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Abstract

Understanding how protein sequences confer function remains a defining challenge in

molecular biology. Two approaches have yielded enormous insight yet are often pursued

separately: structure-based, where sequence-encoded structures mediate function, and

disorder-based, where sequences dictate physicochemical and dynamical properties which

determine function in the absence of stable structure. Here we study highly charged protein

regions (>40% charged residues), which are routinely presumed to be disordered. Using recent

advances in structure prediction and experimental structures, we show that roughly 40% of

these regions form well-structured helices. Features often used to predict disorder—high charge

density, low hydrophobicity, low sequence complexity, and evolutionarily varying length—are

also compatible with solvated, variable-length helices. We show that a simple composition

classifier predicts the existence of structure far better than well-established heuristics based on

charge and hydropathy. We show that helical structure is more prevalent than previously

appreciated in highly charged regions of diverse proteomes and characterize the conservation

of highly charged regions. Our results underscore the importance of integrating, rather than

choosing between, structure- and disorder-based approaches.
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Introduction

In the overarching quest to understand how genotype shapes phenotype, the question of how

protein sequence encodes protein function has proved a rich and enduring challenge. An early

and still pervasive conceptual framework in which stable sequence-encoded protein structures

confer biological function has been met by a newer (yet by now firmly established) companion

approach born from the recognition that many functions—binding, selective recruitment,

formation of large-scale structures, and more—can be achieved by sequences which do not

adopt a stable conformation (intrinsically disordered regions, or IDRs). Although neither

approach is exclusive of the other, and indeed they anchor a continuum [1], for historical and

methodological reasons many analyses adopt one approach or the other based on various

heuristics [2–7]. Such heuristics have had an outsized impact on how sequence-function maps

are explored.

In one early and influential study of IDRs, Uversky and colleagues discovered that plotting mean

net charge against mean hydropathy (hydrophobicity) permits a dividing line to be drawn

separating folded from disordered proteins [2,8]. In these analyses, highly charged, weakly

hydrophobic sequences have a strong tendency to be disordered. More recently developed

heuristics go beyond composition: simulation studies suggest that the degree of mixing of

opposite charges within a highly charged, nearly net-neutral (polyampholyte) sequence is a

predictor for the biophysical properties of such polypeptides, specifically whether they form

expanded or compact structures in solution [3,9]. These studies assume that the sequences in

question do not take on well-defined structures, largely based on the observation that many

disordered proteins are polyampholytes (~75% of known IDRs have a fraction of charged

residues (FCR) > 0.35 [10]). These findings, although based on a few hand-picked sequences

from different organisms and proteins, have broadly informed the analysis of many other

sequences [11–13].

Other analyses, while still converging on the general finding that disorder is associated most

strongly with a bias toward charged residues and away from hydrophobic residues, have

emphasized extreme compositional biases themselves as strong predictors of disorder [4,5].

The most common quantitative description of sequence compositional bias is the Shannon

entropy, often referred to as complexity [6,14]. Complexity here has a statistical, not biological,
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interpretation; “simple” sequences such as homopolymers or sequences composed of only a

few types of amino acids have low sequence entropy and thus low complexity.

Low-complexity regions (LCRs) have in the past decade experienced a surge of attention,

driven by the observation that they are associated with mesoscale organization in cells: clusters,

granules, hydrogels [15–17], membraneless organelles, and a host of related structures now

referred to as biomolecular condensates [18]. Charged LCRs in particular play a crucial role in

biomolecular condensation in highly influential model systems, mediating complex coacervation

[7] and phase separation [19–22]. Particular sequence features such as enrichment with

positively charged residues like arginine and with conformationally flexible glycine, most

memorably in the RGG motif [23], appear often in RNA binding proteins that are known to

condense; interactions with cationic residues can be modulated by negatively charged regions,

leading to the proposal of a molecular grammar for such interactions [24].

Together, these lines of inquiry both reflect and create conditions in which highly charged,

low-hydrophobicity LCRs may be studied nearly exclusively through the lens of disorder [3,10].

Because of the historical roots of the disorder presumption—particularly that many of the

paradigm-shaping observations were made as databases of sequences and structures were in

their infancy—the presumption itself has persisted with few challenges.

A confluence of trends and events has laid the groundwork for a productive reexamination of

these assumptions. First, the maturation of structural and sequence databases has prompted

increasingly critical looks at our understanding of LCRs [25] and IDRs [26]. In parallel, specific

examples have accumulated of well-defined structure in sequences which would, by existing

heuristics, be overwhelmingly predicted to be disordered: alpha-helices in myosin [27] and

caldesmon [28], and a coiled-coil region in the mRNA export protein GLE1 [29]. Indeed, there is

a long-established connection between charge patterning and helix formation [10–13,30,31].

Finally, new methods now permit more reliable and farther-reaching assessment of the disorder

presumption for highly charged regions, notably high-quality structure prediction [32,33].

