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The following material contains detailed information about the implementation and application of the
hyper-optimized approximate contraction method. Sec. A details the generation of spanning trees. Sec. B
derives the explicit form of the ‘compression’ projectors. In Sec. C we give details and pseudo-code for each
of the tree building algorithms. Sec. D defines the estimated cost and size metrics and compares them. In
Sec. E we define the various hand-coded approximate contraction schemes we compare to. Sec. F contains
details about each model we apply approximate contraction to. In Sec. G we provide various details and
extra results regarding the comparison to CATN [1]. Finally in Sec. H we perform a brief study of the corner
double line model.

A Tree spans and gauging
In this section we detail the simple method of generating a (possibly r-local) spanning tree, for use with the
tree gauge, and also in the Span contraction tree building algorithm (note the spanning tree is a different
object to the contraction tree). A pseudocode outline is given in Algorithm. 1. We first take an arbitrary
initial connected subgraph, S0 of the graph, G, for example the two tensors sharing bonds that are about
to be compressed. We then greedily select a pair of nodes, one inside and one outside this region, which
expands the spanning tree, τ and region S, until all nodes within graph distance r of S0 are in S. Since
the nodes can share multiple edges, the spanning tree τ is best described using an ordered set of node pairs
rather than edges. If the graph G has cycles, then nodes outside S may have multiple connections to it, this
degeneracy is broken by choosing a scoring function.
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Algorithm 1 r-local spanning tree
Input: graph G, initial region S0, max distance r
τ ← {} . ordered set of pairs forming spanning tree
S ← S0 . set of nodes spanned by the tree
c← {} . candidates to add to tree
for u ∈ S do . each node in original region

for v ∈ NEIGHBORS(G, u) \ S do . connected nodes not in region
ruv ← 1 . distance to original region
c← c ∪ {(u, v, ruv)}

end for
end for
while |c| > 0 do

u, v, ruv ← BEST(c) . pop the best candidate edge
c← c \ {(u, v, ruv)}
if (v /∈ S) ∧ (ruv ≤ r) then . node is new and close enough

S ← S ∪ {v} . add v to region
τ ← τ ∪ {(u, v)} . add edge to tree
for w ∈ NEIGHBORS(G, v) \ S do . add new neighboring candidates

rvw ← ruv + 1
c← c ∪ {(v, w, rvw)}

end for
end if

end while
Return: τ , S

For the tree gauge, we choose the scoring function such that the closest node with the highest connectivity
(product of sizes of connecting edge dimensions) is preferred. The gauging proceeds by taking the pairs in τ
in reverse order, gauging bonds from the outer to the inner tensor (see main text Fig.3E). If the graph G is a
tree and we take r =∞, this corresponds exactly to canonicalization of the region S0. In order to perform a
compression of a bond in the tree gauge, we just need to perform QR decompositions inwards on a ‘virtual
copy’ of the tree (as shown in the main text Fig. 4B), until we have the central ’reduced factors’ RA and RB .
Performing a truncated SVD on the contraction of these two to yield RARB = RAB ≈ U, σ, V †, allows us
to compute the locally optimal projectors to insert on the bond as PL = RBV σ

−1/2 and PR = σ−1/2U†RA
such that AB ≈ APLPRB. The form of these projectors, which is the same as CTMRG and HOTRG but
including information up to distance r away, is explicitly derived in Sec. B. One further restriction we place
is to exclude any tensors from the span that are input rather than intermediate tensors.

One obvious alternative possibility to the tree-gauge is to introduce an initial ‘Simple Update’ style
gauge [2] on each of the bonds and update these after compressing a bond, including in the vicinity of the
adjacent tensors. A similar scheme was employed for 3D contractions in [3]. In our experience this performs
similarly to the tree-gauge (and indeed the underlying operations are very similar) but is more susceptible to
numerical issues due to the direct inversion of potentially small singular values.

B Explicit projector form
Performing a bond compression such as in the main text Fig. 3D can be equated to the insertion of two
approximate projectors that truncate the target bond to size χ. The projector form allows us to perform the
tree gauge compression ’virtually’ - i.e. without having to modify tensors anywhere else in the original tensor
network. We begin by considering the product AB, where A and B might represent collections of tensors

2



Figure 1: An example of transforming a tensor network, T , into an exactly contractable tensor network, TP ,
using the explicit projector form of a approximate contraction tree. Here we take a 6×6×6 with D = 2
cube and use an optimized contraction tree from the Span generator, for χ = 8. Each node in the original
tensor network is colored uniquely. The grey square nodes in the right hand side diagram represent the
inserted projectors, with thicker edges the compressed bonds of size χ. Arrows indicate the orientation of
the projectors (i.e. the order of the compressions).

such as a local tree. Assuming we can decompose each into a orthogonal and ‘reduced’ factor we write:

AB = (QARA)(RBQB) .

