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1 Materials and Methods
1.1 A chemical resource-allocation model of microbial growth.
We developed a chemical resource allocation model of microbial growth both for autotrophy and heterotrophy. To
understand the behavior of this model we explored its analytic limits, testing limiting behavior with optimizations
and simulations implemented in Python. Model equations, plausible ranges of parameter values, and simulations are
detailed in the supplementary text below.

1.2 Evaluation of E. coli metabolic range.
Figure 1A describes E. coli’s capacity to grow on pairs of (carbon source, e− acceptor). Supplementary Table 1 gives
references supporting observations of growth in various conditions. To evaluate whether the E. coli genome contains
the enzymes and pathways to grow on a given pair in principle, we performed flux balance analysis on a genome-scale
model of E. coli metabolism, iML1515 (1), using the COBRApy package for Python. We provided the model with a
minimal medium containing only the chosen carbon source and terminal acceptor, and a positive result was recorded
when the predicted maximum growth rate exceeded 0.01 hr−1. This analysis is summarized in Supplementary Table 1
and Fig. S3.

In some cases, we could not find experimental confirmation for positive model results e.g. predicted fermentative
growth on L-asparagine as the sole source of carbon. This could indicated that (i) lab strains will grow fermentatively
on L-asparagine if tested, (ii) that lab strains could do so after laboratory evolution (2) or (iii) that there is an error in
the iML1515 model. In other cases, negative model predictions were contradicted by observations, e.g. of fermentative
growth on L-cysteine (3), likely indicating some error in the model. We therefore suggest that experimental validation
of predicted growth capabilities be more widely used in evaluating metabolic models.

1.3 Estimating the redox effects of changes in macromolecular composition
We considered changes in the macromolecular composition of E. coli as a function of λ . The data supporting these
plots was drawn from (4), which reports µg DNA, RNA and protein per cell as a function of λ as well as total cell mass.
We converted these values to mass fractions and calculated a residual mass fraction associated with other molecules,
which are likely dominated by lipids and polysaccharides. In ref. (4) the growth rate is defined as µ = 1/τ , where τ is
the doubling time, while in our model λ = ln(2)/τ . This explains the discrepancy between λ values plotted here and µ

values given in (4).

To convert λ -dependent biomass composition to a change in redox state, we estimated the C mass fraction and C redox
state for DNA, RNA and protein. For protein we assumed the atomic formula of C100 H159 N26 O32 S0.7 drawn from
Bionumbers (BNID 109413) to estimate a C mass fraction of ≈ 53 %. For RNA (≈ 31%) and DNA (≈ 34%) we
averaged the C mass fractions nucleotide monophosphates and deoxynucleotide monophosphoates respectively. For the
residual we assumed a C mass fraction of 60% because of its lipid content and also so that the total C mass is ≈ 50%
carbon. From Fig. S20 we see that ZC ≈ −0.15 for E. coli proteins. For DNA and RNA we took values at 50% GC
content from Figure 1 of (5), namely ZC ≈+0.9 for RNA and ZC ≈+0.6 for DNA. While ZC is a direct function of GC
content for double stranded DNA, (5) assumed equal representation of G and C and of A and U nucleotides to make
an RNA estimate. Since we are calculating changes in ZC,B due to measured macromolecular components, we set the
residual compartments’ ZC to 0 and then took the C-weighted average of these ZC values in each condition to arrive at
ZC,B estimates as a function of λ .

1.4 Calculations of the C redox state for biological molecules
The C redox state of a molecule — its ZC value — is the average formal charge of carbon on that molecule. So the ZC of
a protein is the C-weighted average of its constituent amino acids. ZC values for amino acids are given in Supplementary
Table 2. In section 2 of the supplementary text we give detailed description of how these values are calculated in general
with particular focus on proteins.

4



1.5 Analysis of bac120 protein sequences from the Genome Taxonomy Database (GTDB).
Release 207 (r207) of the Genome Taxonomy Database (6) catalogs ≈300,000 prokaryotic genomes. The genomes
are clustered by sequence identity and each cluster of closely related species is assigned a representative genome that
is high-quality and, preferably, a type strain with a published name. r207 contained 62,291 representative genomes.
GTDB performs bacterial phylogenetic analyses by comparing the concatenated sequences of 120 protein sequences
that are nearly always found in single copy, the so-called “bac120” genes (6). We used these genes to ask if proteins
encoded in the same genome have correlated ZC values, as predicted by our model. The nearly-universal and single-
copy nature of bac120 genes is advantageous here because, for each gene, we can unambiguously associate a single
sequence with each representative genome and, thereby, construct a vector of 120 ZC values describing every genome.

We downloaded the bac120 protein sequences as well whole genome sequences for all representative genomes from
GTDB release 207. To assess the physiological roles of bac120 genes, we manually mapped each protein to a high-
level functional category from the COG database (7). We then calculated ZC values for all annotated protein coding
sequences in each representative genome, ⟨ZC⟩G, as described above. Raw correlations between bac120 ZC as well as
partial correlations controlling for ⟨ZC⟩G were calculated using the pingouin package for Python. ZC values of bac120
sequences are reported in Supplementary Table 3 while pairwise correlations are in Supplementary Table 4.

1.6 Genetic code analyses.
The genetic code is known to be conservative for various amino acid properties, especially measures of hydrophobicity.
As such, single mutations are unlikely to alter measures of hydrophobicity substantially (8, 9). To assess whether
the genetic code is also conservative for amino acid ZC, we tested if (i) hydrophobicity indices are correlated with
ZC (Fig. S17A-B) and (ii) how many mutations are required to alter ZC on average (Fig. S17C). For the former
analysis we calculated correlations of amino acid ZC with polar requirement (roughly hydrophillicity) and hydropathy
index (roughly hydrophobicity), drawing values for these properties from (8). For the latter analysis, we considered all
possible pairs of codon substitutions, for example replacing CGA (arginine) with AAA (lysine). This example requires
two nucleotide substitutions and results in a ZC change of ∆ZC = −1. We then binned the codon transitions by their
∆ZC values and used linear regression to estimate the relationship between ∆ZC and the required number of nucleotide
substitutions (Fig. S17C).

1.7 Reference proteomes for quantitative proteomics datasets
We considered quantitative proteomics data from E. coli, brewers yeast, and a model cyanobacteria. To retrieve metadata
for each organism, we downloaded and parsed the relevant XML formatted “reference proteome” from the NCBI RefSeq
database (Table 1). Not to be confused with the quantitative proteomes, “reference proteomes” list all known protein
coding sequences in a genome along with metadata such as gene names, unique identifiers, functional annotations (e.g.,
KEGG (10) and COG (7) databases), and annotation of transmembrane segments (11). Secondary isoforms (e.g. due to
splicing, translational slippage, etc.) were extracted from auxiliary files provided by RefSeq. Proteins with non-specific
amino acid identifiers in their sequence were ignored. NC and ZC values were then calculated for each protein isoform
from amino acid sequences as the sum and C-weighted average of amino acid values respectively (12, 13). These values
are reported in Supplementary Table 5.

species and strain NCBI RefSeq ID Dataset References

E. coli MG1655 K12 UP000000625 (14–16)

S. cerevisiae S288c UP000002311 (17)

Synechocystis sp. PCC 6803 UP000001425 (18)