So motivated, we return to the root issues: to what extent are naturally occurring highly charged

protein regions structured versus disordered? What is the empirical relationship between the

fraction and patterning of charged residues and the biophysical properties of a region? Are

highly charged regions conserved over evolutionary time, as we would expect for biologically
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important properties? And how easily can one distinguish between structured and disordered

regions on the basis of simple sequence heuristics?

To answer these questions, we systematically identify highly charged regions proteome-wide in

related eukaryotes (budding yeasts) and characterize their sequence properties, predicted

structure, and evolution. In contrast to previous studies [3,9,10,34], our work examines the

entire proteome, permitting us to quantify the frequency and, with proteome-scale homology,

evolutionary conservation of charged regions at the genomic scale. We find that naturally

occurring polyampholytes are highly prevalent and, despite being low-complexity with

often-poor sequence conservation, these regions are often predicted to form or contain

alpha-helices. We confirm these predictions through comparison with experimentally derived

structures. These results demonstrate that certain LCRs, even those enriched for charged

amino acids thought to be important for intermolecular interactions driving phase separation,

may adopt a well-defined structure in the right sequence or physicochemical context. More

broadly, we show that it is important to consider structural properties explicitly when evaluating

the other properties of an LCR.
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Results

Highly charged regions of low sequence complexity are prevalent in the yeast proteome
We first established criteria for regions to be “highly charged” and used them to identify regions

in the S. cerevisiae proteome, our departure point owing to its extensive experimental and

evolutionary characterization. Examining amino acid usage (Figure 1a), we found that the

charged residues (glutamate, aspartate, lysine, and arginine) together constitute 23% of the

total amino acids. Unlike all other categories of amino acids, the frequency of each charged

amino acid (as determined from the frequency of observed codons) deviates strongly from

expectation based on the underlying nucleotide frequency (Figure 1a, light gray points),

evidence for evolutionary selection.
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To isolate highly charged regions, we took a sliding-window approach, moving a 12-amino-acid

window across all protein sequences and selecting regions with a fraction of charged residues

(FCR) above 0.4, with some tolerance for transient deviations (see Figure 1b and Methods).

After trimming uncharged ends off these segments, the resulting highly charged regions have a

median length of 50 and a FCR ≥ 0.43 (Figure 1c and S1c), more stringent than, for example, a

published definition of a strong polyampholyte (FCR > 0.30) [35]. We identified 1,047 regions in

800 proteins; about 14% of protein-coding genes encode at least one highly charged region.

The FCR in these regions is just over two standard deviations above that for randomly chosen

regions in the proteome (Figure S1a); the regions also have substantially higher charge density

than the proteins which contain them (Figure S1b).

We examined the distribution of both FCR and normalized net charge across all regions; it is

more common for a region to have a net charge close to zero, although there is a significant

number of net negatively charged regions (Figure 1c). Examples of neutral regions and those

that carry a net charge can be found in Table 1.

We expected that the highly charged regions would have lower complexity and hydrophobicity

than random regions, because they must be enriched for a small subset of (charged) amino

acids, and we confirmed that this is the case (Figure 1d,e). To determine the regions’ complexity

relative to our selection bias, we calculated the complexity normalized by the entropy of a

mostly charged proteome (50% charged amino acids and all other amino acids equally

represented, see Methods for details, Figure 1d purple trace). Even with this correction, the

regions are far less complex than randomly drawn regions (P < 10−6, Wilcoxon rank sum test),

suggesting a further bias in amino acid usage in these regions beyond that explained by their

enrichment for charge.

We also examined the distribution of the proteins containing these regions within the cell. We

found that they were enriched in the nucleus, and especially in the nucleolus (Figure S1d),

consistent with recent findings that across several species nucleolar proteins are enriched for

charge-rich low-complexity sequences [36].

In summary, we find that highly charged regions which exceed even stringent definitions of

polyampholytes are common in the yeast proteome, are on average less hydrophobic and less

complex than average sequences, and are enriched in specific nuclear compartments.
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Secondary structure is pervasive in highly charged regions
Given the historical and intuitive associations between low hydrophobicity/high charge density

and disorder, we predicted that the vast majority of the regions we identified would not adopt a

well-defined structure. We thus set out to assess what proportion of the regions we identified

were IDRs using experimentally derived structures and recently available proteome-wide

structure prediction (AlphaFold) [32]. Although the biophysical properties of disordered regions

cannot be accurately assessed using AlphaFold structures [37], disorder can be inferred in two

ways. The first is to impute disorder to residues with a low AlphaFold confidence score [37]; the

second is to ascribe disorder to regions with high-confidence coil (e.g., not helix or sheet)

predictions. We employ both methods. To assess the validity of these choices, we analyzed the

predicted AlphaFold structure of protein regions from the DisProt database (which contains

proteins that have been empirically measured to be disordered through a variety of experimental

means including circular dichroism and NMR) and found that the vast majority of confidently
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predicted residues in these regions were scored as “coil” by DSSP (Figure S2a). Thus, by using

AlphaFold we were able to assess both structure and disorder—with the same

method—proteome-wide.