If we resolve the identity on either side, we can form the product RARB in the middle and perform a
truncated SVD on this combined reduced factor yielding UσV †.

AB = QARA(R−1A RA)(RBR
−1
B )RBQB

= QARAR
−1
A (UσV †)R−1B RBQB

= QARA(R−1A U
√
σ)(
√
σV †R−1B )RBQB

from which we can read off the projectors that we need to insert into the original tensor network in order to
realize the optimal truncation as:

PL = R−1A U
√
σ ,

PR =
√
σV †R−1B .

Finally, in order to avoid performing the inversion of the reduced factors, we can simplify:

PL = R−1A U
√
σ

= R−1A (U
√
σ
√
σV †)V σ−1/2

= R−1A (RARB)V σ−1/2

= RBV σ
−1/2
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and likewise:

PR =
√
σV †R−1B

= σ−1/2U†(U
√
σ
√
σV †)R−1B

= σ−1/2U†(RARB)R−1B

= σ−1/2U†RA .

This form of the projectors makes explicit the equivalence to CTMRG and HOTRG [4, 5, 6], for which RA
and RB contain only information about the local plaquette. Note in general that we just need to know RA
and RB (not QA or QB) to compute PL and PR, but we can include in these the effects of the distance-r
tree gauge in order to perform the truncation locally without modifying any tensors but A and B.

Rather than dynamically performing the approximate contraction algorithm using the ordered contraction
tree, one can also use it to statically map the original tensor network, T , to another tensor network, TP ,
which has the sequence of projectors lazily inserted into it (i.e. each APLPRB is left uncontracted). Exact
contraction of TP then gives the approximate contracted value of T . Such a mapping may be useful for
relating the approximate contraction to other tensor network forms [7], or for performing some operations
such as optimization [8]. Here we describe the process.

To understand where the projectors should be inserted we just need to consider the sub-graphs that
the intermediate tensors correspond to. At the beginning of the contraction, each node corresponds to a
sub-graph of size 1, containing only itself. We can define the sub-graph map S(i) = {i} for i = 1 . . . N .
When we contract two nodes i, j to form a new node k, the new sub-graph is simply S(k) = S(i) ∪ S(j).
When we compress between two intermediate tensors i and j, we find all bonds connecting S(i) to S(j), and
insert the projectors PL and PR, effectively replacing the identity linking the two regions with the rank-χ
operator PLPR. Finally we add the tensor PL to the sub-graph S(i) and PR to the sub-graph S(j). This can
be visualized like so.

Grouping all the neighboring tensors on one side of the bonds as an effective matrix A and those on the other
side as B (note that these might generally include projectors from previous steps), the form of PL and PR
can be computed as above.

An example of the overall geometry change of performing this explicit projection transformation for the
full set of compressions on a cubic tensor network approximate contraction is shown in Fig. 1. Note that the
dynamic nature of the projectors, which depend on both the input tensors and the contraction tree, is what
differentiates a tensor network which you contract using approximate contraction, and for instance directly
using a tree- or fractal-like ansatz such as TP .

C Tree builder details
In this section we provide extended details of each of the heuristic ordered contraction tree generators. First
we outline the hyper optimization approach. Each tree builder B takes as input the graph G with edges
weighted according to the tensor network bond sizes, as well as a set of heuristic hyper-parameters, θ̄, that
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control how it generates an ordered contraction tree Υ. The builder is run inside a hyper-optimization
loop that uses a generic optimizer, O, to sample and tune the parameters. We use the nevergrad [9]
optimizer for this purpose. A scoring function computes some metric y for each tree (see Sec. D for possible
functions), which is used to train the optimizer and track the best score and tree sampled so far, ybest and
Υbest respectively. The result, outlined in Algorithm 2, is an anytime algorithm (i.e. can be terminated at any
point) that samples trees from a space that progressively improves. Note that while the optimization targets a
specific χ, the tree produced exists separately from χ and can be used for a range of values of χ (in which
case one would likely optimize for the maximum value).

