of 42
Supporting Information
for
Adv. Mater.
, DOI 10.1002/adma.202308497
Approaching Standardization: Mechanical Material Testing of Macroscopic Two-Ph
oton
Polymerized Specimens
Thomas Koch*, Wenxin Zhang, Thomas T. Tran, Yingjin Wang, Adri
an Mikitisin, Jakob
Puchhammer, Julia R. Greer, Aleksandr Ovsianikov*, Franziska Chal
upa-Gantner* and Markus
Lunzer*
Supporting
I
nformation
Approaching standardization: Mechanical material testing of macroscopic two
-
photon
polymerized specimens
Thomas Koch
*
, Wenxin Zhang, Thomas T
. Tra
n
, Yingjin Wang, Adrian Mikitisin
,
Jakob Puchhammer,
Julia R. Greer,
Aleksandr Ovsianikov*,
Franziska Chalupa
-
Gantner
*
, Markus Lunzer
*
Figure S1. Voxel dimensions,
10x / NA 0.4 objective, UpPhoto
Figure S2. Voxel dimensions, 5x / NA 0.25 objective, UpPhoto.
Figure S3. FTIR
Figure S
4
. Micro indentation on micro
cuboids
UpPhoto
Figure S
5
. Micro indentation on micro cuboids
Up
Draft
Figure S
6
. Micro indentation on micro cuboids
ETA/TTA
Figure S
7
. SEM images of fracture surfaces, ETA/TTA
Figure
S
8
. SEM images of fracture surfaces, UpDraft
Figure
S
9
. SEM
images of fracture surfaces, UpPhoto
Figure S10. SEM images of
cryo
fracture surfaces, ETA/TTA
Figure S11. SEM images of cryo fracture surfaces, ETA/TTA
Figure S12. SEM images of cryo fracture surfaces, UpDraft
Figure
S
13
. SEM images of
cryo
fracture surfaces, UpDraft
Figure
S
14
. SEM images of
cryo
fracture surfaces, UpPhoto
Figure S
15
. SEM images of
cryo
fracture surfaces,
UpPhoto
Figure
S16
. SEM images of fractured T2 specimen, ETA/TTA
Figure S
17
. X
-
Ray microscopy of B4 specimens 2PP
fabricated with 5x objective
Figure S
18
. X
-
Ray microscopy of B4 specimen of UpPhoto 2PP fabricated with 5x objective
Figure
S19
.
Micro
-
ATR
-
FTIR
Figure
S20
.
Micro
-
ATR
-
FTIR
on cross
-
sections
Figure
S
21
. Dynamic
-
mechanical thermal
analysis (DMTA) in 3
-
point bending mode
Figure
S
22
. DMTA, 3
-
point bending
Loss moduli E’’
vs. temperature
Figure
S
23
. DMTA, 3
-
point bending
Loss factors tan
vs. temperature
Figure
S
24
. Tensile testing
Figure S2
5
. Micro tensile testing
Figure
S
26
.
SEM images of fracture surfaces, ETA/TTA
Figure
S
2
7
. SEM images of fracture surfaces, UpDraft
Figure
S2
8
. SEM images of fracture surfaces, UpPhoto
Figure
S2
9
. 3
-
point bending tests
Figure
S
30
. Differential scanning calorimetry (DSC) curves of 2PP printed B4 specimens
Figure
S
31
. 3
-
point bending tests. Storage stability of printed parts at room temperature
Figure S
32
. 3
-
point bending of razor blade
-
notched
B4
specimen, UpPhoto
Figure
S
33
.
Example of specimens fabricated by stereolithography (SLA).
Figure
S
34
. Dynamic
-
mechanical thermal analysis (DMTA) in 3
-
point bending mode
Figure
S
35
. Octet truss bars with various minimum feature sizes
Supporting
References
Appendix
Specimen dimensions
Figure
S
36
. Engineering drawing of tensile specimens T1 and T2
Figure
S
37
.
Engineering drawing of 3
-
point bending specimens B4 and B10
Figure
S
38
. Engineering drawing of 2PP printed notched 3
-
point bending specimen B4
Figure
S
39
. Engineering drawing of specimen
s
for macroscopic indentation hardness testing
Voxel dimensions
e
Fine
Coarse
Laser power [mW]
40
50
60
80
100
120
140
Lateral dimension [μm]
1.2
1.2
4.2
4.1
4.9
5.3
5.6
Axial dimension [μm]
5.5
6.4
8.9
9.5
13.3
15.5
16.1
Aspect ratio
4.4
5.1
2.1
2.3
2.7
2.9
2.9
Figure S1. Voxel dimensions
,
10x / NA 0.4 objective
, UpPhoto
.