Returning to the highly charged regions, we used the AlphaFold predictions to classify each

residue as either disordered (low confidence, or high-confidence and scored as coil) or ordered

(high-confidence and scored as helix or sheet; see Methods for a complete description of

scoring cutoffs). While a significant number of the highly charged regions were almost

completely composed of residues classified as disordered, in many regions (40% of the total)

more than half of the residues were predicted to be structured (Figure 2a). We examined the

secondary structure classification for all confidently predicted residues (45% of the total) across

the entire dataset. The highly charged regions were markedly enriched for alpha-helical

secondary structure compared to disordered regions from Disprot and had a similar frequency

to length-matched randomly drawn regions (Figure 2b, Figure S2a).

To validate the predictions, we examined the subset of proteins which have empirically

determined structures. We searched the Protein Data Bank (PDB) for the 200 regions with the

highest predicted fraction of structured residues (>92% predicted structured, 19% of the total

regions). 27% of the proteins in this subset could be found in the PDB and, of those that were

found, 42 (68%) had the highly charged region resolved. In all of these cases but two (3%), the

region predicted to be a helix was experimentally determined to be a helix (Figure 2c). That is,

where experimental validation is available for these regions, odds are better than 20:1 that the

helical prediction will be confirmed by experimental data.

In roughly a third of cases the region is absent from the PDB, and because disordered

structures frequently evade structural resolution, it is possible that these regions are disordered

under some conditions. In particular, solvent conditions (e.g., pH) and sequence context could

modulate the net charge on each amino acid, altering the propensity for structure. However,

given that these local effects are challenging to predict [38], and in principle could both promote

or inhibit structure formation, we consider our estimate a reasonable lower bound on the

propensity for helix formation in these regions. It is also possible that the helical region is stable

within a disordered element, like a pipe on a jump rope, or that only a portion of the protein

lacking the highly charged region was expressed and characterized. From our analysis, we
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conclude that there is no evidence to suggest structural predictions are inaccurate for these

regions, and we confirm the presence of many highly charged helices in experimental data.

The presence of substantial helical structure in these highly charged, low-hydrophobicity regions

raised questions as to how these regions would be scored by the metrics which initially

established connections between disorder and these sequence features. As a set, these regions

contradict the argument that large amounts of uncompensated charge predicts disorder,

captured in the popular charge/hydropathy or Uversky plot [2]. We created a Uversky plot of the

highly charged regions, and all but three fell above the dividing line into the “natively unfolded”

region (Figure 2d). Thus classic methods for determining whether a region is ordered or

disordered have virtually no predictive power for regions of this composition—a surprising result

given that these regions would appear perfectly suited for such a heuristic.

More recently developed metrics have been used to assign biophysical properties to highly

charged regions. In particular, connections have been made between the patterning of charges

and the predicted radius of gyration (Rg, a measure of compaction) [3,9]. Rg is used to

characterize ensembles of disordered conformations; the implicit argument appears to be that

because most IDRs are polyampholytes, analysis of polyampholyte conformations can be

carried out productively without considering structured conformations. Yet in specific cases, the

very polyampholyte sequences being assigned to various disordered conformational states by

computational analysis due to their charge patterning [3] are known to be helical—such as the

(EEEKKK)n and (EEEEKKKK)n polymers [31,38,39]. Remarkably, this is more than a mere

conceptual curiosity: our set of highly charged sequences in budding yeast contains the

sequence

KKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKQEEEEKKKKEEE

EKKKQ in the protein Mnn4, a region which is, with modifications, conserved in other fungal

species (Fig S2c). Such sequences and their relatively well-studied biophysical behavior offer

additional evidence of the importance of considering helical structure in biologically relevant

highly charged regions.

These particular sequences show the hallmarks of so-called single alpha helices (SAH), helices

of length 25–200 residues frequently, though not exclusively, formed by (E4K4)n repeats

[9,33,34]. Below, we establish the evolutionary conservation of these regions, suggesting their

structure, as well as high charge density, are likely to confer a fitness benefit.
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An ancient translation initiation factor contains a conserved highly charged helix with
sequence properties similar to an IDR

To more deeply investigate the sequence and structural properties of highly charged regions, we

focused on a specific example where a region predicted to be a helix by AlphaFold had a solved

empirical structure for comparison. We chose the broadly conserved eukaryotic translation

initiation factor eIF3A (Rpg1 in S. cerevisiae) in which we identified several highly charged

regions. One such region was predicted to be almost entirely helical, which is confirmed in the

cryo-electron microscopy (cryoEM) structure (Figure 3b) [40].