Algorithm 2 Hyper optimization loop
Input: graph G, max bond χ, builder B, optimizer O
ybest ←∞
while optimizing do

θ̄ ← SAMPLE PARAMETERS(O) . Get new hyper parameters
Υ← GENERATE TREE(B,G, θ̄) . Build tree with new parameters
y ← SCORE TREE(Υ, χ) . Score the tree
if y < ybest then

ybest ← y
Υbest ← Υ

end if
REPORT PARAMETERS(O, θ̄, y) . Update optimizer with score

end while
Return: Υbest

In the following subsections we outline the specific hyper parameter choices, θ̄, for each tree builder.
However one useful recurring quantity is a measure of centrality, similar to the harmonic closeness[10, 11],
that assigns to each node a value according to how central it is in the network. This can be computed very
efficiently as c[v] = 1

Z

∑
u6=v

1√
d(u,v)+1

, where d(u, v) is the shortest distance between nodes u and v. The

normalization constant Z is chosen such that c[v] ∈ [0, 1] ∀ v.

C.1 Greedy

The Greedy algorithm builds an ordered contraction tree by taking the graph at step α of the contraction,Gα,
and greedily selecting a pair of tensors to contract (i, j)→ k, simulating the contraction and compression of
those tensors, and then repeating the process with the newly updated graph, Gα+1, until only a single tensor
remains. The pair of tensors chosen at each step are those that minimize a local scoring function, and it is
the parameters within this that are hyper-optimized. The local score is a sum of the following components:

• log2 size of new tensor after compression with weight θnew size.

• log2 size of new tensor before compression with weight θold size.

• The minimum, maximum, sum, mean or difference (the choice of which is a hyper parameter) of the
two input tensor sizes log2, with weight θinputs.

• The minimum, maximum, sum, mean or difference (the choice of which is a hyper parameter) of the
sub-graph sizes of each input (when viewed as sub-trees) with weight θsubgraph.

• The minimum, maximum, mean or difference (the choice of which is a hyper parameter) of the
centralities of each input tensor with weight θcentrality. Centrality is propagated to newly contracted
nodes as the minimum, maximum or average of inputs (the choice of which is a hyper-parameter).
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• a random variable sampled from the Gumbel distribution multiplied by a temperature (which is a
hyper-parameter).

The final hyper-parameter is a value of χgreedy to simulate the contraction with, which can thus deviate
from the real value of χ used to finally score the tree. The overall space defined is 11-dimensional, which
is small enough to be tuned by, for example, Bayesian optimization. In our experience it is not crucial to
understand how each hyper-parameter affects the tree generated, other than that they are each chosen to
carry some meaningful information from which the optimizer can conjure a local contraction strategy; the
approach is more in the spirit of high-dimensional learning rather than a physics-inspired optimization.

C.2 Span

The Span algorithm builds an ordered contraction tree using a modified, tunable version of the spanning
tree generator in Algorithm 1 with r =∞. The basic idea is to interpret the ordered sequence of node pairs
in the spanning tree, τ , as the reversed series of contractions to perform. The initial region S0 is taken as
one of the nodes with the highest or lowest centrality (the choice being a hyper-parameter). The remaining
hyper-parameters are used to tune the local scoring function (BEST(c) in Algorithm. 1), that decides which
pair of nodes should be added to the tree at each step. These are:

• The connectivity of the candidate node to the current region, with weight θconnectivity.

• The dimensionality of the candidate tensor, with weight θndim.

• The distance of the candidate node from the initial region, with weight θdistance

• The centrality of the candidate node, with weight θcentrality

• a random variable sampled from the Gumbel distribution multiplied by a temperature (which is a
hyper-parameter).

The final hyper-parameter is a permutation controlling which of these scores to prioritize over others.

C.3 Agglom

The Agglom algorithm builds the contraction tree by repeated graph partitioning using the library KaHyPar [12,
13]. We first partition the graph, G into ∼ |V |/K parts, with the target subgraph size K being a tunable
hyper-parameter. Another hyper-parameter is the imbalance, θimbalance, which controls how much the
sub-graph sizes are allowed to deviate from K. Other hyper-parameters at this stage pertain to KaHyPar:

• θmode either ‘direct’ or ‘recursive’,

• θobjective either ‘cut’ or ‘km1’,

• θweight whether to weight the edges constantly or logarithmically according to bond size.

