singh,
27
H. Pan,
74
Y. Pan,
63
C. Pankow,
83
F. Pannarale,
92
B. C. Pant,
47
F. Paoletti,
34
,
19
A. Paoli,
34
M. A. Papa,
29
,
16
,
8
H. R. Paris,
40
W. Parker,
6
D. Pascucci,
36
A. Pasqualetti,
34
R. Passaquieti,
18
,
19
D. Passuello,
19
B. Patricelli,
18
,
19
Z. Patrick,
40
B. L. Pearlstone,
36
M. Pedraza,
1
R. Pedurand,
66
L. Pekowsky,
35
A. Pele,
6
S. Penn,
127
A. Perreca,
1
H. P. Pfei
ff
er,
70
,
29
M. Phelps,
36
O. Piccinni,
80
,
28
M. Pichot,
52
F. Piergiovanni,
57
,
58
V. Pierro,
88
G. Pillant,
34
L. Pinard,
66
I. M. Pinto,
88
M. Pitkin,
36
R. Poggiani,
18
,
19
P. Popolizio,
34
A. Post,
8
J. Powell,
36
J. Prasad,
14
V. Predoi,
92
S. S. Premachandra,
114
T. Prestegard,
84
L. R. Price,
1
M. Prijatelj,
34
M. Principe,
88
S. Privitera,
29
R. Prix,
8
G. A. Prodi,
90
,
91
L. Prokhorov,
48
O. Puncken,
8
M. Punturo,
33
P. Puppo,
28
M. P
̈
urrer,
29
H. Qi,
16
J. Qin,
50
V. Quetschke,
86
E. A. Quintero,
1
R. Quitzow-James,
59
F. J. Raab,
37
D. S. Rabeling,
20
H. Radkins,
37
P. Ra
ff
ai,
53
S. Raja,
47
M. Rakhmanov,
86
P. Rapagnani,
80
,
28
V. Raymond,
29
M. Razzano,
18
,
19
V. Re,
25
J. Read,
22
C. M. Reed,
37
T. Regimbau,
52
L. Rei,
46
S. Reid,
49
D. H. Reitze,
1
,
5
H. Rew,
120
S. D. Reyes,
35
F. Ricci,
80
,
28
K. Riles,
99
N. A. Robertson,
1
,
36
R. Robie,
36
F. Robinet,
23
A. Rocchi,
13
L. Rolland,
7
J. G. Rollins,
1
V. J. Roma,
59
R. Romano,
3
,
4
G. Romanov,
120
J. H. Romie,
6
D. Rosi
́
nska,
128
,
43
S. Rowan,
36
A. R
̈
udiger,
8
P. Ruggi,
34
K. Ryan,
37
S. Sachdev,
1
T. Sadecki,
37
L. Sadeghian,
16
L. Salconi,
34
M. Saleem,
108
F. Salemi,
8
A. Samajdar,
123
L. Sammut,
85
,
114
E. J. Sanchez,
1
V. Sandberg,
37
B. Sandeen,
83
J. R. Sanders,
99
,
35
B. Sassolas,
66
B. S. Sathyaprakash,
92
P. R. Saulson,
35
O. Sauter,
99
R. L. Savage,
37
A. Sawadsky,
17
P. Schale,
59
R. Schilling
,
8
J. Schmidt,
8
P. Schmidt,
1
,
77
R. Schnabel,
27
R. M. S. Schofield,
59
A. Sch
̈
onbeck,
27
E. Schreiber,
8
D. Schuette,
8
,
17
B. F. Schutz,
92
,
29
J. Scott,
36
S. M. Scott,
20
D. Sellers,
6
A. S. Sengupta,
95
D. Sentenac,
34
V. Sequino,
25
,
13
A. Sergeev,
109
G. Serna,
22
Y. Setyawati,
51
,
9
A. Sevigny,
37
D. A. Shaddock,
20
S. Shah,
51
,
9
M. S. Shahriar,
83
M. Shaltev,
8
Z. Shao,
1
B. Shapiro,
40
P. Shawhan,
63
A. Sheperd,
16
D. H. Shoemaker,
10
D. M. Shoemaker,
64
K. Siellez,
52
,
64
X. Siemens,
16
D. Sigg,
37
A. D. Silva,
11
D. Simakov,
8
A. Singer,
1
L. P. Singer,
69
A. Singh,
29
,
8
R. Singh,
2
A. Singhal,
12
A. M. Sintes,
67
B. J. J. Slagmolen,
20
J. R. Smith,
22
N. D. Smith,
1
R. J. E. Smith,
1
E. J. Son,
126
B. Sorazu,
36
F. Sorrentino,
46
T. Souradeep,
14
A. K. Srivastava,
96
A. Staley,
39
M. Steinke,
8
J. Steinlechner,