Table 1. Proteomics datasets and NCBI RefSeq identifiers for reference proteomes used in this study.
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1.8 Quantitative proteomic data and calculation of whole proteome redox state, ZC,P.
We use “proteome” to describe the mean expression levels of proteins in a microbial culture. Such values are typically
measured by mass spectrometry, though sometimes by other means, e.g., ribosome profiling (19) or tagging individual
proteins via genetic manipulation (20). Since the redox state of expressed proteins, ZC,P, is a C-weighted average of
all expressed proteins, only relative expression levels are required, not absolute values with real units (e.g. copies/cell,
fg/gDW). Expression measurements from high-quality proteomics surveys of E. coli, S. cerevisiae, and the Cyanobac-
terium Synechocystis sp. PCC 6803 (Table 1) were mapped to reference proteomes via unique identifiers (protein
accessions or E. coli b-numbers), verifying that all or nearly all measured protein C could be mapped to a specific pro-
tein with a known sequence. Proteome-wide ZC,P values were then calculated as the C-weighted average of expressed
proteins

ZC,P =
∑i NC,i ·ZC,i ·ηi

∑i NC,i ·ηi
. (1)

Here NC,i and ZC,i give the number of C atoms and the formal oxidation state of C in protein i while ηi gives the
(relative or absolute) expression level of the same protein. ZC,i values are calculated from the amino acid sequence of
each protein as described in section 2. Supplementary Table S5 gives a full listing of protein ZC values for all three
model organisms, reproduces protein expression data and reports the derived ZC,P value for all experimental conditions
considered here.

1.9 Calculation of ZC using genomic coding sequences.
Recent work has investigated whether environmental redox conditions affect the average ZC of genomic coding se-
quences (13, 21). We calculated the C-weighted average of coding sequence ZC values by setting ηi = 1 in equation 1,
i.e., treating all proteins as if they are equally expressed. We term this value ⟨ZC⟩G. To estimate a confidence interval
for ⟨ZC⟩G we sampled 1000 coding sequences from each genome, repeating this procedure 104 times. This sampling
procedure attempts to replicate variation in ⟨ZC⟩G that might occur due to inadequate sequencing depth, horizontal gene
transfer, or errors in genome reconstruction. To estimate the uncertainty associated with unknown protein expression
— i.e., ηi are unknown when working with genomes — we performed the same sampling procedure, but sampled ηi
from a log-normal distribution with σ = 2.3 fit from E. coli expression data. This results in ηi varying over roughly 6
orders of magnitude and permits a very wide range of ZC,P estimates (Fig. S20).

1.10 Sparse reconstruction of ZC,P variation with LASSO regression
ZC,P is the C-weighted average of expressed proteins. Inspecting equation 1 we see that each protein i contributes

xi, j =
NC,i ·ZC,i ·η j

i

∑i NC,i ·η j
i

to the total Z j
C,P, where j is an index marking the experiment (e.g., glucose or succinate media). Since Z j

C,P = ∑i xi, j it
follows that 100% of ZC,P variation across conditions j can be accounted for by the matrix X = [xi, j]. In other words,
ordinary linear regression fitting Z j

C,P = βX would always recover a β that perfectly reconstructs Z j
C,P. Indeed β = 1⃗

does this trivially.

To understand the dimensionality of the ZC,P trend, i.e. how many groups of proteins drive the trend, we asked: how
many ‘basis’ proteins i are required to reconstruct 100% of ZC,P variation? To achieve this, we used the Python sklearn
implementation of LASSO regression (setting ‘fit intercept’ to False), which minimizes a regularized loss function

∑
j

(
Z j

C,P −βixi, j

)2
−α ∑

i
|βi|
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that penalizes solutions where entries of β are large. The first term is the l2 norm of residuals, while the second term
imposes a penalty on the weights β . Large values of α prefer sparser solutions that are less accurate. By varying
α , we ask how many individual proteins are required to reconstruct a set of Z j

C,P values. Setting α = 10−8 produced
near-perfect reconstructions of ZC,P trends in all three organisms (see Fig. S19). Because groups of proteins are often co-
expressed — i.e., their expression levels are correlated — the proteins chosen by the LASSO regression may represent
a larger set of proteins with correlated xi, j values. As such, we inspected COG functional categories associated with the
chosen proteins (7) to determine if they perform similar or different biological functions (Fig. S19D).

1.11 E. coli total lipid ZC analysis.
Figure S21 reports the growth-rate dependence of the C redox state of E. coli total lipids. The temperature-dependent
composition of E. coli lipids was drawn from (22). The number of C atoms (NC) and C redox state (ZC) of individual
lipids was manually calculated. Their measured proportions were then used to estimate the C redox state of E. colilipid
C, ZC,L, as a function of temperature during E. coli growth in minimal glucose medium. Since ref. (22) did not report
the growth rate λ , the relationship between temperature and λ was drawn from (23). This reference grew E. coli in a
similar media to (22), fitting

√
λ = b(T −Tmin) · (1− exp(c · (T −Tmax)))

with fit values b = 0.0262, c = 0.298, Tmin = 4.9 ◦C, Tmax = 47.3 ◦C. This relationship was used to plot ZC,L against
λ in Fig. S21. We truncated the plot at T = 35 ◦C because the data of (23) indicated that λ begins decreasing around
T = 40 ◦C. Source data, inferred ZC,L values and estimated growth rates are given in Supplementary Table 6.

1.12 Source code and data availability.
Source code and most data required for analyses and figure generation is available at https://github.com/flamholz/
redox-proteome. Files containing representative genomes and bac120 sequences were too large to host on GitHub but
are available for download from GTDB directly at https://gtdb.ecogenomic.org/downloads (r207). Summary
files derived from those are available in the GitHub repository.

2 An introduction to the formal oxidation state of carbon, ZC

Dry biomass is approximately 50% carbon (C) by mass and so much of central metabolism involves transformations of C
atoms. Of course synthesis of biological macromolecules also requires hydrogen, nitrogren, oxygen, sulfur, phosphorus
(collectively abbreviated CHNOPS), and many trace elements, especially metals. In this primer we focus on carbon.

In this section we explain how to calculate the nominal oxidation state of carbon (ZC) for a molecule. We then show
how this value can be used to calculate the number of reducing equival e− — i.e. electron carriers — required for a
redox transformation. These calculations depend on assumptions, but when the assumptions hold they are exact.

Let’s take the example of pyruvate as in Fig. S1. This key central metabolite is a glycolytic product and is a substrate
for synthesis of several amino acids. ZC gives the average number valence e− ‘associated’ with C atoms in a molecule,
where this value is calculated relative to a neutral C atom with 4 valence e−. There are two ways to calculate ZC for
pyruvate: (i) by counting valence electrons on a per-C basis or (ii) with a formula based on its elemental composition.

Option (i): calculating ZC by enumerating C atoms

For each C atom in pyruvate, we consider all of its bonds and ask if the e− pair is shared evenly across the bond (as in
a C-C bond), primarily resides on the C atom (as in a C-H bond) or primarily resides on the other atom (as in a C-O or
C-N bond). This is equivalent to asking which atom is more electronegative. If the e− pair “resides” on the C, then we
add -1 to its ledger, if it resides on the other atom we add +1, and if it shared then we add 0. After summing these values
across all C atoms (+2 for pyruvate) we divide by the number of C atoms NC (3 for pyruvate) to get the ZC (=+2/3 for
pyruvate, Fig. S1).