Once a partition has been formed, the graph is transformed by simulating contracting all of the tensors in
each group, and then compressing between the new intermediates to create a new graph with∼ |V |/K nodes
and bonds of size no more than χagglom (itself a hyper-parameter which can deviate from the real χ used
to score the tree). The contractions within each partition are chosen according to the Greedy algorithm.
Finally, the tree generated in this way is not ordered. To fix an ordering the contractions are sorted by
sub-graph size and average centrality.
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Algorithm 3 Branch and bound tree search
Input: graph G, Maximum bond dimension χ
ybest ←∞
c = {} . candidate contractions
for i, j ∈ EDGES(G) do . populate with every pair of tensors

y ← 0 . initial score
p← [ ] . the contraction ‘path’
c← c ∪ {(i, j, G, y, p)}

end for
while |c| > 0 do

(i, j, G, y, p)← REMOVE BEST(c)
if INVALID(i, j, G) or y ≥ ybest then . no need to explore further

continue
end if
if |G| = 1 and y < ybest then . finished contraction with best score

ybest ← y
pbest ← p
continue

end if
p← APPEND(p, (i, j)) . continue exploring
(k,G, y)← SIMULATE CONTRACTION(i, j, G, χ) . k is the new node
for l ∈ NEIGHBORS(G, k) do . add new possible contractions

c← c ∪ {(k, l, G, y, p)}
end for

end while
Υbest ← BUILD TREE FROM PATH(G, pbest)
Return: Υbest

C.4 Branch & bound approximate contraction tree
The hyper-optimized approach produces heavily optimized trees but with no guarantee that they are an
optimal solution. For small graphs a depth first branch and bound approach can be used to find an optimal tree
exhaustively, or to refine an existing tree if terminated early. The general idea is to run the greedy algorithm
whilst tracking a score, but keep and explore every candidate contraction at each step (a ‘branch’) in order to
‘rewind’ and improve it. The depth first aspect refers to prioritizing exploring branches to completion so as
to establish an upper bound on the score. The upper bound can then be improved and used to terminate bad
branches early.

D Tree cost functions
There are various cost functions one can assign to an approximate contraction tree to then optimize against.
Broadly these correspond to either space (memory) or time (FLOPs) estimates. Three cost functions that we
have considered that only depend on the tree and χ (but not gauging scheme for example) are the estimated
peak memory, M , the largest intermediate tensor, W , and the number of FLOPs involved in the contractions
only. Specifically, given the set of tensors, {vα}, present at stage α of the contraction, the peak memory is
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Figure 2: Relationship between various tree cost functions for randomly sampled approximate contraction
trees for two geometries: 2D square of size 16× 16 and 3D cube of size 6× 6× 6 (pictured in insets). D, χ,
the algorithm and its hyper-parameters are all uniformly sampled.

given by:
M = max

α

∑
v∈{vα}

size(T [v]) . (1)

Given a compression and gauging scheme, one can also trace through the full computation, yielding a
more accurate peak memory usage, M̃ , as well an estimate of the FLOPs associated with all QR and SVD
decompositions too – we call this the full computational ‘cost’, C. Included in this we consider only the
dominant contributions:

• contraction of two tensors with effective dimensions (m,n) and (n, k): mnk

• QR of tensor with effective dimensions (m,n) with m ≥ n: 2mn2 − 2
3n

3

• SVD of tensor with effective dimensions (m,n) with m ≥ n: 4mn2 − 4
3n

3.

Of these the first two dominate since the SVD is only ever performed on the reduced bond matrix. Note the
actual FLOPs will be a constant factor higher depending on the data type of the tensors.
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Figure 3: Overview of a single step of the the manual 2D boundary contraction method that uses an MPS to
sweep across the square.

In Fig. 2 we plot the relationship between the various metrics mentioned above for several thousand
randomly sampled contraction trees on both a square and cubic geometry for varying D, χ and algorithm.
We note that M , M̃ and W are all tightly correlated. The full cost C is slightly less correlated with these and
only slightly more so with the ‘contractions only‘ cost. Importantly however, the best contractions largely
appear to simultaneously minimize all the metrics.