Free hanging single voxel lines were polymerized
between blocks from UpPhoto in (a, c)
fine
and (b, d)
coarse
mode at different laser powers and a constant
scanning speed of 600 mm s
-
1
. The (a, b) lateral voxel dimensions were measured directly by SEM analysis of the
line width. The (c, d) axial voxel dimensions were obtained by measuring the height at the center of the line at a
45° angle and then multiplying by
2
.
(e)
Mean voxel dimensions per print setting. Scale bars 10 μm.
e
Fine
Coarse
Laser power [mW]
170
180
150
200
250
300
350
Lateral dimension
[μm]
2
.
3
2
.
4
9
.
4
9
.
3
9
.
9
10
.
5
10
.
3
Axial dimension
[μm]
37
.
2
38
.
8
49
.
9
56
.
1
63
.
8
65
.
7
71
.
2
Aspect ratio
15
.
9
16
.
0
5
.
3
6
.
1
6
.
4
6
.
3
6
.
9
Figure S2. Voxel dimensions
,
5x / NA 0.25 objective
, UpPhoto
.
Free hanging single voxel lines were polymerized
between blocks from UpPhoto in (a, c)
fine
and (b, d)
coarse
mode at different laser powers and a constant
scanning speed of 750 mm s
-
1
. The (a, b) lateral voxel dimensions were measured directly by SEM analysis of the
line width. The (c, d) axial voxel dimensions were obtained by measuring the height at the center of the line at a
45° angle and then multiplying
2
. (e) Mean voxel dimensions per print setting. Scale bars 10 μm.
Figure S3.
FTIR
spectra of
UpPhoto
, UpDraft and
ETA/TTA
in uncured
(thin line)
and 2PP
polymerized
(
5x
objective, 350 mW,
bold line)
state. Characteristic bands are indicated
in grey
, in the case of UpDraft and
UpPhoto the urethane related N
-
H stretch vibration bands are
highlighted
by contrast color
.
Micro cuboids
a
b
c
d
Figure S
4
. Micro indentation on micro
-
cuboids
UpPhoto.
(
a) Exemplary SEM image of cuboids (50 x 50 x
80
μm
3
) fabricated from
UpPhoto
using a 40x
/
NA 1.4 objective at varying laser power
s
(4.9
-
12.9 mW) and
scanning speeds (50, 100 and 150
mm
s
-
1
).
(
b) All micro
-
cuboids fabricated from UpPhoto with the given printing
parameter set passed the dimensional evaluation
, i.e. percentage deviation less than 5 %
(green).
(
c) Relative
indentation hardness H
IT
/H
IT,max
and
(
d) relative indentation modulus E
IT
/E
IT,max
in dependency on processing
parameters for micro
-
cuboids printed from
UpPhoto
.
0,95
0,92
0,89
0,98
0,95
0,97
0,96
1,00
0,96
0,99
0,99
1,00
1,00
0,97
0,99
0,96
0,93
0,99
50
100
150
4,9
6,5
8,1
9,7
11,3
12,9
laser power [mW]
scanning speed
[
mm s
-1
]
0,6
0,7
0,8
0,9
1
H
IT
/ H
IT, max
0,97
0,92
0,90
0,97
0,95
0,97
0,97
0,98
0,97
0,97
0,99
1,00
0,99
1,00
1,00
0,97
0,98
1,00
50
100
150
4,9
6,5
8,1
9,7
11,3
12,9
laser power [mW]
scanning speed
[
mm s
-1
]
0,6
0,7
0,8
0,9
1
E
IT
/ E
IT, max
E
IT, max
= 4220 MPa
H
IT, max
= 211 MPa
12.9
11.3
9.7
8.1
6.5
4.9
50
100
150
4,9
6,5
8,1
9,7
11,3
12,9
laser power [mW]
scanning speed
[
mm s
-1
]
dimensional evaluation
12.9
11.3
9.7
8.1
6.5
4.9
12.9
11.3
9.7
8.1
6.5
4.9
a b
c
d
Figure S
5
. Micro indentation on micro
-
cuboids
Up
Draft
.
(
a) Exemplary SEM image of cuboids (50 x 50 x 80
μm
3
)
fabricated from
UpDraft
using a 40x
/
NA 1.4 objective at
varying laser power
s
(4.9
-
12.9 mW) and scanning
speeds (50, 100 and 150
mm
s
-
1
).
(
b) All micro
-
cuboids fabricated from UpPhoto with the given printing
parameter set passed the dimensional evaluation
, i.e. percentage deviation less than 5 %
(green).
(
c) Relative
indentation hardness H
IT
/H
IT,max
and d) relative indentation modulus E
IT
/E
IT,max
in dependency on processing
parameters for micro
-
cuboids printed from
UpDraft
.