Balancing C and e− in reactions
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Figure S1. Tracing electron transfers in organic reactions using the average redox state of carbon, ZC. For the
central example of pyruvate (2-oxopropanoate) each carbon is marked with a formal charge. The terminal
hydrocarbon has a formal charge of -3 due to 3 bonding hydrogens which are less electronegative than C. The central
carbonyl group (C=O) has a formal charge of +2 since two electron pairs are shared with C atoms and two more reside
on an O atom that is more electronegative than the focal C (0+2 =+2). By the same logic the terminal carboxylate
(COO−) has a formal charge of +3. Summing these values (−3+2+3 =+2) and dividing by the number of C atoms
in pyruvate (NC = 3) gives the nominal oxidation state of C atoms on pyruvate, ZC =+2/3. Values for glucose (left)
and leucine (right) can be calculated via the same procedure. Using ZC values we can now calculate the number of
electrons produced in the oxidation of glucose → 2 pyruvate. This reaction already balances C atoms, so the change in
formal charge is 6× 2

3 −6×0 = 4 e−. A similar calculation for producing 1 leucine (NC = 6) from 2 pyruvate gives
6×−1−6× 2

3 =−10 e− indicating that this is a reductive process requiring input of 10 electrons per leucine.

If we perform the same operation for glucose we get NC = 6 and ZC = 0. Since pyruvate has NC = 3 C atoms, we infer
that glycolysis produces 2 pyruvate per glucose, meaning that there is a net excess of

2 ·pyruvate× 2 C
pyruvate

× +2
3

valence e−

pyruvate C
− 6 C

glucose
×0

valence e−

glucose C
= 4 valence e− (2)

in glucose relative to pyruvate. Since we consider 2 e− carriers here (e.g. NADH), we conclude that a reaction scheme
producing 2 pyruvate from glucose (e.g. glycolysis) should produce 2 reduced carriers (NADH, generically termed
ECH here) from 2 oxidized carriers (NAD+ or EC+) to balance e−, as indeed is the case for all glycolytic pathways
producing pyruvate.

Assumptions in calculating ZC and balacing e−

Before exploring option (ii), it’s useful to reflect on why this ZC calculation correctly predicts e− production/consumption
in organic reaction systems. When we assign e− to the more electronegative bonding atom, what we are really doing is
counting valence e− on C atoms relative to the neutral state of 4. If we break a C-C bond and we want the resulting C
atoms to be neutrally charged (as they typically are in biological molecules), we need to add 2 e− to the system, one for
each C. If we had broken a C-O bond, our scheme tells us that both of those e− would be added to the C atom rather
than O (this is more detail than we need here).

Our ZC-based electron-balancing calculation is premised on two assumptions. First we assume that C atoms are neu-
trally charged, i.e. that carbanions and carbocations are unstable in water, in accordance with biochemical intuition
and measurements. Second, we assumed that the transformation of glucose to pyruvate is entirely determined by the
C atoms in those molecules, i.e. that the ‘metabolic story’ of organic molecules is entirely told through the bonding
patterns of C atoms. If, for example, we created and destroyed O-N or O-P bonds in this reaction scheme, tracking ZC
would not be enough to track all the e−: we would need to track ZN and ZP as well. Fortunately, these two assumptions
are essentially correct when considering the core of metabolism.

Option (ii): calculating ZC by formula
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The process of counting the formal charge of each carbon can be formalized with an equation. This formula applies to
any organic molecule so long as it contains only C, H, N, O, P and S atoms.

ZC = 4− 1
NC

(−q+4NC +NH −3NN −2NO +5NP −2NS) (3)

The above formula assumes that only C changes its oxidation state through metabolism, but allows for molecules with
net charge q. See reference (12) for full explanation.

We can simplify equation (3) by noticing that 4− 4NC
NC

= 0 and that changes in charge q that are due to protonation (i.e.
adding 1 to NH ) have equal and opposite contribution to the equation. Therefore, for a molecule like an amino acid that
carries no charge when fully protonated, we can simply consider the q = 0 protonation state in calculating ZC.

ZC(q = 0) =
3NN −NH +2NO −5NP +2NS

NC
(4)

Finally, when considering specific classes of molecules, we can further simplify. For example, translated proteins1,
glucose, and pyruvate all lack phosphorus (P), yielding further simplification for proteins

ZC(q = 0) =
3NN −NH +2NO +2NS

NC
. (5)

Let’s take the example of pyruvate, for which we previously manually calculated ZC = +2/3. Pyruvate refers to the
charged (deprotonated) form of pyruvic acid. The neutral (q = 0) acid has the formula C3H4O3. If we apply equation 5
to pyruvic acid we find

ZC(q = 0) =
−4+2×3

3
=+

2
3
. (6)

We can perform a similar calculation for the amino acid leucine, which has ZC =−1 as shown in Fig. S1. The neutrally
charged form of leucine has the atomic formula C6H13NO2. Applying equation 5 gives

ZC(q = 0) =
3×1−13+2×2

6
=−1. (7)

Option (iib): calculating protein ZC from amino acids

One useful lesson from equations (3): addition or removal of H2O has no effect on ZC since NH −2NO = 0. This means
that peptide bond formation/hydrolysis are ZC neutral, allowing us to calculate the ZC of a protein or proteome by taking
the C-weighted average of constituent amino acids

ZC =
∑amino acids i NC,i ·ZC,i

∑amino acids i NC,i
=

protein C valence e−

total protein C atoms
(8)

as we do throughout this work. To see this equation in action, consider a dipeptide of leucine (NC = 6, ZC = −1) and
glycine (NC = 3, ZC = 1). The carbon-weighted average of these values is

ZC =
6×−1+3×1

6+3
=−1

3
. (9)

1i.e., as opposed to post-translationally phosphorylated ones.
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3 Derivation of the integrated redox + resource allocation model

In this section our goal is derive our integrated model from simple principles, which include conservation of mass
and allocation of catalytic activity. In 3.1-3.2 we derive the relationship between the growth rate of a culture, λ , and
the flows of matter (carbon, electrons) through metabolism. Then in 3.3 we define expressions for the fluxes through
each intracellular metabolic process — oxidation, reduction, and anabolism — and connect these fluxes to both the
resource allocation — the amount of each type of catalyst — and the growth rate. In the next section (??) we bring
these derivations together to build a generic framework coupling any cellular metabolism (defined in redox terms) to a
resource allocation framework.

3.1 Definitions of growth rate λ

Since we are examining the relationship between growth, physiology and metabolic chemistry, we begin by defining
the growth rate. This technical discussion may be repetitious for those familiar with Flux Balance Analysis (24) and
related models (25), but is useful for readers new to the topic.

Several definitions of growth are used in the literature. Common definitions include growth in total cell number, total
cell volume (collective volume of all cells), total cell mass (collective mass of all cells including water), total dry
mass, and total carbon (C) mass. Notably, many standard methods of determining culture growth rates are direct or
indirect measurements of the dry (water-free) mass of cell material (biomass). Optical densities, for example, are more
consistently correlated with dry mass than with cell counts (26).

Considering the total mass (M) growth rate (λM) of an exponentially growing culture, we can see that λM is the mass-
specific time derivative of the total cell mass.

M(t) = M0 exp(λMt), (10)
dM
dt

= λMM0 exp(λMt), (11)

λM =
1

M(t)
dM
dt

. (12)

If we assume that cells have constant density, i.e. ρ = M/V is a constant (27), then we find that the volumetric and
mass-specific growth rates are equal (λV = λM , (24)).

1
M

dM
dt

=
1
M

dM
dV

dV
dt

=
ρ

M
dV
dt

=
1
V

dV
dt

= λV

Likewise, if we assume a constant protein mass fraction fP = MP/M, as in (28), then λP = fP
MP

dM
dt = λM . So when

we make an appropriate compositional assumption — e.g. constant protein mass fraction — various definitions of λ

become equivalent.