E Hand-coded Contraction Schemes
In Figs. 3-7 we illustrate the various hand-coded contraction schemes used as comparisons in the text: 2D
boundary contraction, 2D corner transfer matrix RG [14], 2D higher-order TRG [15], 3D PEPS boundary
contraction, and 3D higher-order TRG [15]. Note that in the case of CTMRG and HOTRG, the algorithms
are usually iterated to treat infinite, translationally invariant lattices, but here we simply apply a finite number
of CTMRG or HOTRG steps and also generate the projectors locally to handle in-homogeneous tensor
networks. For both CTMRG and HTORG we use the cheaper, ‘lazy’ method [6] of computing the reduced
factors RA and RB which avoids needing to form and compute a QR on each pair of tensors on either side
of a plaquette. We then use the projector form as given in Sec. B to compress the plaquette. The 3D PEPS
boundary contraction algorithm has not previously been implemented to our knowledge, but is formulated in
a way analogous to 2D boundary contraction. Notably, if any dimension is of size 1 it reduces to exactly 2D
boundary contraction including canonicalization. For further details, we refer to the lecture notes [7] and the
original references.

F Models

F.1 Ising Model
We consider computing the free energy per spin of a system of N classical spins at inverse temperature β,

f =
− logZ

Nβ
(2)
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Figure 4: Illustration of two boundary contraction steps of CTMRG for a finite 2D lattice. The full algorithm
proceeds to contract all four of the sides inwards in succession. Note that the projectors (pink) are not
identical across the lattice but are computed specific to the local tensors to allow for finite in-homogeneous
systems.
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Figure 5: Illustration of a full coarse graining step of HOTRG for a finite 2D lattice. Note that once a round
of coarse graining has taken place, all bonds are of size χ and so the next round starts with D = χ. Note also
that the projectors (pink) are not identical across the lattice but are computed specific to the local tensors to
allow for finite in-homogeneous systems.
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Figure 6: Illustration of a single step of the the manual 3D boundary contraction method that uses a PEPS
to sweep across the cube. When Lx, Ly or Lz = 1 the scheme becomes equivalent to MPS boundary
contraction.
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Figure 7: Illustration of a single coarse graining step of HOTRG for a finite 3D lattice. For brevity we only
show coarse graining in the x-direction but the full algorithm coarse grains each of the three dimensions in
succession. Note that once two or more directions have been coarse grained, all bonds will be of size χ and
so subsequent rounds start with D = χ. Note also that the projectors (pink and yellow) are not identical
across the lattice but are computed specific to the local tensors to allow for finite in-homogeneous systems.
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where the partition function, Z, is given by:

Z =
∑
{σ}

∏
〈i,j〉

exp(jβσiσj) , (3)

σk ∈ [1,−1] being the state of spin k and {σ} the set of all configurations. The interaction pairs 〈i, j〉
are the edges of the graph, G, under study. We take the interaction strength j to be 1, i.e. ferromagnetic.
While Monte Carlo methods can readily compute many quantities in such models, we note that the partition
function and free energy are typically much more challenging [16]. Regardless of geometry we assume
the spins are orientated in the same direction - the uniaxial Ising model. Typically one converts Z into a
‘standard’ tensor network with a single tensor per spin (or equivalently vertex of G), by placing the tensor,

T
[v]
{ev} =

∑
i

∏
ej∈{ev}

Wi,ej (4)

on each vertex v of G, where the matrix W is defined by (W 2)i,j = exp(βσiσj). For j > 0 we can define
W as real and symmetric using:

W =
1√
2

(√
cosh(jβ)+

√
sinh(jβ)

√
cosh(jβ)−

√
sinh(jβ)√

cosh(jβ)−
√

sinh(jβ)
√

cosh(jβ)+
√

sinh(jβ)

)
.

This is equivalent to splitting the matrix on each bond then contracting each factor into a COPY-tensor placed
on each vertex. We note that while this yields a tensor network with the exact geometry of the interaction
graph G, one could factorize the COPY-tensor in other low-rank ways. Indeed for the exact reference results
the TN in Eq. (3) is contracted directly by interpreting every spin state index as a hyper index (i.e. appearing
on an arbitrary number of tensors). The relative error in the free energy is given by:

∆f =

∣∣∣∣1− f

fexact

∣∣∣∣ =

∣∣∣∣1− logZ

logZexact

∣∣∣∣ (5)

with ·exact results obtained via exact contraction. Depending on geometry the Ising model undergoes
a phase transition at critical temperature βc in the thermodynamic limit and it is in this vicinity that
generally ∆f peaks for finite systems. For example, on the 2D square lattice the exact value is known,
βc = log(1+

√
2)

2 ≈ 0.44 [17, 18].