When we created a sequence alignment of all the homologous proteins for which a structure

had been predicted from AlphaFold, we found significant variation in both the length and the

sequence of the region (Figure 3a). Such variability is typical in disordered low-complexity

regions and seen as the accumulation of many insertions and deletions in a multiple sequence

alignment, but we were surprised to see this variation because the yeast version of this

sequence was structured. To determine whether the homologous sequences were likely to be

structured as well, we used DSSP (implemented in the MDTraj package for Python [41]) to

classify the secondary structure predicted by AlphaFold and projected the predictions into

alignment space (Figure 3c). Despite the lack of conservation at the sequence level, the helical

nature of the region was conserved across all the homologs. However, the length of the helix

varied significantly: the coefficient of variation of the highly charged helix was 0.17, compared to

0.11 for a reference helix located elsewhere in the same protein (Figure 3d).

This analysis demonstrates that a region with all the features typically associated with IDRs

(high length variation as indicated by gaps in the alignment, poor sequence conservation, low

complexity, low hydrophobicity) can be associated with a charged region that is in fact structured

and retains this structure across evolutionary time.
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Helical highly charged regions can be predicted from amino acid composition
Given the prevalence of structure in the highly charged regions that we detected, and the failure

of existing composition-based heuristics to discriminate between the two categories (disordered

and helical), we set out to determine if there were alternative simple heuristics that are effective.

We stress that our goal is to develop insight into the factors that determine disorder versus

structure, not to replace sophisticated software [32,33,42,43]. Using the proteome-wide

predictions of structure from AlphaFold, we created a dataset of regions which were predicted to

be either completely disordered or completely helical (13,437 sequences from 63.6% of the

proteome). On a Uversky plot, the helices and IDRs drawn from the yeast proteome, like the

highly charged regions, could not be distinguished on the basis of normalized mean hydropathy

and net charge (Figure 4a).
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Using this dataset, we built a logistic regression model which classified regions as helical or

disordered on the basis of their amino acid composition (see Methods for model details). The

coefficients of this logistic regression (LR) model are shown in Figure 4b; as expected, residues

known to affect helical character such as proline and glycine have a large regression coefficient,
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indicating that their presence is highly predictive. More generally, the coefficients from the model

are inversely correlated with the individual amino acid helix propensity [44] (Figure 4c).

We assessed the accuracy of the LR model in several ways. First, we calculated the rate of true

and false positives and negatives (Figure 4d) for several classes of sequences. The LR model

performed extremely well, correctly identifying both helical and disordered regions in the testing

data (25% held out from the original dataset) with an accuracy of 92.5% (Figure 4e). We also

assessed its performance on a new set of randomly selected regions which were predicted by

AlphaFold to contain both helical and disordered character; the LR model predicted the

dominant structural feature from composition alone 86.9% of the time (Figure 4e). Finally, we

predicted the highly charged regions, where the LR model performed with an overall accuracy of

90.8% (Figure 4e). Most of this accuracy can be captured using only the top five coefficients of

the model (Figure 4f).

We also used the LR model built from AlphaFold predictions to score a dataset of PDB

structures with secondary structure annotation (see Methods); the model performed with an

accuracy of ~90% on these experimentally determined structures (Figure S4c). To see whether

there were systematic differences in the relationship between amino acid composition and

secondary structure when using real versus predicted structures, we also created a second LR

model trained on purely helical or disordered sequences from this PDB-derived dataset and

compared it to the original LR model (Figure S4a, S4b). The coefficients of the two models are

highly correlated, with the interesting exceptions of the two helix-breakers P (which has the

same order of importance in both models but a much larger magnitude coefficient in the PDB LR

model) and G (which has a much higher relative importance in the PDB LR model).

To put our results in context and understand the breakdown of existing heuristics, we compared

the accuracy of the LR model to the accuracy of the charge/hydropathy or Uversky model. As

expected, the Uversky model performed better than chance but worse than the LR model on the

same sets of randomly drawn regions, but was completely non-predictive for highly charged

regions (Figure 4e). This reinforces the idea that normalized net charge is not predictive of

disorder (see marginal distributions in the right hand side of Figure 4c), at least for regions with

this length distribution. In sum, virtually all the predictive power in the Uversky

charge/hydropathy heuristic comes from hydropathy.
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Finally, we were curious whether our model was specific to amino acid usage in yeast, or if it

could be extended to other proteomes. Using three other proteomes for which structures have

been predicted, Schizosaccharomyces pombe, Caenorhabditis elegans, and Homo sapiens, we

performed the same procedure of random region selection, labeling using the AlphaFold

predictions and confidences, and classification with the LR model trained on AlphaFold

predictions of yeast regions. The prediction accuracy was nearly identical to or slightly higher

than the S. cerevisiae accuracy (Figure 4g). This simple model based only on the composition

of a region is sufficient to predict helical or disordered character in proteomes that diverged over

a billion years ago.

Highly charged regions are evolutionarily conserved
The unique evolutionary signatures suggested by our analysis of eIF3A, coupled with the

consistency in predictive power of the LR model across vast evolutionary distances, led us to
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broader questions about the conservation of the regions we had identified. To what extent do

highly charged regions retain their sequence properties and structure as organisms evolve?