36
S. Steinlechner,
36
D. Steinmeyer,
8
,
17
B. C. Stephens,
16
3
R. Stone,
86
K. A. Strain,
36
N. Straniero,
66
G. Stratta,
57
,
58
N. A. Strauss,
79
S. Strigin,
48
R. Sturani,
121
A. L. Stuver,
6
T. Z. Summerscales,
129
L. Sun,
85
P. J. Sutton,
92
B. L. Swinkels,
34
M. J. Szczepa
́
nczyk,
98
M. Tacca,
30
D. Talukder,
59
D. B. Tanner,
5
M. T
́
apai,
97
S. P. Tarabrin,
8
A. Taracchini,
29
R. Taylor,
1
T. Theeg,
8
M. P. Thirugnanasambandam,
1
E. G. Thomas,
44
M. Thomas,
6
P. Thomas,
37
K. A. Thorne,
6
K. S. Thorne,
77
E. Thrane,
114
S. Tiwari,
12
V. Tiwari,
92
K. V. Tokmakov,
107
C. Tomlinson,
87
M. Tonelli,
18
,
19
C. V. Torres
,
86
C. I. Torrie,
1
D. T
̈
oyr
̈
a,
44
F. Travasso,
32
,
33
G. Traylor,
6
D. Trifir
`
o,
21
M. C. Tringali,
90
,
91
L. Trozzo,
131
,
19
M. Tse,
10
M. Turconi,
52
D. Tuyenbayev,
86
D. Ugolini,
132
C. S. Unnikrishnan,
100
A. L. Urban,
16
S. A. Usman,
35
H. Vahlbruch,
17
G. Vajente,
1
G. Valdes,
86
M. Vallisneri,
77
N. van Bakel,
9
M. van Beuzekom,
9
J. F. J. van den Brand,
62
,
9
C. Van Den Broeck,
9
D. C. Vander-Hyde,
35
,
22
L. van der Schaaf,
9
J. V. van Heijningen,
9
A. A. van Veggel,
36
M. Vardaro,
41
,
42
S. Vass,
1
M. Vas
́
uth,
38
R. Vaulin,
10
A. Vecchio,
44
G. Vedovato,
42
J. Veitch,
44
P. J. Veitch,
104
K. Venkateswara,
133
D. Verkindt,
7
F. Vetrano,
57
,
58
A. Vicer
́
e,
57
,
58
S. Vinciguerra,
44
D. J. Vine,
49
J.-Y. Vinet,
52
S. Vitale,
10
T. Vo,
35
H. Vocca,
32
,
33
C. Vorvick,
37
D. Voss,
5
W. D. Vousden,
44
S. P. Vyatchanin,
48
A. R. Wade,
20
L. E. Wade,
134
M. Wade,
134
M. Walker,
2
L. Wallace,
1
S. Walsh,
16
,
8
,
29
G. Wang,
12
H. Wang,
44
M. Wang,
44
X. Wang,
71
Y. Wang,
50
R. L. Ward,
20
J. Warner,
37
M. Was,
7
B. Weaver,
37
L.-W. Wei,
52
M. Weinert,
8
A. J. Weinstein,
1
R. Weiss,
10
T. Welborn,
6
L. Wen,
50
P. Weßels,
8
T. Westphal,
8
K. Wette,
8
J. T. Whelan,
102
,
8
D. J. White,
87
B. F. Whiting,
5
D. Williams,
36
R. D. Williams,
1
A. R. Williamson,
92
J. L. Willis,
135
B. Willke,
17
,
8
M. H. Wimmer,
8
,
17
W. Winkler,
8
C. C. Wipf,
1
H. Wittel,
8
,
17
G. Woan,
36
J. Worden,
37
J. L. Wright,
36
G. Wu,
6
J. Yablon,
83
W. Yam,
10
H. Yamamoto,
1
C. C. Yancey,
63
M. J. Yap,
20
H. Yu,
10
M. Yvert,
7
A. Zadro
̇
zny,
112
L. Zangrando,
42
M. Zanolin,
98
J.-P. Zendri,
42
M. Zevin,
83
F. Zhang,
10
L. Zhang,
1
M. Zhang,
120
Y. Zhang,
102
C. Zhao,
50
M. Zhou,
83
Z. Zhou,
83
X. J. Zhu,
50
M. E. Zucker,
1
,
10
S. E. Zuraw,
103
and J. Zweizig
1
(LIGO Scientific Collaboration and Virgo Collaboration)
M. Boyle,
56
M. Campanelli,
102
D. A. Hemberger,
77
L. E. Kidder,
56
S. Ossokine,
29
M. A. Scheel,
77
B. Szilagyi,
77
,
130
S. Teukolsky,
56
and Y. Zlochower
102
Deceased, May 2015.