F.2 URand Model
While the Ising model varies in difficulty depending on β, it seems always relatively easy to approximate
to some extent using approximate contraction. On the other hand we expect there to be tensor networks
which are exponentially difficult to approximate even for simple geometries. Here we introduce the URand
model which allows us to continuously tune between very hard and very easy regimes. This is achieved
simply by filling each tensor with random values sampled uniformly from the range [λ, 1]. When λ ≥ 0,
every term in the TN sum is non-negative and the sum becomes very easy to approximate. As λ becomes
more negative however, the sum increasingly becomes terms of opposite sign which ‘destructively interfere’
making the overall contracted value Z hard to approximate. Choosing an intermediate λ allows us to generate
‘moderately hard’ contractions where the different gauging and tree generating strategies have a significant
effect. For the URand model we consider the relative error in Z directly:

∆Z = 1− Z

Zexact

with Zexact computed via exact contraction.
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F.3 Dimer covers / positive #1-IN-3SAT
In this model we want to compute the entropy per site of dimer coverings of a graph G with number of
vertices |V |. Here, a valid configuration is given if every vertex of G is ‘covered’ by exactly one dimer.
Counting all valid configurations is done by enumerating every combination of placing a dimer on a bond
(setting the corresponding index to 1) or not (setting the index to 0), which can be formed as a tensor network
with the following tensor on each vertex:

Ti,j,k,... =

{
1, if i+ j + k + . . . = 1

0, otherwise
. (6)

The total number of valid configurations is then the contraction:

W =
∑
{e}

∏
v

T
[v]
{ev} (7)

This is also equivalent the counting problem positive #1-IN-3SAT [19, 20, 21], the decision version
of which is NP-Complete [22, 23]. For 3-regular random graphs, this is known to be close the hardest
regime though just on the side of satisfiability, in terms of the density of variables (edges) to clauses
(vertices) [19, 20]. The residual entropy per site is given by:

S =
logW

n
, (8)

for number of vertices n = |V |, with relative error:

∆S = 1− S

Sexact
. (9)

The reference values Sexact are computed using exact contraction, which is feasible up to n ∼ 300 for
3-regular random graphs.

The problem is also known as counting ‘perfect matchings’, ‘complete matchings’, or ‘1-factors’ and has
been studied for random regular graphs in the large |V | limit [24]. There it was shown that if the degree k
satisfies 3 ≤ k < log(n)

1
3 then the expected value of W across all random k-regular instances is

W̄ = (
√

2 +O(n−
2
3 ))e

1
4 ((k − 1)k−1/kk−2)n/2 . (10)

If we take the limit of this we find:

s∞ = lim
n→∞

(
log Ŵ/n

)
= lim
n→∞

(
1

2
(k − 1) log(k − 1) +

1

2
(2− k) log(k) +O(

1

n
)

)
= 0.1438410362258904 . . .

The condition linking k and n requires n & 5.3 × 1011, the scale of which suggests that our estimate of
0.1429(2) might have some small systematic error remaining from finite size effects.

G Performance comparison to CATN
So far where appropriate we have compared our method to manually specified contraction orders in 2D and
3D. In [1], an algorithm to automatically contract arbitrary geometry tensor networks was also developed
which showed good performance across a range of graphs. For convenience here we refer to that algorithm
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Figure 8: Performance comparison of this current work (blue) and the algorithm of Pan et al. [1] (orange)
using various settings for computing the free energy of the Ising model at approximately the critical point of
A: a 32×32 square lattice at the approximate critical temperature β=0.44 and B: a 6×6×6 cubic lattice at
the approximate critical temperature β=0.3. For both algorithms χ is varied and the points are labeled with
the value. For the current work we show both the time with contraction only, and also accounting for the
hyper-optimization time (about 10 seconds).

as CATN. While the basic tensor operations are similar, in CATN an effective periodic MPS is used to
contract the graph using SWAP operations to remove bonds. A major difference is also that in this work we
optimize the pattern of contractions and compressions ahead of time for the specific geometry. A python
implementation of [1] is available at [25] which we can use to compare against for free energies of graphical
models. Taking that code as is, the most direct way to compare performance of these two approaches is
simply wall time on a single core of a CPU, here an AMD EPYC 7742.