Since we are tracing carbon atoms through metabolism here, it is convenient for us to focus on the carbon mass of the
culture MC. As such, we assume that the carbon mass fraction fC = MC/M is constant, and so the growth rate of culture
carbon mass λC = λM .
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3.2 Deriving the flux balance condition
Consider some carbon-bearing intracellular molecule with index i, e.g. pyruvate or ATP. We are interested in describing
how its concentration, Ci, changes due to metabolic processes and growth. Metabolic processes can produce or consume
i, but growth consumes i by dilution through volumetric expansion or cell division.

The concentration Ci is typically defined as number/volume, i.e., Ni/V where Ni is a number of moles. Yet we are
interested in the flows of carbon atoms here, so we will now apply our compositional assumption ( fC = MC/M is
constant) to transform number/volume concentrations into C mass/C mass concentrations.

Let Mi be the total mass of C found as i in the culture (gram units) and mi to be the mass of C in a mole of i (g C/mol).
It follows that that Ni = Mi/mi in units of moles. As such,

Ci ≡
Ni

V
=

Mi

miV
. (13)

Additionally, 1
V = ρ

M = fC ·ρ
MC

. As such, we see that

Ci =
fC ·ρ
MC

Mi

mi
. (14)

We apply the product rule to to calculate the time derivative of Ci:

dCi

dt
=

fC ·ρ
MC

1
mi

dMi

dt
− fC ·ρ

M2
C

Mi

mi

dMC

dt
. (15)

The C specific growth rate λC ≡ 1
MC

dMC
dt by definition. Combining this definition with equations (15-14), we find that

dCi

dt
=

(
dCi

dt

)
MC

− (CiλC)Mi
. (16)

That is, two terms contribute to the concentration dynamics of molecule i – changes to Ci at constant MC due to reactions
in the cell, and changes to Ci at constant Mi due to changes in total (carbon) mass, i.e. due to dilution by growth.

Equation 14 tells us that

dCi

dt
=

fC ·ρ
mi

(
d
dt

Mi

MC

)
(17)

where fC ·ρ
mi

is assumed to be a constant. By factoring this constant term out of both sides of eq. (15) we find that

d
dt

(
Mi

MC

)
=

(
1

MC

dMi

dt

)
MC

−
(

Mi

MC

1
MC

dMC

dt

)
Mi

, (18)

=

(
1

MC

dMi

dt

)
MC

−
(

Mi

MC
λC

)
Mi

, (19)

Where we once again applied the definition of λC ≡ 1
MC

dMC
dt . For the remainder of this document, we will use λ to refer

to λC.

Equation 19 relates the change in a C mass fraction (a sort of concentration) to mass-specific reaction rates ( 1
MC

dMi
dt )

and dilution by growth ( Mi
MC

λC). Note that while no factors of ρ or fC appear, we had to assume these are constants
independent of Mi,MC and λ to factor them out.
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By noting that (i) Mi = Ni ·mi and (ii) mi is a constant, we can write fluxes in terms of concentrations expressed as
(number/MC) fractions:

mi
d
dt

(
Ni

MC

)
= mi

(
1

MC

dNi

dt

)
MC

−mi

(
Ni

MC
λ

)
Ni

. (20)

This is convenient because biochemical reactions are commonly written with stoichiometries reflecting relative molecule
numbers and not relative carbon masses. Hereafter we refer to the number/C mass concentration of molecule i as χi so
that the above becomes

dχi

dt
=

(
dχi

dt

)
MC

− (χiλ )Ni
. (21)

3.2.1 Typical χi values

Typical metabolite concentrations range from 1 µM - 10 mM. Converting Ci in mol/L units to mol/gC we get

Ci
mol
L

× 1
1100

L
g cells

× 1
0.3

g cells
gDW

×2
gDW
gC

= 6×10−3Ci
mol
gC

,

where ρ = M
V ≈ 1100 g/L is the bouyant density of cells. So for a molecule i with a 1 mM = 10−3 mol/L concentration,

χi ≈ 6×10−6 mol/gC.

3.3 Fluxes through metabolic processes
Above we derived a relationship (eq. 21) between the time derivative of an intracellular concentration χi (number/C
mass) and the metabolic and growth processes affecting molecule i. In this section we define expressions for the fluxes
through metabolic processes — e.g. oxidation or reduction — that affect concentrations of intracellular molecules (e.g.
ATP) by producing or consuming them.

The first term in equation (21) describes to changes χi at constant MC. These changes are due to various intracellular
reactions that produce and consume i. We assign these reactions an index α and number flux να , the latter having units
of [mol/s]. Since process fluxes are defined in units of our choosing (e.g. C atoms/s) we must also define stoichiometric
coefficients Sα,i translating process fluxes (units of our choosing) into fluxes of χi. As such, the change in χi due to
process α is

1
MC︸︷︷︸

χi unit conversion

× Sα,i︸︷︷︸
stoichiometry

× να︸︷︷︸
process flux

(22)

Since a single concentration can be affected by multiple metabolic processes α , we sum these effects:

dχi

dt
=

(
∑
α

1
MC

Sα,iνα

)
−χiλ . (23)

To connect the flows of matter to the cellular allocation of catalytic resources, we must relate fluxes να to the compo-
sition of biomass. That is, cells must make enzymes to catalyze a process α (e.g. oxidation or anabolism). We now
introduce variables φα that describe the fraction of biomass carbon dedicated to catalysis of each process.

We treat να as if it is an irreversible reaction catalyzed by a single enzyme with Michaelis-Menten kinetics.

12



να = γα︸︷︷︸
kinetics

× ME
α︸︷︷︸

enzyme mass

× f (⃗χ)︸ ︷︷ ︸
reactant conc. effect

(24)

Here ME
α is the carbon mass of catalyst (enzyme) for process α and γα is the maximum rate of a mass unit of catalyst. γα

has units of [mol i/gC catalyst/s]. The function fα (⃗χ) describes the dependence of να on all metabolite concentrations
χ⃗ . Since enzymes can consume multiple substrates, we use fα (⃗χ) to indicate a unitless function of all concentrations.
This will usually be a saturating function of a few χi, e.g. fα (⃗χ) = χi · (KM + χi)

−1 in the case of single substrate
Michaelis-Menten rate law.

Converting this expression for να into units of χi flux following equation 22 yields

1
MC

Sα,iνα = Sα,iγα (ME
α /MC)︸       ︷︷       ︸

φα

fα (⃗χ). (25)

Here we defined φα ≡ ME
α /MC as the C mass fraction that is catalyst of process α . The expression Sα,iγα φα f (⃗χ)

therefore has units of [mol i/gC/s], i.e., the same units as χiλ .

3.3.1 Approximate values of kinetic constants γα

To estimate γα for a process catalyzed by a single enzyme we relate it to the enzyme kcat — the per-active-site maximum
catalytic rate — by dimensional analysis. γα has units of [mol i/gC catalyst/s] while kcat has units of [mol product/mol
enzyme/s]. As such,

γα =
1

Yα,i

1
mα

kcat , (26)

where mα is carbon mass of a mole of catalyst and Yα,i is the yield of product from substrate molecule i in process α in
units of [moles product/moles metabolite i]. For central metabolic reactions, kcat ≈ 100 s−1 ((29), Fig. S5). Enzymes
have characteristic molar masses of a 50-100 kDa of which ≈ 50% is C by mass (30). So mα ≈ 2− 5× 104 gC/mol.
Further, typical Yα,i ≈ 1. Therefore,

γα,i ≈ (2−5)×10−5 × kcat (27)

in units of [mol product (g C)−1 s−1]. Since we assumed a generic value for Yα,i we can omit the i subscript from γα .

In cases where we require a γα value for a metabolic pathway we assume that pathways are composed of ≈ 10 enzymatic
steps, each with equivalent kinetics. If we take kcat = 100 s−1 (29), then we find γα ≈ (2−5)×10−4 mol/gC/s.