Deceased, March 2015.
1
LIGO, California Institute of Technology, Pasadena, CA 91125, USA
2
Louisiana State University, Baton Rouge, LA 70803, USA
3
Universit `a di Salerno, Fisciano, I-84084 Salerno, Italy
4
INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
5
University of Florida, Gainesville, FL 32611, USA
6
LIGO Livingston Observatory, Livingston, LA 70754, USA
7
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP),
Universit ́e Savoie Mont Blanc, CNRS
/
IN2P3, F-74941 Annecy-le-Vieux, France
8
Albert-Einstein-Institut, Max-Planck-Institut f ̈ur Gravitationsphysik, D-30167 Hannover, Germany
9
Nikhef, Science Park, 1098 XG Amsterdam, Netherlands
10
LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
11
Instituto Nacional de Pesquisas Espaciais, 12227-010 S ̃ao Jos ́e dos Campos, S ̃ao Paulo, Brazil
12
INFN, Gran Sasso Science Institute, I-67100 L’Aquila, Italy
13
INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy
14
Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
15
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560012, India
16
University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
17
Leibniz Universit ̈at Hannover, D-30167 Hannover, Germany
18
Universit `a di Pisa, I-56127 Pisa, Italy
19
INFN, Sezione di Pisa, I-56127 Pisa, Italy
20
Australian National University, Canberra, Australian Capital Territory 0200, Australia
21
The University of Mississippi, University, MS 38677, USA
22
California State University Fullerton, Fullerton, CA 92831, USA
23
LAL, Universit ́e Paris-Sud, CNRS
/
IN2P3, Universit ́e Paris-Saclay, 91400 Orsay, France
24
Chennai Mathematical Institute, Chennai 603103, India
25
Universit `a di Roma Tor Vergata, I-00133 Roma, Italy
26
University of Southampton, Southampton SO17 1BJ, United Kingdom
27
Universit ̈at Hamburg, D-22761 Hamburg, Germany
28
INFN, Sezione di Roma, I-00185 Roma, Italy
29
Albert-Einstein-Institut, Max-Planck-Institut f ̈ur Gravitationsphysik, D-14476 Potsdam-Golm, Germany
30
APC, AstroParticule et Cosmologie, Universit ́e Paris Diderot, CNRS
/
IN2P3, CEA
/
Irfu,
Observatoire de Paris, Sorbonne Paris Cit ́e, F-75205 Paris Cedex 13, France
31
Montana State University, Bozeman, MT 59717, USA
4
32
Universit `a di Perugia, I-06123 Perugia, Italy
33
INFN, Sezione di Perugia, I-06123 Perugia, Italy
34
European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
35
Syracuse University, Syracuse, NY 13244, USA
36
SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom
37
LIGO Hanford Observatory, Richland, WA 99352, USA
38
Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Mikl ́os ́ut 29-33, Hungary
39
Columbia University, New York, NY 10027, USA
40
Stanford University, Stanford, CA 94305, USA
41
Universit `a di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy
42
INFN, Sezione di Padova, I-35131 Padova, Italy
43
CAMK-PAN, 00-716 Warsaw, Poland
44
University of Birmingham, Birmingham B15 2TT, United Kingdom
45
Universit `a degli Studi di Genova, I-16146 Genova, Italy
46
INFN, Sezione di Genova, I-16146 Genova, Italy
47
RRCAT, Indore MP 452013, India
48
Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
49
SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
50
University of Western Australia, Crawley, Western Australia 6009, Australia
51
Department of Astrophysics
/
IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, Netherlands
52
Artemis, Universit ́e C ˆote d’Azur, CNRS, Observatoire C ˆote d’Azur, CS 34229, Nice cedex 4, France
53
MTA E ̈otv ̈os University, “Lendulet” Astrophysics Research Group, Budapest 1117, Hungary
54
Institut de Physique de Rennes, CNRS, Universit ́e de Rennes 1, F-35042 Rennes, France
55
Washington State University, Pullman, WA 99164, USA
56
Cornell University, Ithaca, NY 14853, USA
57
Universit `a degli Studi di Urbino “Carlo Bo,” I-61029 Urbino, Italy
58
INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy
59
University of Oregon, Eugene, OR 97403, USA
60
Laboratoire Kastler Brossel, UPMC-Sorbonne Universit ́es, CNRS,
ENS-PSL Research University, Coll`ege de France, F-75005 Paris, France
61
Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland
62