To address this question, we turned to AYbRAH, a curated database of protein homologs and

paralogs in 33 fungal species spanning 600 million years of evolution [45]. This dataset

combines automated homology detection and manual curation to achieve high-confidence

predictions of highly diverged orthologs.

First, we quantified the sequence conservation of the regions in question by examining their

alignments and calculating both the frequency of gaps and the sequence divergence (average

position-wise entropy). Sequences with high insertion and deletion rates, a known feature of

IDRs, will have higher alignment gap frequencies. Those with a high point mutation rate will

have high divergence. A low value of both metrics indicates sequence conservation. We

calculated these values for all the highly charged regions, and compared them to

length-matched, randomly drawn regions from the rest of the same proteins. We found that the

charged regions have significantly more gaps (P<0.001, Mann-Whitney U test) and are more

divergent (P<0.001, Mann-Whitney U test) than the proteins in which they are found (Figure 5a).

We compared these distributions to the same values calculated for experimentally verified IDRs

from DisProt, and found that although the charged regions have similar gap frequency to IDRs,

they are even more divergent at the sequence level. Thus simply viewing an alignment of these

LCRs, without using a secondary structure prediction algorithm, one might conclude that they

are disordered.

Despite this apparent lack of conservation, we were curious whether any aspects beyond

sequence of the highly charged regions were conserved. These regions were identified because

of their unique sequence composition, so we tested the degree to which they retained this

composition over evolutionary time. To first determine the expected compositional variation, we

measured the variation in the total proportion of each amino acid across the species

represented in the AYbRAH database (Figure S5a). We found that as a group, the charged

amino acids had very little variation in proportion of usage (Figure 5b). Consistent with selection,

a high fraction of charged residues was preserved across species and substantially differed

from randomly drawn regions in the same species (Figure 5c).
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The distribution in Figure 5c contains some regions that on average fall below the threshold of

0.4 FCR that we established for the original search in the yeast proteome; this is not surprising

given that all sequences are subject to drift, which pulls them towards the proteome average for

any given trait unless selection intervenes. Therefore, we created a method to quantify drift in

charged regions relative to other compositionally extreme regions.

We first identified regions in the yeast proteome enriched for all groups of four amino acids with

a combined frequency within +/–0.01 of the combined frequency of the charged amino acids

(0.233). For each of the 209 datasets, we calculated the mean proportion of the amino acids in

question for each identified region across the AYbRAH alignment (note that FCR is a special

case of this property where the four amino acids in question are glutamate, aspartate, lysine,

and arginine) If the composition (enrichment of the four amino acids in question) is conserved,

we should expect that the mean enrichment score across regions and alignments should be

close to the mean of the original enriched dataset (close to or higher than the 0.4 threshold). In

contrast, if the property is not conserved, we should expect this enrichment score to be close to

the proteome average. To compare directly between datasets, we scaled this enrichment score

to a unit scale between an effective 0 (the proteome average), and 1 (the median of the

enriched regions detected from the S. cerevisiae proteome). Sets of four with a conservation

score close to 1 are highly conserved for that property, while those that are close to 0 have

experienced high levels of drift, indicating that they are not conserved. We find that the set of

four charged amino acids falls within the top 5% of these scores (Figure 5d). From this analysis

we conclude that in the highly charged regions, the charge density is extremely well-conserved.
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Discussion

To understand the biology of proteins and their subdomains, heuristics are almost inevitably

used: comparison to other proteins to infer similarity by homology, motif identification to predict

binding partners, and so on. In the case of highly charged protein regions, several heuristics

appear to converge on the conclusion that such regions are overwhelmingly likely to be

disordered. By virtue of their strongly biased sequence composition, they tend to fall into the

class of low-complexity sequences associated with lack of stable structure [46]; they tolerate

insertion/deletion events at higher rates than typical well-folded sequences; their high charge

favors interactions with solvent, and low hydrophobicity suggests the absence of a

solvent-protected hydrophobic core. Consistent with this, many analyses of such regions

proceed as though structure can be mostly or completely ignored.

Here, we have shown that naturally occurring highly charged regions are predicted to adopt

helical structure to a degree which cannot be neglected — ~40% in a proteome-wide analysis —

and that these predictions are validated by existing experimental data for both structured and

disordered sequences. Moreover, we show that all these heuristic signals of disorder are in fact

compatible with fully structured polypeptides: extended charged helices which have no

hydrophobic core, grow and shrink in length over evolutionary time, interact with solvent on all

sides, and form from sequences of two or even one type of amino acid (Fig. 6a). Together, our

results indicate that understanding the biology of highly charged sequences requires integrating

insights from both structural and disorder-based approaches.