3.3.2 Calculating kinetic constants γα based on the ribosome

Another way to estimate γα values for pathways is to consider protein translation. Translation is catalyzed by the
ribosome, a mega-complex of catalytic RNA with tens of small proteins having a kcat ≈ 20 s−1 and molar mass of
≈ 2.5× 106 g/mol. Neglecting the masses of all other components of the translation cycle — e.g., initiation factors,
tRNAs, and tRNA synthetases — then we get an upper bound of γtl ⪅ 10−5 mol amino acids per gram catalyst per
second. As discussed below, our convention is to write reactions on a per C basis, e.g., transforming 1 C of amino acid
into 1 C of protein. Since amino acids in typical proteins have ≈ 5 C atoms, γtl ⪅ 5×10−5 mol C per gram catalyst per
second.
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3.3.3 Calculating of kinetic constants γα based on rubisco

For autotrophs using the Calvin-Benson cycle, Ribulose Bisphosphate Carboxylase/Oxygenase, or rubisco, is com-
monly considered to be a bottleneck that limits rates of growth (31). As such, many bioengineering efforts aim to
improve rubisco itself or the physiology supporting its operation (32). Here we will estimate γrb, the value of γ that we
would use to describe rubisco, and compare to the ribosome.

Rubisco is the focal enzyme of the Calvin-Benson cycle, a cyclic metabolic pathway comprising ≈ 10 enzymes. The
Form I rubisco common to plants, algae and Cyanobacteria is a large protein complex with a mass of ≈ 500× 103

[g/mol] and 8 active sites, or ≈ 60×103 [g/mol/site] (33). The rubisco carboxylation reaction adds a single CO2to the
five carbon organic substrate, ribulose 1,5-bisphosphate with a kcat ≈ 1−10 s−1 depending on the isoform. Considering
a substrate-saturate rubisco in isolation, therefore, gives an upper-bound of

γrb ⪅ 10
reactions

s
×1

C
reaction

× 1
60×103

mol active sites
g rubisco

≈ 2×10−4 mol C
g rubisco× s

. (28)

This value is a few times large than we estimated for the ribosome. Yet it is certainly too high for a number of reasons.
First, we used the top-end of rubisco kcat values. Second, we neglected rubisco’s promiscuous reactivity with O2, which
has the net effect of reducing the rate of carboxylation (32, 33). Finally, we neglected all other enzymes in the cycle.
These factors could, taken together, reduce our estimate by a factor of ten or more, yet the result value would still be
similar to our estimate for the ribosome.

3.3.4 Caveats associated with coarse-graining metabolic pathways

While the calculation treats pathways as if they are catalyzed by a single enzyme, biological processes like anabolism
are catalyzed by multiple enzymes in sequential, cyclical or parallel pathways. So we are ”coarse-graining” entire
pathways as single enzymes. This is commonly done in resource allocation models (25, 28, 34), but has not yet been
justified on empirical or theoretical bases to our knowledge. Justification could include (i) demonstrating consistency of
this coarse graining with physiological measurements across conditions or (ii) deriving effective expressions for whole
pathways from the kinetic properties of constituent enzymes. Noor and Liebermeister have made some recent progress
on this second direction in (35).

4 A generic redox resource allocation framework coupling metabolism and growth

In section 3 we derived equations relating changes in concentration to growth and metabolic processes in cells. We
further connected those equations to expressions relating the quantity of intracellular enzymes to the flux through
metabolic processes like anabolism. Here we collect these derivations into a generic model coupling metabolism,
defined in redox terms, to growth. We will then describe how this generic model can be made to represent a specific
metabolism, e.g. one of those depicted in Fig. S2.

We assume that each process α has a flux proportional to the resources allocated to it, i.e., the C mass fraction φα

defined in equation 25. The reaction representing each process also includes stoichiometric coefficients Sα,i for each
participating metabolite i. Our convention here is to write Sα,i relative to carbon so that each reaction transforming
organic molecules is written as transforming a single C atom, as in this example of glucose oxidation:

1
6

glucose︸    ︷︷    ︸
C6H12O6

+H2O+2 NAD+ → CO2 +2 NADH.

Writing atomically and electronically balanced reactions, as above, ensures that steady-state solutions of our model will
conserve atoms and electrons both. The mass-flux through each process is given by

να = γα ME
α f (⃗χ) (29)
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Figure S2. Integrated redox + resource allocation models can describe any metabolism with equivalent
equations. Panel (A) shows a generic model or respiratory heterotrophy, oxidizing Cred to Cox while reducing a
terminal e− acceptor Acox to ACred . Because acceptor reduction is coupled to ATP synthesis, this ”energy circuit” has
the net effect of coupling e− flow to synthesis of ATP from ADP and inorganic phosphate. In all of our models we
assume that e− are carried between processes via a generic two-electron redox couple ECH/EC+ denoting “electron
carrier.” Anabolism typically consumes ATP and, depending on the redox state of biomass carbon (ZC,B) might also
consume electron carriers. All of these cellular processes are catalyzed by enzymes, so the flux Jα through each
process is proportional to φα , the fraction of biomass carbon that is catalyst for process α . So, for example, φana
denotes the fraction that catalyzes anabolism. Panel (B) gives a concrete example of glucose respiration, (C) shows a
fermentation of glucose, (D) photosynthetic CO2fixation, and (E) chemoautotrophic sulfur oxidation. Anabolism and
the allocation constraint are omitted from panels (B-E) for space.

and the concentration dynamics for metabolite i are
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dχi

dt
=

(
∑
α

1
MC

Sα,iνα

)
−χiλ (30)

=

(
∑
α

Sα,iγα φα f (⃗χ)
)
−χiλ (31)

=

(
∑
α

Sα,iJα

)
−χiλ , (32)

where we’ve defined mass-specific mass fluxes

Jα ≡ να

MC
= γα φα f (⃗χ) (33)

in units of [mol product gC−1 s−1]. If we assume that catalysts are substrate-saturated then f (⃗χ) = 1. If we instead
assume first-order reaction kinetics (the linear low-concentration regime of a Michaelis-Menten rate law), then

f (⃗χ) =
Nsub

∏
i=1

( Ci

KM,i

)Qα,i
. (34)

Where KM,i is the half-saturating concentration of metabolite i for process α . Note that the exponents Qα,i , Sα,i in
general. Sα,i are stoichiometric coefficients used for mass-balancing and have arbitrary scale of our choosing. Qα,i
values are called ‘molecularities.’ These values are related to the reaction mechanisms of enzymes catalyzing specific
pathway steps where a certain number of substrates i and j come together in enzyme active sites. For typical enzymatic
reactions, Qα,i = 1, as we assume below.

Notice also that the product runs over Nsub, the number of substrates in the reaction. This reflects our assumption
metabolic processes α are irreversible. In some low energy environments this assumption may be invalid; we hope
future work explores reversible versions of such models.

In addition to the cellular processes α , we admit that some fraction of biomass C is non-catalytic, e.g. lipids and storage
molecules like glycogen. We term this C mass fraction φO and enforce the carbon mass allocation constraint

(
∑
α

φα

)
+φO = 1. (35)

While we have written process fluxes Jα in a generic form above, individual processes are distinguished by their specific
chemistry and role in any specific metabolism as we discuss below and diagram in Fig. S2B-E.