0,94
0,96
0,90
0,96
0,96
0,95
0,94
0,97
0,97
0,97
0,97
0,97
0,98
0,98
1,00
0,99
0,97
0,97
50
100
150
4,9
6,5
8,1
9,7
11,3
12,9
laser power [mW]
scanning speed
[
mm s
-1
]
0,6
0,7
0,8
0,9
1
E
IT
/ E
IT, max
0,84
0,85
0,77
0,91
0,86
0,83
0,91
0,89
0,78
0,91
0,91
0,91
1,00
0,94
0,92
0,98
0,95
0,97
50
100
150
4,9
6,5
8,1
9,7
11,3
12,9
laser power [mW]
scanning speed
[
mm s
-1
]
0,6
0,7
0,8
0,9
1
H / H
max
E
IT, max
= 3940 MPa
H
IT, max
= 211 MPa
50
100
150
4,9
6,5
8,1
9,7
11,3
12,9
laser power [mW]
scanning speed
[
mm s
-1
]
dimensional evaluation
12.9
11.3
9.7
8.1
6.5
4.9
12.9
11.3
9.7
8.1
6.5
4.9
12.9
11.3
9.7
8.1
6.5
4.9
1
0.9
0.8
0.7
0.6
1
0.9
0.8
0.7
0.6
a
b
Figure S
6
. Micro indentation on micro cuboids
ETA/TTA.
(
a) Relative indentation hardness H
IT
/H
IT,max
and
(
b) relative indentation modulus E
IT
/E
IT,max
in dependency on processing parameters for micro
-
cuboids printed
from
ETA/TTA
. The crosses indicate non
-
formed or incomplete
cuboidal
shapes.
0,69
--
--
0,88
0,75
0,59
1,00
0,87
0,84
1,00
0,92
0,93
0,97
0,91
0,91
0,89
0,87
0,90
50
100
150
4,9
6,5
8,1
9,7
11,3
12,9
laser power [mW]
scanning speed
[
mm s
-1
]
0,6
0,7
0,8
0,9
1,0
E
IT
/ E
IT, max
0,71
--
--
0,90
0,77
0,66
1,00
0,89
0,88
0,98
0,94
0,97
0,93
0,90
0,93
0,83
0,82
0,88
50
100
150
4,9
6,5
8,1
9,7
11,3
12,9
laser power [mW]
scanning speed
[
mm s
-1
]
0,6
0,7
0,8
0,9
1
H
IT
/ H
IT, max
E
IT, max
= 2010 MPa
H
IT, max
= 139 MPa
12.9
11.3
9.7
8.1
6.5
4.9
12.9
11.3
9.7
8.1
6.5
4.9
Basic Characterization
Figure
S
7
. SEM image
s
of
fracture
surfaces,
ETA/TTA.
(
a
)
T1 specimen,
detail and overview (insert);
(
b)
B4
specimen,
notched
, edgewise loaded
,
room temperature fracture
;
c
)
B4 specimen, notched, edgewise loaded
,
cryo
-
fracture, detail
.
50 μm
500
μm
ETA / TTA
a
b
c
Figure
S
8
. SEM images of fracture surfaces,
UpDraft
.
(
a) T1 specimen, detail and overview (insert);
(
b)
B4
specimen, notched, edgewise loaded
,
room
temperature fracture
;
(
c
)
B4 specimen, notched, edgewise loaded
,
cryo
-
fracture, detail
.
50 μm
500
μm
UpDraft
a
b
c
Figure
S
9
. SEM images of fracture surfaces, Up
P
hoto
.
(
a) T1 specimen, detail and overview (insert);
(
b)
B4
specimen, notched, edgewise loaded
,
room temperature fracture
;
(c
)
B4 specimen, notched, edgewise loaded
,
cryo
-
fracture, detail
.
Figure S
10
. SEM images of fracture surface,
ETA/TTA
.
B
10
specimen,
5x
/ 0.25 NA
objective,
cryo
-
fracture,
two
magnifications
.
Figure S
11
. SEM images of fracture surface,
ETA/TTA
.
B
10
specimen,
10x / NA 0.4 objective
,
cryo
-
fracture,
two
magnifications
.
Figure S
12
. SEM images of fracture surface,
UpDraft
.
B
10
specimen,
5x / 0.25 NA objective,
cryo
-
fracture,
two
magnifications
.
Figure S
13
. SEM images of fracture surface,
UpDraft
.
B
10
specimen,
10x / NA 0.4 objective
,
cryo
-
fracture,
two
magnifications
.
Figure S
14
. SEM images of fracture surface,
UpPhoto
.
B
10
specimen,
5x / 0.25 NA objective,
cryo
-
fracture,
two
magnifications
.
Figure S
15
. SEM images of fracture surface,
UpPhoto
.
B
10
specimen,
10x / NA 0.4 objective,
cryo
-
fracture,
two
magnifications
Figure S
16
. SEM
images of fractured T2 specimen
,
ETA/TTA
.
10x
/ NA 0.4
objective, hole and micro crack
starting from the edge of the hole