VU University Amsterdam, 1081 HV Amsterdam, Netherlands
63
University of Maryland, College Park, MD 20742, USA
64
Center for Relativistic Astrophysics and School of Physics,
Georgia Institute of Technology, Atlanta, GA 30332, USA
65
Institut Lumi`ere Mati`ere, Universit ́e de Lyon, Universit ́e Claude Bernard Lyon 1, UMR CNRS 5306, 69622 Villeurbanne, France
66
Laboratoire des Mat ́eriaux Avanc ́es (LMA), IN2P3
/
CNRS,
Universit ́e de Lyon, F-69622 Villeurbanne, Lyon, France
67
Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain
68
Universit `a di Napoli “Federico II,” Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
69
NASA
/
Goddard Space Flight Center, Greenbelt, MD 20771, USA
70
Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8, Canada
71
Tsinghua University, Beijing 100084, China
72
Texas Tech University, Lubbock, TX 79409, USA
73
The Pennsylvania State University, University Park, PA 16802, USA
74
National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic of China
75
Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
76
University of Chicago, Chicago, IL 60637, USA
77
Caltech CaRT, Pasadena, CA 91125, USA
78
Korea Institute of Science and Technology Information, Daejeon 305-806, Korea
79
Carleton College, Northfield, MN 55057, USA
80
Universit `a di Roma “La Sapienza,” I-00185 Roma, Italy
81
University of Brussels, Brussels 1050, Belgium
82
Sonoma State University, Rohnert Park, CA 94928, USA
83
Northwestern University, Evanston, IL 60208, USA
84
University of Minnesota, Minneapolis, MN 55455, USA
85
The University of Melbourne, Parkville, Victoria 3010, Australia
86
The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
87
The University of She
ffi
eld, She
ffi
eld S10 2TN, United Kingdom
88
University of Sannio at Benevento, I-82100 Benevento,
Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy
89
Montclair State University, Montclair, NJ 07043, USA
90
Universit `a di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy
91
INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy
5
92
Cardi
ff
University, Cardi
ff
CF24 3AA, United Kingdom
93
National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
94
School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
95
Indian Institute of Technology, Gandhinagar Ahmedabad Gujarat 382424, India
96
Institute for Plasma Research, Bhat, Gandhinagar 382428, India
97
University of Szeged, D ́om t ́er 9, Szeged 6720, Hungary
98
Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA
99
University of Michigan, Ann Arbor, MI 48109, USA
100
Tata Institute of Fundamental Research, Mumbai 400005, India
101
American University, Washington, D.C. 20016, USA
102
Rochester Institute of Technology, Rochester, NY 14623, USA
103
University of Massachusetts-Amherst, Amherst, MA 01003, USA
104
University of Adelaide, Adelaide, South Australia 5005, Australia
105
West Virginia University, Morgantown, WV 26506, USA
106
University of Białystok, 15-424 Białystok, Poland
107
SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
108
IISER-TVM, CET Campus, Trivandrum Kerala 695016, India
109
Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
110
Pusan National University, Busan 609-735, Korea
111
Hanyang University, Seoul 133-791, Korea
112
NCBJ, 05-400
́
Swierk-Otwock, Poland
113
IM-PAN, 00-956 Warsaw, Poland
114
Monash University, Victoria 3800, Australia
115
Seoul National University, Seoul 151-742, Korea
116
University of Alabama in Huntsville, Huntsville, AL 35899, USA
117
ESPCI, CNRS, F-75005 Paris, France
118
Universit `a di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
119
Southern University and A
&
M College, Baton Rouge, LA 70813, USA
120
College of William and Mary, Williamsburg, VA 23187, USA
121
Instituto de F ́ısica Te ́orica, University Estadual Paulista
/
ICTP South
American Institute for Fundamental Research, S ̃ao Paulo SP 01140-070, Brazil
122
University of Cambridge, Cambridge CB2 1TN, United Kingdom
123
IISER-Kolkata, Mohanpur, West Bengal 741252, India
124
Rutherford Appleton Laboratory, HSIC, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
125
Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362 USA
126
