Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2019 | Submitted
Journal Article Open

Functional optimality of the sulcus pattern of the human brain


We develop a mathematical model of information transmission across the biological neural network of the human brain. The overall function of the brain consists of the emergent processes resulting from the spread of information through the neural network. The capacity of the brain is therefore related to the rate at which it can transmit information through the neural network. The particular transmission model under consideration allows for information to be transmitted along multiple paths between points of the cortex. The resulting transmission rates are governed by potential theory. According to this theory, the brain has preferred and quantized transmission modes that correspond to eigenfunctions of the classical Steklov eigenvalue problem, with the reciprocal eigenvalues quantifying the corresponding transmission rates. We take the model as a basis for testing the hypothesis that the sulcus pattern of the human brain has evolved to maximize the rate of transmission of information between points in the cerebral cortex. We show that the introduction of sulci, or cuts, in an otherwise smooth domain indeed increases the overall transmission rate. We demonstrate this result by means of numerical experiments concerned with a spherical domain with a varying number of slits on its surface.

Additional Information

© The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model). Received: 16 January 2018; Revision Received: 08 May 2018; Accepted: 10 May 2018; Published: 28 May 2018. SH gratefully acknowledges support from the Alexander von Humboldt Stiftung through a Research Fellowship for Postdoctoral Researchers.

Attached Files

Submitted - 1801.05703.pdf


Files (2.3 MB)
Name Size Download all
2.3 MB Preview Download

Additional details

August 19, 2023
October 18, 2023