Two redox reactions, termed ‘oxidation’ and ‘reduction’ here, together form an ‘energy circuit’ whose net effect is to
generate a flow of ATP by extracting electrons from a donor and conveying them to a terminal acceptor by way of an
electron carrier (Fig. S2A). Throughout we model a single 2 e− carrier that we call ECH/EC+ for “electron carrier.”
ECH denotes the reduced (e− carrying) form and EC+ the oxidized (e− poor) form. Since cells use more than one
carrier (36) modeling a single carrier is a simplification. A third redox reaction, anabolism, represents the synthesis of
biomass C from nutrients, ATP and ECH. Fluxes Jox, Jred , Jana are proportional to C mass fractions φox, φred , and φana.
Given these definitions, the allocation constraint is

φox +φred +φana +φO = 1. (36)
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4.1 Converting Jana to λ

Having defined the relationships between metabolic fluxes, concentrations and dilution, we now turn to the growth rate,
λ . Anabolism produces new biomass carbon with flux Jana. We defined growth as the production of new carbon mass
with λ ≡ 1

MC

dMC
dt . Yet Jana = νana/MC is a mass-specific number flux in units of [mol C / gC / s] and λ has [s−1] units.

The conversion factor is exactly the molar mass of carbon:

λ = mC · Jana, (37)

where mC = 12 gC/mol C, giving correct units of [gC/gC/s] for λ . If we assume a value for γana we can use this
relationship to estimate the growth rate from the anabolic flux:

λ = mC · γana ·φana · f (⃗χ).

Above we estimated γtl ⪅ 5×10−5 mol C/g C/s for translation. If we use this value for γana, assume f (⃗χ) = 1 and note
that φana ≈ 0.1 we estimate2

λ ≈ 12
g

mol C
×5×10−5 mol C

g enz c
×0.1

g enz C
g tot C

≈ 6×10−5 s−1

≈ 0.2 hr−1.

Though the fastest measured heterotrophic growth rates are a few generations per hour (λ = 2−4 hr−1, Fig. 3C), typical
growth rates of laboratory cultures in minimal media are indeed 0.1−1 hr−1 (16).

4.2 Maintenance energy
The minimum energy expenditure of living matter is usually termed m and denominated in energetic units. Due to our
use of m and M for masses, we will use b instead of m for ‘basal.’ Values of b are typically reported in millimoles of
ATP per gram dry weight per hour ([mmol ATP/gDW/hr]) and give the minimum ATP flux required to sustain living
matter. A minimum maintenance energy is enforced by subtracting b from the ATP mass balance:

dχATP

dt
=

(
Nproc

∑
α=1

Sα,iJα

)
−λ χATP −b. (38)

Empirical values of b≈ 10 mmol ATP/gDW/hr, which are easily converted to b≈ 5×10−6 mol ATP/gC/s by assuming C
makes up ≈ 1/2 of the total dry mass. Note that b accounts for non-growth associated maintenance. Growth-associated
maintenance — ATP costs proportional to λ — can be accounted for by increasing the ATP requirements of anabolism
(S5 in Fig. S2).

4.2.1 Comments on the maintenance energy

Before moving on, two comments on the maintenance energy. First, mounting evidence over decades indicates that
maintenance energies estimated from laboratory cultures are several orders too large to account for microbial popula-
tions in the wild, e.g. in deep sediments (37). This may be due to the method of measurement, which usually involves
projecting metabolic rates to zero growth from relatively fast growth rates on order 0.1 hr−1 (38, 39). The discrepancy
between lab measurements and inferences from environmental constraints strongly suggests that microbes in the wild
access low energy physiological states that are qualitatively unlike lab cultures.

2φana cannot realistically exceed 0.6 if protein + RNA make up no more than 60% biomass (4) as shown in Fig. 5B.
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Secondly, the standard treatment of maintenance energy assumes ATP units (38, 39). However, some maintenance, e.g.
repair of oxidized proteins or metabolites, might be properly denominated in redox (NADH) units (40). These units
are not directly interconvertible, as is sometimes assumed (41), since converting NADH into ATP requires catalyst,
i.e. requires increasing some φα . Future work should consider the implications of denominating maintenance in both
energy and reductant units.

4.3 Cycling co-factors like ATP and NADH
Since our models are simplified they do not explicitly describe the biosynthesis of co-factors like ATP and ECH (the
redox co-factor in our model). Since oxidation of 1 ECH always produces 1 EC+, these molecules have equal and
opposite reaction fluxes

0 =

(
Nproc

∑
α=1

S
α,EC+Jα

)
−

(
Nproc

∑
α=1

Sα,ECHJα

)
.

Note that this would not be true if we explicitly represented ECH biosynthesis, as the pathway would produce one of
the two forms (say EC+) and so the fluxes would not be equal and opposite. Rather, their difference would equal the
flux of EC+ biosynthesis.

If we enforce steady-state mass balance ( dECH
dt = dEC+

dt = 0) in the absence of explicit biosynthesis, we find that

λ χNAD+ = λ χNADH.

It follows that reduced and oxidized forms have equal concentrations. Yet there is substantial evidence to the contrary,
with NAD+/NADH ≈ 10 being fairly typical (30, 42, 43). A similar problem arises for ATP and ADP. To address this
challenge one could either (i) explicitly encode biosynthesis into the model, as in genome-scale flux balance models
(24, 44), (ii) enforce mass balance for only one of the two cycling forms, e.g., only for ATP and NADH. We pursued
the latter approach because it is simpler.

coefficient process description typical sign in het. in autotrophy

S1 oxidation per-C ECH produced + +

S2 reduction per-C ECH produced - -

S3 oxidation per-C ATP produced + +

S4 reduction per-C ATP produced + -

S5 anabolism per-C ATP produced +/- +/-

S6 anabolism per-C ECH produced +/- +/-

Table 2. Description of stoichiometric coefficients used in our metabolic models. By convention, we absorb signs in
Si so that the mass balance can be written as a sum, as in eq. (31). Typical signs for heterotrophic and autotrophic
metabolisms are given. Note that certain coefficients can be positive or negative in realistic settings, e.g., S3,S5, and
S6. In heterotrophy, S3 < 0 arises if carbon source oxidation requires ATP investment. S5 < 0 connotes ATP-producing
anabolism, which arises when making biomass from energy-rich carbon sources, and S6 < 0 occurs when the C source
is more oxidized than biomass.
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4.4 Maximizing the growth rate with linear programming
The above integrated redox + resource allocation model induces an optimization problem to maximize the exponential
growth rate

max λ = mCJana

s.t. 0 =

(
∑
α

Sα,ATPJα

)
−χATPλ −b for ATP

0 =

(
∑
α

Sα,iJα

)
−χiλ for all other balanced mets. i

0 =

(
∑
α

φα

)
+φO −1

where Jα = γα,iφα f (⃗χ)

Since dilution terms multiply two variables (λ χi) and rate laws might also multiply variables (e.g. if f (⃗χ) is non-
trivial) this is a non-linear optimization problem. We can linearize by holding concentrations χi constant, permitting
maximization of the growth rate at fixed χi as a function of φα . This is akin to a coarse-grained Resource Balance
Analysis (45) or Constrained Allocation Flux Balance Analysis (46). To corroborate intuition drawn from analytics and
simulations, we sweep wide ranges of values for each χi (several orders-of-magnitude). This is tractable because our
models consider only 2-3 internal metabolites (e.g., ATP, NADH), and these are the only ones for which mass-balancing
constraints apply.

5 A model of heterotrophic respiration

In this section we will describe the model of heterotrophic respiration used in the main text. This model is a specific
instantiation of our generic model described in 4.

Our models include three processes: oxidation (mass-specific mass flux Jox, associated mass-fraction φox), reduction
(Jred , φred) and anabolism (Jana, φana), represented with per C atom stoichiometric coefficients S1, . . . ,S6 as labeled
in Fig. S2. In heterotrophic respiration, the carbon source Cred is oxidized to Cox (e.g. CO2) to reduce the terminal
acceptor (e.g. O2) and generate ATP.