National Institute for Mathematical Sciences, Daejeon 305-390, Korea
127
Hobart and William Smith Colleges, Geneva, NY 14456, USA
128
Janusz Gil Institute of Astronomy, University of Zielona G ́ora, 65-265 Zielona G ́ora, Poland
129
Andrews University, Berrien Springs, MI 49104, USA
130
Caltech JPL, Pasadena, CA 91109, USA
131
Universit `a di Siena, I-53100 Siena, Italy
132
Trinity University, San Antonio, TX 78212, USA
133
University of Washington, Seattle, WA 98195, USA
134
Kenyon College, Gambier, OH 43022, USA
135
Abilene Christian University, Abilene, TX 79699, USA
(Dated: June 10, 2016)
The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of
a compact-object binary in the large velocity, highly nonlinear regime, and to witness the final merger of the
binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investi-
gations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We
find that the final remnant’s mass and spin, as determined from the low-frequency (inspiral) and high-frequency
(post-inspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativ-
ity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasi-normal
mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for
parameterized general-relativity violations during the inspiral and merger phases, we perform quantitative tests
on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several
high-order post-Newtonian coe
ffi
cients. We constrain the graviton Compton wavelength, assuming that gravi-
tons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound
of 10
13
km. In conclusion, within our statistical uncertainties, we find no evidence for violations of general
relativity in the genuinely strong-field regime of gravity.
Introduction.
On September 14, 2015, at 09:50:45 Uni-
versal Time, the LIGO detectors at Hanford, Washington and
Livingston, Louisiana, detected a gravitational-wave (GW)
6
signal, henceforth GW150914, with an observed signal-to-
noise ratio (SNR)
24. The probability that GW150914 was
due to a random noise fluctuation was later established to be
<
2
×
10
7
[1, 2]. GW150914 exhibited the expected signature
of an inspiral, merger, and ringdown signal from a coalescing
binary system [1]. Assuming that general relativity (GR) is the
correct description for GW150914, detailed follow-up analy-
ses determined the (detector-frame) component masses of the
binary system to be 39
+
6
4
M
and 32
+
4
5
M
at 90% credible in-
tervals [3], corroborating the hypothesis that GW150914 was
emitted by a binary black hole.
In Newtonian gravity, binary systems move along circular
or elliptical orbits with constant orbital period [4, 5]. In GR,
binary systems emit GWs [6, 7]; as a consequence, the bi-
nary’s orbital period decreases over time as energy and angu-
lar momentum are radiated away. Electromagnetic observa-
tions of binary pulsars over the four decades since their dis-
covery [8, 9] have made it possible to measure GW-induced
orbital-period variations
̇
P
orb
∼−
10
14
–10
12
, confirming the
GW luminosity predicted at leading order in post-Newtonian
(PN) theory [10] (i.e., Einstein’s quadrupole formula) with
exquisite precision [11, 12]. Nevertheless, even in the most
relativistic binary pulsar known today, J0737-3039 [11], the
orbital period changes at an e
ff
ectively constant rate. The or-
bital velocity
v
relative to the speed of light
c
is
v/
c
2
×
10
3
,
and the two neutron stars in the system will coalesce in
85 Myr.
By contrast, GW150914 was emitted by a rapidly evolv-
ing, dynamical binary that swept through the detectors’ band-
width and merged in a fraction of a second, with
̇
P
orb
ranging
from
∼ −
0
.
1 at
f
GW
30 Hz to
∼ −
1 at
f
GW
132 Hz
(just before merger, where
v/
c
reached
0
.
5). Thus, through
GW150914 we observe the two-body motion in the large-
velocity, highly dynamical, strong-field regime of gravity,
leading to the formation of a new merged object, and gen-
erating GWs. While Solar-System experiments, binary-pulsar
observations, and cosmological measurements are all in ex-
cellent agreement with GR (see Refs. [12–14] and references
therein), they test it in low-velocity, quasi-static, weak-field,
or linear regimes.