A consequence of these results is that they upend multiple well-established heuristics for

determining how to think about, and study, a sequence’s biological behaviors. The shortcut that

charge and hydrophobicity can serve as accurate dimensions for separating structured from

disordered sequences, powerfully demonstrated using limited data available at the time [2],

does not work for highly charged, low-hydrophobicity sequences. Although many sophisticated

methods for detecting disorder or single helices have been developed [32,33,42,43,47], the

assumption that, because many disordered sequences are polyampholytes, other

polyampholyte sequences can reasonably be treated as if disordered persists in modern work

[3]. We emphasize that our results say nothing about the utility of further results built on the

assumption of disorder, conditioned on its accuracy. And we further stress that considerable

work may properly focus only on disordered sequences with no claims regarding the
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assessment of disorder. Nevertheless, as for the example of (E4K4)n polymers, it is

straightforward to find examples in which sequences known to have well-defined structure are

treated as if they did not, evidence for the undue influence of improper heuristics.

Given these results, it might seem inevitable that sophisticated structure-prediction methods

would be required to more accurately discern whether particular highly charged sequences

adopt a helical conformation. However, we introduce a simple amino acid composition-based

classifier—logistic regression with as few as five inputs—which can predict structure (or its

absence) with accuracy above 90%. This model is trained on biologically occurring sequences,

a tiny and profoundly biased subset of protein sequence space, such that we do not expect its

performance to carry over to arbitrary sequences. Still, as a heuristic method implemented with

a handful of numbers, it balances simplicity and accuracy (particularly over the

charge/hydropathy heuristic) in a way which is practically useful in diagnosing structure for

charged sequences.

The notion that intrinsically disordered proteins or regions sometimes adopt structure is

well-understood [34], particularly in the case of folding upon binding [48]. Because of this

distinction between conformations in isolation versus when bound to a partner, structures in the

PDB may tell only a portion of the story. Similarly, AlphaFold specifically predicts structures most

likely to appear in the PDB [32], rather than, for example, conformations which are occupied

most of the time in the biological context. To the extent that our results depend on these

resources, they similarly remain inapplicable to questions about the broader conformational

ensembles that highly charged sequences may sample. But how stable or frequently adopted

might these structures be?

From the perspective of evolutionary conservation, even a conformation which is occupied for a

tiny fraction of the time may impose dominant constraints on a sequence, if this conformation

contributes to organism fitness. To the extent that we wish to understand the relationship

between sequence and biological function, this potential for rare conformations to dictate

function may permit most conformations in the ensemble to be neglected—much as recognition

of folding upon binding for a disordered region may properly focus attention on the bound state,

even if it is fleeting. In the case of highly charged regions which must adopt helical

conformations to carry out their functions, certain near-absolute constraints must be satisfied;

no matter how unstable the helix, a proline kink in the backbone cannot be straightened, and so
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depletion of proline from these regions provides an additional signal. On the other hand,

presence of a proline powerfully indicates that a straight helix cannot form and is therefore

unlikely to be the functional conformation, no matter what other sequence signals exist and no

matter how fleeting the helix state is proposed to be.

Even the best methods for predicting structure and for predicting disorder can disagree and fail

to capture experimental reality. Consider the highly charged region of the yeast protein Rcf1

(Fig. 6b). A top-ranked modern disorder predictor, flDPnn [42,47], predicts this region to be

entirely disordered. AlphaFold predicts it to be entirely helical with high confidence. Neither

captures reality: experimentally, this region forms most of a dimeric five-pass transmembrane

protein in which charged residues, exposed on stable helices, form dimer-stabilizing salt bridges

through the mitochondrial inner membrane [49] (Fig. 6b). To the extent that cases like this

closing example persist, the challenges we identify here remain open.

Broadly, while our results uncover previously overlooked structure in highly charged regions, the

dual challenges of determining the biologically active configurations of these sequences, and of
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determining the statistical features of the conformational ensembles they occupy, remain open.

Rather than looking at such sequences through the lens of disorder, it appears that both

lenses—structure and disorder—will be needed to give the proper depth of focus.

Methods

Extraction of highly charged regions from the yeast proteome

The S288C reference genome was obtained from the Saccharomyces Genome Database

(SGD). For each gene in the reference genome, we first computed fractional charge as a

moving average across its sequence using a window size of 12 residues and a triangular

weight, where the highest weight was assigned to the middle region of each window. We then

searched for highly charged regions in each sequence based on a fractional charge threshold of

0.4 and tolerance of 10 residues. Tolerance refers to the maximum number of residues that we

allow to have moving average values below the fractional charge threshold before terminating

the region. This tolerance allows for transient deviations from high charge and prevents

fragmenting highly charged regions with small insertions of uncharged amino acids. We

extracted regions that were longer than a given minimum region length of 30 residues, then

trimmed any remaining uncharged residues from the N and C terminal ends of the sequences

(these result from the triangular weighting scheme and the tolerance).