Let A = χATP and N = χECH for brevity. Mass-balances for ATP and ECH are then given by

dN
dt

= (S1Jox +S2Jred +S6Jana)−λN, (39)

dA
dt

= (S3Jox +S4Jred +S5Jana)−λA−b, (40)

where Si may be positive or negative depending on the specific metabolism, as described in Table (2). Our choice to
absorb the signs in Si means that identical equations apply for autotrophs, as we discuss below.

At steady-state the above derivatives equal 0. By noting λ = mCJana we arrive at two different expressions for λ which
can be combined to simplify by eliminating either Jox or Jred . If we eliminate Jred then

λ =− mC (S2 (b−S3Jox)+S1S4Jox)

mC (AS2 −NS4)−S2S5 +S4S6
(41)

The allocation constraint is as written in eq. (36) and carbon mass-specific process rates are be written as follows
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Jox = γoxφox fox(⃗χ), (42)
Jred = γredφred fred (⃗χ), (43)
Jana = γanaφana fana(⃗χ). (44)

5.1 An comparable model of photosynthesis
A great advantage of redox-based models is that all cells perform oxidation, reduction and anabolism. As such, the
same framework that represents respiration can also describe photosynthesis with nearly the same equations. Indeed,
oxygenic photosynthesis is roughly the opposite metabolism of respiration. While in oxygen respiration organic matter
is oxidized (e.g. to CO2) to reduce O2 to H2O, photosynthetic organisms oxidizes H2O to O2 and use the extracted e− to
reduce CO2 to organic molecules (Fig. S2). So while processes with all the same names are present in photosynthesis,
they represent very different underlying biochemistry.

Given that oxidation, reduction, and anabolism take place in photosynthesis, we can use the equations in 5 to describe
photosynthesis or chemoautotrophy as well. Two modifications are required. First, reasonable values of stoichiometric
coefficients differ between photosynthesis and respiration. In particular, the ATP yield of reduction is a positive number
in respiration (reduction of the terminal acceptor produces ATP). In contrast, the reductive process in photosynthesis is
CO2 fixation which requires input of ATP. As such, S4 is negative in models of autotrophic growth (Table 2).

Secondly, autotrophs produce and use reduced organic carbon (termed Cred here) intracellularly while heterotrophs
draw Cred from the extracellular environment. In other words, Cred is an intracellular metabolite in autotrophs and we
must track its concentration dynamics. If χC is the number/C mass concentration of Cred , then

dχC

dt
= Jred − Jana −λ χC. (45)

We can omit stoichiometric coefficients from this expression because we write reduction and anabolism fluxes per C
atom. Demanding intracellular mass conservation as in 4.4 therefore requires that fluxes producing and consuming Cred

balance, i.e. that dχC
dt = 0. This constraint on steady-state autotrophic growth is absent from models of heterotrophy

and, as discussed in the main text and described in Fig. S13, always reduces autotrophic growth rates.

5.2 Solutions when fluxes Jα are concentration independent
For the remainder of this section we will return to the model of heterotrophic respiration described in section 5. If we
assume a functional form for fα (⃗χ), we can derive expressions for λ that include biomass fractions φα . For simplicity,
if fα (⃗χ) = 1 then we find that

λ =
γanamC (S1γox (b+S4 (φO −1)γred)−S2γred (b+S3 (φO −1)γox))

γred (γana (mC (AS2 −NS4)−S2S5 +S4S6)+(S2S3 −S1S4)γox)+ γanaγox (mC (NS3 −AS1)+S1S5 −S3S6)
(46)

If we assume that γox = γred = γana = γ then this simplifies to

λ =
mC (S2 (b+ γS3 (φO −1))−S1 (b+ γS4 (φO −1)))

mC (AS1 −AS2 −NS3 +NS4)+S1 (S4 −S5)+S2 (S5 −S3)+(S3 −S4)S6
.

Notice that we must treat ATP and NADH concentrations as constants here because they appear only in dilution terms
in the zero-order case where Jα are concentration-independent.

One deficiency of this simple model is that it fails to grow when S6 is too extreme. As discussed in the main text,
some Si are constants given a choice of metabolic substrates and products (NADH stoichiometries S1,S2) and others are
subject to thermodynamic constraints (ATP stoichiometries S3,S4,S5). Here we vary S6 because its value is determined
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by the ZC difference between the organic C source and biomass, and is therefore determined in part by the regulated and
λ -dependent composition of biomass. By calculating the values of S6 at which φox and φred cross 0 we can calculate
upper- and lower-bounds on feasible S6.

S6 ≥
AbS2γanamC −bS2S5γana +bS2S4γred

S4γana (b+S4φOγred −S4γred)
+

−AS2mC +NS4mC +S5S2

S4
(47)

S6 ≤
AbS1γanamC −bS1S5γana +bS1S3γox

S3γana (b+S3φOγox −S3γox)
+

−AS1mC +NS3mC +S5S1

S3
(48)

These bounds depend on φO and concentrations A,N. While 0 ≤ φO ≤ 1 is not a constant, physiological considerations
puts limits on its value. Protein and RNA are, to a large degree, to only catalytic components of biomass. In E. coli, these
together make up ≤ 60% of dry mass (4). So we can reasonably conclude that φO ≥ 0.4. These biological constraints
on φO affect the values of S6 compatible with growth.

Electron carrier stoichiometries (S1 and S6) are simple functions of the redox states of the C source (ZC,red) biomass
(ZC,B) and the metabolic product (ZC,ox). For a heterotroph, these relationships are

S1 =
1
2
(
ZC,ox −ZC,red

)
, (49)

S6 =
1
2
(
ZC,B −ZC,red

)
. (50)

As such, bounds on S6 can be rewritten as bounds on ZC,red . Here we reproduce bounds for the case that maintenance
b = 0.

ZC,red ≥ ZC,B −
2(−AS2mC +NS4mC +S5S2)

S4
, (51)

ZC,red ≤
ZC,ox (AmC −S5)

AmC +S3 −S5
−

S3 (2NmC −ZC,B)

AmC +S3 −S5
(52)

Note that these only apply in the absence of a homeostatic process balancing ATP and ECH production fluxes with their
anabolic consumption. In the presence of such a process (e.g. regulated ATP hydrolysis, flux JH = γHφH fH (⃗χ)) growth
becomes feasible across the full range of S6 or ZC,red values as we discuss in main text. Full expressions are given in
the relevant Mathematica notebook.

If we assume constant ATP, NADH, φO and φH , we can use Lagrange multipliers to maximize λ . The Lagrangian for
the zero-order case is

L = λ −β1g−β2h−β3i, (53)

g = φox +φred +
λ

mCγana
+φH +φO −1, (54)

h = S1γoxφox +S2γredφred +S6
λ

mC
−λ ·N, (55)

i = S3γoxφox +S4γredφred +S5
λ

mC
− γHφH −λ ·A−b (56)

where βi are Lagrange multipliers and we’ve used λ = mCJana = mCγanaφana to eliminate φana from g,h, and i. Solving
∇L (λ ,φox,φred ,β1,β2,β3) = 0 gives
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λmax =− (S2γred −S1γox)(−b− γHφH +S3γox (−φH −φO +1))−S1γox (−φH −φO +1)(S4γred −S3γox)

(S2γred −S1γox)
(
−A− S3γox

γanamC
+ S5

mC

)
− (S4γred −S3γox)

(
− S1γox

γanamC
+ S6

mC
−N

) (57)

If ATP and NADH concentrations are roughly constant, e.g., due to thermodynamic and kinetic constraints (36, 42, 43,
47), then λmax is a function of φO and φH alone. Therefore, φO, φH , or both must be variable if cells are to grow at a
variety of rates in response to environmental conditions, as we concluded in the main text.