In Fig. 8 we show a more detailed comparison than the main text of CATN and this current work for the
Ising model at approximately the critical point on 2D and 3D lattices, as a function of accuracy vs contraction
time. For our algorithm here we use the Span tree builder and show a range of χ with the tree gauge distance
r = 2. One consideration is that in our approach the hyper-optimization step might run separately to the
actual contraction, since it depends only on the geometry and the approximate contraction tree can be re-used
for different tensor entries (e.g. sweeping β). Here we show both the pure contraction only time and also the
time if one takes the hyper-optimization into account. We compare to the contraction time reported directly
by CATN, and note that this includes computing (greedily) which edge to remove next on-the-fly. In CATN,
there are two bond dimension parameters controlling the trade-off between accuracy and computational
effort, Dmax and χ, and two main parameters controlling how to select the bonds to remove, select
and reverse. The relationship between Dmax and χ and the error and computational time is not trivial
so we sweep across both. For the main text we showed select=0 and reverse=1 but here we also
show the other good combinations. CATN also has four other parameters, node, corder, swapopt, and
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Figure 9: A: Accuracy of both manual and hyper-optimized approximate contraction schemes for the 2D
corner double line (CDL) model with lattice size of 64× 64 and an effective D = 2× 2 = 4. B: schematic
of the OBC CDL model.

svdopt. We find these generally have no systematic or significant effect on error time for these examples,
but nonetheless for each point take the best performing combination in terms of min ∆F × time. The core
linear algebra operations in both algorithms are performed using the same version of numpy [26], and we
take the best time out of three repeats.

In both the 2D and 3D cases, Figs. 8A and B respectively, we see that our algorithm achieves the best
accuracy vs. contraction time trade-off across the range of values and settings considered, especially in the
high accuracy regime. We note that once hyper-optimization times are taken into account, for some less high
accuracies CATN can perform better. For this comparison, we are interested in the automated performance of
each algorithm, and thus use the greedy ordering of CATN. However, it was noted in [1] that an explicitly
specified ‘Zig-Zag’ order performs well for the square 2D lattice, suggesting that optimizing over strategies
might be beneficial for that approximate contraction scheme also.

H Performance on corner double line (CDL) tensor networks
An important model in the development of various normalization group style approximate contraction
algorithms has been that of the corner double line (CDL) TN [27]. This model involves embedding local
loop correlations in a lattice. Each such loop consists of four 2 dimensional COPY tensors (i.e. identity
matrices) with dimension d placed around each plaquette. This results in four corner tensors at each site
which can be contracted (via an outer product) to give a d2×d2×d2×d2 tensor after grouping indices. Each
bond is thus doubled, carrying correlations from the two adjacent plaquettes. Such a CDL TN has a trivial,
purely local correlation structure, that should not propagate to the coarse grained picture after a real space
normalization procedure. However it is simple to show that both elementary algorithms such as TRG [28]
and also more advanced algorithms such as HOTRG [15] never fully remove all such correlations, and it
has been speculated that this is a source of error in approximate contraction schemes for more physically
motivated models, which has sparked many improved schemes that explicitly handle the CDL correlations.

On the other hand, if one is only interested in the accuracy of the contracted value of the TN, and the loop
bond dimension is not too large then the CDL model poses no problem for all the contraction methods we
consider here. Indeed the correlations are exactly the type that can be sustainably removed as the contraction
proceeds, as long as χ is above some very small threshold. In Fig. 9A we compare the relative error for
contracting a 64×64 CDL TN with 5 methods and show that each becomes essentially exact at either χ = 2
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or χ = 4 (for d = 2). Since we focus on open boundary conditions here, we use the CDL TN depicted in
Fig. 9B with 0- and 1- dimensional COPY tensors along the boundary where necessary, however the same
behavior holds for periodic boundary conditions. This is easily understood from the fact that once two pairs
of tensors on either side of a plaquette have been contracted to A,B (which all these methods do) the internal
plaquette correlation is ‘resolved’ into a scalar contribution, allowing the remaining local operator AB to
be exactly represented with rank reduced by a factor of d2. Nonetheless, for the purposes of studying the
entanglement renormalization flow (as well as to handle loop correlations with larger bond dimension) it will
be interesting to generalize our contraction schemes to include disentanglers. This will be studied in future
work.
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