Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2015 | public
Journal Article

Photoacoustic Microscopy: Superdepth, superresolution, and superb contrast


Since its invention in the 17th century, optical microscopy has revolutionized biomedical studies by scrutinizing the biological realm on cellular levels, taking advantage of its excellent light-focusing capability. However, most biological tissues scatter light highly. As light travels in tissue, cumulative scattering events cause the photons to lose their original propagation direction and, thus, their ability to be focused, which has largely limited the penetration depth of optical microscopy. Conventional planar optical microscopy can provide penetration of only ~100 ?m before photons begin to be scattered. The penetration of modern optical microcopy, such as confocal microscopy and multiphoton microscopy, is still limited to approximately the optical diffusion limit (~1 mm in the skin as approximated by one optical transport mean free path), where scattered photons retain a strong memory of the original propagation direction. So far, it still remains a challenge for pure optical methods to achieve high-resolution in vivo imaging beyond the diffusion limit (i.e., superdepth imaging).

Additional Information

© 2015 IEEE. Date of publication: 13 May 2015. This work was sponsored in part by National Institutes of Health (NIH) grants DP1 EB016986 (NIH Director's Pioneer Award), R01 CA186567 (NIH Director's Transformative Research Award), and U01 NS090579 (BRAIN Initiative) for Lihong V. Wang. This work was also supported in part by the National Natural Science Foundation of China grants: 81427804 and 61205203; the National Key Basic Research (973) Program of China: 2014CB744503; the International Science and Technology Cooperation Program of China: 2014DFG32800; the Shenzhen Science and Technology Innovation Committee grants: ZDSY20130401165820357, KQCX20120816155844962, CXZZ20120617113635699, and JCYJ20120615125857842, for L. Song. Lihong V. Wang has a financial interest in Endra, Inc., and Microphotoacoustics, Inc., which, however, did not support this work.

Additional details

August 20, 2023
October 18, 2023