Calculating sequence complexity

Sequence complexity was calculated according to Ref. 9 using the following equation:

𝐾
2
 =  −

𝑖=1

𝑁

∑
𝑛

𝑖

𝐿 𝑙𝑜𝑔
𝑛

𝑖

𝐿( )
where K2 is the unnormalized complexity, N is the number of possible residues (in this case the

20 natural amino acids), and ni is the number of each residue in the sequence, which has length

L. This value is normalized to the “entropy of the language” (e.g., the yeast proteome), such that

a sequence with compositional properties exactly equal to the average frequencies will have a

complexity of 1.

The entropy of the language is calculated using the equation
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where pi is the frequency of letter i in the reference. We used two different languages as

references; the first is the yeast proteome (so each pi represents the average frequency of that

amino acid in the proteome). We also used a modified reference enriched for charged residues;

each of the amino acids lysine, arginine, aspartate, and glutamate had a frequency of 0.125; the

remaining frequency (0.5) was distributed evenly among the other amino acids.

Generation of null distribution for amino acid usage

We counted the number of occurrences of adenine (A), thymine (T), cytosine (C), and guanine

(G) in the DNA sequences of all open reading frames in S. cerevisiae. The expected frequency

of each codon was computed as the product of the frequencies of all nucleotides that appear in

that codon and the expected frequency of each amino acid was computed as the sum of the

expected frequencies of all codons specifying that amino acid.

Extraction of AlphaFold data

We used proteome-wide structure predictions from AlphaFold to analyze the structure of the

regions we identified with high proportions of charged residues. We downloaded the structures

for all S. cerevisiae proteins from the AlphaFold website

(https://alphafold.ebi.ac.uk/download#proteomes-section) [32]. We read the PDB files into

Python and used DSSP implemented in MDTraj [41] to score secondary structure. We used

custom Python functions to extract the confidence scores from the predicted structure file for

each protein.

Construction of a logistic regression (LR) model to predict secondary

structure

To classify the secondary structure of a region on the basis of composition, we first constructed

a training dataset built from AlphaFold structures. We classified all residues in all structures as

either helical (classified as helical by DSSP and with a pLDDT score above 70), disordered

(classified as coil by DSSP and with a pLDDT score above 70 or any residue with a pLDDT

score less than 50) [37], sheet (classified as sheet by DSSP and with a pLDDT score above 70),

or other. The pLDDT cutoff of 70 marks was chosen because this value was used by the

creators of AlphaFold to distinguish between “Confident” and “Low” model confidence.
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To generate training and testing data for the LR model, we exhaustively searched for purely

helical and disordered regions by identifying regions that were greater than 25 amino acids long

and only contained either helical or disordered residues. We extracted 6882 helical regions and

6366 disordered regions from the S. cerevisiae proteome. We randomly selected 75% of these

regions as training data and 25% of the regions as testing data and built a LR model using

amino acid composition as predictors. The LR model is built using the scikit-learn package in

Python.

We also constructed a LR model based on empirical structures from the PDB; secondary

structure and disorder were annotated on a per-residue basis from the experimental 3D

structure by the PDB and were obtained by request [50] (see their Methods for details). The

final dataset contained 64,804 regions greater than 25 amino acids long and consisting solely of

either helix or disorder; the regions were approximately equally split between helical and

disordered.  Otherwise, the procedure was identical to that used for the AlphaFold predictions.

Classifying regions and computing model accuracy

We used the per-residue secondary structure classifications described above to score the highly

charged regions: regions with more than 60% helical or disordered residues were labeled as

their dominant type, and all others were labeled as “intermediate.” This is the “true” label. Out of

all the regions, 34% were labeled as disordered and 31% were labeled as helical. We then used

the logistic regression model to classify these regions on the basis of their amino acid

composition. The true labels were used to compute the false negative and positive rates, and

the overall model accuracy.

To directly compare to this dataset, we also randomly drew regions from the AlphaFold dataset

with the same scoring conditions as we used for the highly charged regions (>60% helical or

disordered), scored the region using the model, and computed accuracy in the same way.

Evolutionary analysis: sequence properties

We used custom Python scripts to extract multiple sequence alignments (MSAs) for all proteins

in the AYbRAH alignment [45]. A region was considered “present” in a protein in the MSA if the

region which aligned to the S. cerevisiae sequence that we identified as highly charged
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contained at least 30 amino acids (the same length minimum length as was required for a

region detected by the algorithm).

To compute alignment quality, the longest and shortest sequences in each alignment were

removed, and any resulting columns containing only gaps (represented by the symbol “-” in the

alignment) were removed. We then quantified the frequency of gaps as well as sequence

column-wise entropy, which we refer to as “sequence divergence.” The mean frequency of gaps

was computed as the number of “-” characters divided by the total number of characters across

all sequences in an alignment. Sequence divergence was computed by summarizing the

frequency of amino acids in each column as a one-dimensional probability distribution and

calculating the Shannon entropy of that distribution.