1
Thus, GW150914 opens up the distinct
opportunity of probing unexplored sectors of GR.
Here we perform several studies of GW150914, aimed
at detecting deviations from the predictions of GR. Within
the limits set by LIGO’s sensitivity and by the nature of
GW150914, we find no statistically significant evidence
against the hypothesis that GW150914 was emitted by two
black holes spiraling towards each other and merging to form
a single, rotating black hole [17, 18], and that the dynamics
of the process as a whole was in accordance with the vacuum
Einstein field equations.
1
While the orbits of binary pulsars are weakly relativistic, pulsars them-
selves are strongly self-gravitating bodies, so they do o
ff
er opportunities to
test strong-field gravity [15, 16].
We begin by constraining the level of coherent (i.e., GW-
like) residual strain left after removing the most-probable
GR waveform from the GW150914 data, and use this esti-
mated level to bound GR violations which are not degener-
ate with changes in the parameters of the binary. We then
verify that the mass and spin parameters of the final black
hole, as predicted from the binary’s inspiral signal, are consis-
tent with the final parameters inferred from the post-inspiral
(merger and ringdown) signal. We find that the data fol-
lowing the peak of GW150914 are consistent with the least-
damped quasi-normal mode (QNM) inferred from the final
black-hole’s characteristics. Next, we perform targeted mea-
surements of the PN and phenomenological coe
ffi
cients that
parameterize theoretical waveform models, and find no ten-
sion with the values predicted in GR and numerical-relativity
(NR) simulations. Furthermore, we search for evidence of
dispersion in the propagation of GW150914 toward the Earth,
as it would appear in a theory in which the graviton is as-
signed a finite Compton wavelength (i.e., a nonzero mass).
Finally, we show that, due to the LIGO network configura-
tion, we cannot exclude the presence of non-GR polarization
states in GW150914.
As we shall see, the constraints on the strong-field dynam-
ics of gravity obtained from GW150914 are not yet very tight;
for instance, some of the bounds on relative deviations in PN
parameters are
O
(1). On the other hand, it is to be noted
that the LIGO detectors are still a factor of a few away from
their final design sensitivities [19], and even louder sources
than GW150914 may be seen in the near future; moreover,
as more detections are made, we will be able to combine in-
formation from all observed sources to obtain progressively
sharper bounds on PN and other coe
ffi
cients.
In the rest of this paper, when reporting physical quantities
that are redshifted in the transformation between the source
and detector frames, we refer to the detector frame unless we
specify otherwise.
Waveform models, systematics, and statistical e
ff
ects.
Tests of GR from GW observations build on the knowledge
of the gravitational waveform in GR, and on the statistical
properties of instrumental noise. Any uncontrolled systematic
e
ff
ect from waveform modeling and
/
or the detectors could in
principle a
ff
ect the outcome of our tests. Thus, we begin by
checking that these uncertainties are either below our mea-
surement precision or accounted for.
The analytical inspiral-merger-ringdown (IMR) waveform
models used in this paper were developed within two frame-
works: i) the e
ff
ective-one-body (EOB) formalism [20–24],
which combines PN results [10] with NR [25–27] and per-
turbation theory [28–30], and ii) a phenomenological ap-
proach [31–34] based on extending frequency-domain PN
expressions and hybridizing PN
/
EOB with NR waveforms.
In particular, here we adopt the double-spin, nonprecessing
waveform model developed in Ref. [35] using NR waveforms
from Ref. [36], enhanced with reduced-order modeling [37] to
speed up waveform generation [38, 39] (henceforth, EOBNR),
and the single-e
ff
ective–spin, precessing waveform model of
7
8
6
4
2
0
2
4
6
8
10
log
B
0
.
0
0
.
2
0
.
4
0
.
6
0
.
8
1
.
0
CDF
signal-to-noise
signal-to-glitch
4
5
6
7
8
9
10
SNR
95
0
.
0
0
.
2
0
.
4
0
.
6
0
.
8
1
.
0
CDF
FIG. 1. Upper panel: cumulative distribution function (CDF) of
log Bayes factor – the logarithm of the ratio of Bayesian evi-
dences between two competing models – for the signal-versus-noise
and signal-versus-glitch B
ayes
W
ave
models, computed for 100 4-s
stretches of data around GW150914. Lower Panel: cumulative dis-
tribution function (CDF) of the 95% credible upper bound on net-
work coherent-burst SNR, denoted SNR
95
, again computed for 100
instrument-noise segments. In both panels, we indicate with dashed
lines the log Bayes factors and upper bound on coherent-burst SNR
corresponding to the residuals obtained after subtracting the most
probable waveform from GW150914.
Refs. [40–42] (henceforth, IMRP
henom
).
2
Both models are
calibrated against waveforms from direct numerical integra-
tion of the Einstein equations.
As shown in Refs. [3, 35, 41, 43, 44], in the region of pa-
rameter space relevant for GW150914, the error due to dif-
ferences between the two analytical waveform models (and
between the analytical and numerical-relativity waveforms) is
smaller than the typical statistical uncertainty due to the finite
SNR of GW150914. To assess potential modeling systemat-
ics, we collected existing NR waveforms and generated new,
targeted simulations. The simulations were generated with
multiple independent codes [45–50], and sample the posterior
region for the masses and spins inferred for GW150914 [3].
Since the posteriors for the magnitudes and orientations of the
component spins are not very constraining, the choices for
these parameters covered wide ranges. To validate the stud-
2
The specific names of the two waveform models that we use in the
LIGO A
lgorithm
L
ibrary
are SEOBNR
v
2
ROM
D
ouble
S
pin
and IMR-
P
henom
P
v
2.
ies below, we added the publicly available and new NR wave-
forms as mock signals to the data in the neighbourhood of
GW150914 [36, 50, 51]. A further possible cause for system-
atics are uncertainties in the calibration of the gravitational-
strain observable in the LIGO detectors. These uncertainties
are modeled and included in the results presented here accord-
ing to the treatment detailed in Ref. [3].
Residuals after subtracting the most-probable waveform
model.
The burst analysis [52], which looks for unmodeled
transients and hence does not rely on theoretical signal tem-
plates, can be used to test the consistency of GW150914 with
waveform models derived from GR. Using the LALI
nfer
-
ence
[53] Bayesian-inference software library, we identify the
most probable (i.e.,
maximum a posteriori
, henceforth MAP)
binary black-hole waveform [3], compute its e
ff
ect in the
Livingston and Hanford detectors, and then subtract it from
the data. If the data are consistent with the theoretical sig-
nal, no detectable power should remain after subtraction other
than what is consistent with instrumental noise. We analyze
the residual with the B
ayes
W
ave
[54] algorithm developed to
characterize generic GW transients. B
ayes
W
ave
uses the evi-
dence ratio (Bayes factor) to rank competing hypotheses given
the observed data. We compare predictions from models in
which: (i) the data contain only Gaussian noise; (ii) the data
contain Gaussian noise and uncorrelated noise transients, or
glitches, and (iii) the data contain Gaussian noise and an ellip-
tically polarized GW signal. We compute the signal-to-noise
Bayes factor, which is a measure of significance for the excess
power in the data, and the signal-to-glitch Bayes factor, which
measures the coherence of the excess power between the two
detectors.
Our analysis reveals that the GW150914 residual favors the
instrumental noise hypothesis over the presence of a coherent
signal as well as the presence of glitches in either detectors;
see the dashed lines in the top panel of Fig. 1. The positive
Bayes factor for the signal-to-glitch hypotheses indicates that
the data prefer the presence of a coherent signal over glitches;
nevertheless, the signal remains below common significance
thresholds, as indicated by the limit on the residual SNR
res
given in the lower panel of Fig. 1 and further explained below.
This is an indication of the stability of the LIGO detectors at
the time of GW150914. We also apply the same analysis to
100 4-second long segments of data drawn within a few min-
utes of GW150914, and produce the cumulative distribution
functions of Bayes factors shown in the upper panel of Fig. 1.
We find that, according to the burst analysis, the GW150914
residual is not statistically distinguishable from the instrumen-
tal noise recorded in the vicinity of the detection, suggesting
that all of the measured power is well represented by the GR
prediction for the signal from a binary black-hole merger. The
results of this analysis are very similar regardless of the MAP
waveform used (i.e., EOBNR or IMRP
henom
).
We compute the 95% upper bound on the coherent network
SNR
res
. This upper bound is SNR
res
7
.
3 at 95% confidence,
independently of the MAP waveform used (i.e., EOBNR or
IMRP
henom
). We note that this coherent-burst SNR has a dif-