Evolutionary analysis: compositional drift

To test compositional drift for regions enriched in selected amino acids, we identified all unique

sets of four amino acids (excluding the charged amino acids) with the same combined

frequency as the four charged amino acids. We modified the charged region algorithm to detect

regions enriched for these sets of four. We used an enrichment threshold of 0.35 (35% of the

region composed of the amino acids in question), minimum length of 30 amino acids, and a

tolerance of 15; these parameters were selected to yield datasets that most closely matched the

number of hits and length distribution of the original dataset (enrichment for E, D, R, and K). For

each of these datasets, we calculated the conservation by averaging the enrichment score

(percent composition of the specific amino acids) across the alignment in each region, taking

the mean of that distribution, and scaling it between the S. cerevisiae proteome average (0) and

the average enrichment of the hits detected by the algorithm (1). This allowed us to compare

datasets directly: sets of amino acids with values close to 0 experienced enough drift that they

approach the proteome average; those with values close to 1 stay far from the average and

close to the (rescaled) enrichment threshold and thus are likely conserved.

Analysis of the eIF3A charged helix

We used MUSCLE version 3.8.31 [51] with default parameters to generate an alignment of all

the eIF3A homologs for which a structure was available on AlphaFold as of April 2022 (35

species of model organisms including bacteria, yeast, mold, rice, soybean, mouse, and human).

This dataset was used in Figure 3.
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A cryoEM structure of eIF3A in complex with the ribosome was used for structural analysis. The

structure has PDB code 6ZCE (http://doi.org/10.2210/pdb6ZCE/pdb) [40].

Secondary structure was scored with DSSP as described above. The length of the charged

helix was calculated by identifying the start of the highly charged region and then counting the

amino acids until a run of more than three non-helix characters was encountered. A reference

helix from earlier in the sequence was chosen as a comparison.

Analysis of Rcf1

The 70-residue Rcf1 charged region (Fig. 6b) was used for disorder predictions with flDPnn [42]

at http://biomine.cs.vcu.edu/servers/flDPnn/ with default settings, and for structure prediction

with AlphaFold through ColabFold [43].

Statistical Tests

All p-values were calculated with the Mann-Whitney U Test (Wilcoxon Rank Sum Test), either

two-sided if no hypotheses were formed about the relationship between the two distributions or

one-sided otherwise. The evaluation of these tests was done in Python and can be found (along

with the data) in the Jupyter notebook for the relevant figure.

Data Availability

Data used in this study are from publicly available datasets: AlphaFold protein structure

prediction available at https://alphafold.ebi.ac.uk/download#proteomes-section, yeast proteome

available from Saccharomyces Genome Database

http://sgd-archive.yeastgenome.org/sequence/S288C_reference/orf_protein/, AYbRAH fungal

ortholog database available at https://github.com/LMSE/aybrah, and DisProt yeast disordered

regions

https://www.disprot.org/browse?sort_field=disprot_id&sort_value=asc&page_size=20&page=0&r

elease=current&show_ambiguous=true&show_obsolete=false&ncbi_taxon_id=559292. All

additional data generated in this study are available at

https://github.com/drummondlab/highly-charged-regions-2022.
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Code availability

All analyses and code used to generate the figures in this work can be found at

https://github.com/drummondlab/highly-charged-regions-2022.
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Category Gene kappa Sequence

Net negative SIS2 0.756 KNNEEEDDDEDEEEDDDEEEDTEDKNENNNDDDDDDDDDDDDDDDDDDDDDDDDEDEDEAE
RNA1 0.393 DLLQSKFDDLEVDDFEEVDSEDEEGEDEEDEDEDEKLEEIETERLEKELLEVQVDDLAERLAETEIK
COP1 0.064 EEPLGEENFNDEDIGEDEGAWDLGDEDLDVGEELPEEVEQGE

~Neutral RIO1 0.433 EEFSDDEEDGSSGSEEDDEEEGEYYDDDEPKVLKGKKHEDKDLKKLRKQEAKDAKREKRKTKVKKHIKKKLVKKTKSKK
SEC3 0.106 EVNKRYELEQQQQQEEAELRRLEEQKRLQLQKENEMKRLEEERRIKQEERKRQMELEHQRQLEEEERKRQMELEAKKQMELKRQRQFEEEQRLKKERELLEIQRKQREQETAERLKKEEQEALAKKEEEEKSKRNKVDNE
MNN4 0.061 KLLEERKRREKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKKEEEEKKKQEEEEKKKKEEEEKKKQEEGEKMKNEDEENKKNEDEEKKKNEEEEKKKQEEKNKKNEDEEKKKQEEEEKKKNEEEEKKKQEE

Net positive TMA23 0.317 KGKKRRRRDEDDNKVKRKKLKKDKKTSNDSESKKKKKKKSKKESKKGKKSKHSSDEGDKSKHKKSKKSKKHKKEESSARRDRKE
ZDS2 0.185 KKNSLEKRLAKLFKRKQHNGTCKSDVKVIKKSVKKELKKK
FAF1 0.071 KVKKGQFRKIESTYKKDIERRIGGSIKARDKEKATKRERGLK

Table 1: Example highly charged regions from the yeast proteome
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