We verified that this expression for λmax corresponds exactly to linear programming solutions to the corresponding
zero-order system with dilution. Furthermore, the analytic limits on S6 and ZC,red correspond exactly to the points at
which a zero-order model without flux-balancing ATP homeostasis fails to grow. Simulations of higher-order models
give comparable results for λmax and also exhibit finite limits on growth as a function of ZC,red as we discuss below.

5.3 Optimizing the redox state of biomass for growth
Using Lagrange multipliers we were also able to solve for the growth rate maximizing value of ZC,B. The optimum
value Z∗

C,B can be expressed as a linear function of ZC,red

Z∗
C,B = KZ ·ZC,red +Z◦ (58)

where the slope KZ and intercept Z◦ are functions of all model parameters and, therefore, related to intracellular fluxes
Jα . For a zero-order model of heterotrophy,

KZ =
AmCγox

S3γox −S4γred
+

S4γred (γana − γox)

γana (S4γred −S3γox)
+

bmCγox

λmax (S3γox −S4γred)
+

mCγHφHγox

λmax (S3γox −S4γred)
−

S4mCφHγoxγred

λmax (S4γred −S3γox)
+

S4mCφOγoxγred

λmax (S3γox −S4γred)
+

S4mCγoxγred

λmax (S4γred −S3γox)
+

(S3 −S5)γox

S3γox −S4γred
.

Z◦ = (λmaxγana (S3γox −S4γred))
−1 × (γoxZC,ox(−AλmaxγanamC −bγanamC − γanamCγHφH −S4γanamCφHγred−

S4γanamCφOγred +S4γanamCγred +λmaxS5γana −λmaxS4γred))+(2(AλmaxS2γanamCγred +bS2γanamCγred+

S2S3γanamCφHγoxγred +S2γanamCγHφHγred +λmaxNS3γanamCγox −λmaxNS4γanamCγred+

S2S3γanamCφOγoxγred −S2S3γanamCγoxγred −λmaxS2S5γanaγred +λmaxS2S3γoxγred)), (59)

where λmax is given by eq. 57.

Since adapting ZC,B to match the right hand side of equation 58 increases λ , we consider Z∗
C,B to be an effective

environmental redox potential. In contrast with typical approaches to characterizing environmental redox state (21),
which account only for those molecules that react with the electrode, Z∗

C,B accounts for the carbon source ZC,red , the
metabolic transformations performed (i.e. producing ZC,B and ZC,ox) as well as the magnitudes of intracellular fluxes.

6 Models with concentration-dependent fluxes

Thus far, we have restricted ourselves to the simplifying assumption that the fluxes Jα are independent of the concen-
trations of ATP and the electron carrier ECH (here assumed to be NADH). In this saturated regime, f (⃗χ) was always
set to 1. This regime allowed us to compute the guaranteed global maximum growth rate λmax in different conditions
using linear programming and analytics, but restricted us to manually fix the steady state ATP and NADH concentra-
tions. To test the robustness of our results to relaxing this assumption, we used simulations and numerical nonconvex
optimization methods, which we detail in this section. These methods allowed the ATP and NADH concentrations to
emerge from the dynamics specified by our model.
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6.1 Simulations
We performed simulations in two regimes: (1) a zero order model, where fluxes were independent of the ATP and
NADH concentrations, but numerically reached their steady state values, and (2) a Michaelis-Menten model, where
fluxes depended on the ATP and NADH concentrations according to Michaelis-Menten kinetics.

To simulate both models, we numerically evolved the system of differential equations described by equations 15 (pa-
rameters given in Table 2) with their mass fluxes Jα set as per different assumptions for f (⃗χ). In the zero order model
(Fig. S7a), we assumed f (⃗χ) = 1 for all processes. In the Michaelis-Menten model (Fig. S7b), we assumed the
following: (a) oxidation was independent of the ATP and NADH concentrations; (b) reduction depended only on the
NADH concentration, fred(NADH) = NADH

NADH+KM
; (c) anabolism depended on both the ATP and NADH concentrations,

fana(NADH) = NADH
NADH+KM

and fana(AT P) = AT P
AT P+KM

.

We used the same parameters as the concentration-independent versions of the model, with the additional parameter
being the half-saturation concentration KM for different metabolites and processes. For simplicity, and with some
support from measurements, we assumed that all the KM values approximately corresponded to 100 µM, i.e., 6×10−7

mol/gC in χ units (Fig. S5). For initial conditions, we assumed arbitrary starting concentrations of 1 mM for both
ATP and NADH, since the initial concentrations did not affect the final steady state concentrations. For each set of
parameters, we simulated the system of equations to steady state. We discarded parameter combinations where either
ATP or ECH did not reach a steady state, as well as those where the steady state concentrations fell outside the To find
the optimal growth rate λmax, we systematically varied the allocation variables φα along an equispaced mesh along the
simplex ∑α φα = 1 to ensure that the allocation constraint was satisfied. We then numerically selected the allocation
variables corresponding to the largest numerically observed growth rate as λmax.

Simulating the model with different values of ZC,red , we noticed qualitatively and quantitatively identical trends in both
models (Fig. S8): λmax increased near ZC,red = ZC,B = 0. Similar to the zero order model with fixed concentrations, in
this model, too, we observed a similar dependence of λmax on ZC,red when we changed the reductive ATP yield S4. In
particular, reducing S4 resulted in ATP concentrations not reaching a steady state for the same allocation strategy (φα ),
indicating that the metabolic constraints were infeasible for the same strategy. Lowering φana however, allowed an ATP
steady state, albeit resulting in a lower growth rate λmax.

6.2 Optimization
Since our simulations had to sample a high-dimensional simplex of allocation variables and were computationally
expensive, we could not sample the space of solutions finely enough. Due to this, our numerically computed maximum
growth rates showed sudden jumps as we changed ZC,red . Given that this involves optimization of a non-convex equation
system, we took measures to ensure the robustness of our results by performing optimization from a large number of
randomly sampled initial conditions. Optimization was done over the allocation strategy φα and the ATP and ECH
concentrations to maximize the growth rate, while satisfying all three constraints (ATP and ECH balance as well as the
allocation constraint). To stay in the regime of biologically plausible ATP and ECH concentrations, we placed bounds
on the final ATP and ECH concentrations to be within a reasonable range (6×10−6 to 6×10−5 mol/gC (1–10 mM) for
ATP, and 6×10−7 to 1.2×10−6 mol/gC (100–200 µM) for ECH (NADH) in χ units).

Using numerical optimization, we sampled different S4 and S3 values for both zero order fluxes (Jα independent of ATP
and ECH concentrations, i.e., f (⃗χ) = 1) as well as Michaelis-Menten fluxes (Jα dependent on ATP and ECH with f (⃗χ)
set according to Michaelis-Menten kinetics). The results of these optimizations — λmax as a function of ZC,red — are
shown in Figs. S8 and S9. In these figures, we first show the optimal growth rate in conditions where no additional
ATP homeostasis is allowed (φh = 0; Fig. S8), and later when we allow ATP homeostasis to be optimized for maximum
λ (φh ≥ 0; Fig. S9). In all conditions, we observe that decreasing the reductive (S4) and oxidative (S3) ATP yields
can only broaden, not reduce the viable range of ZC,red where λ > 0. In these conditions, lowering either ATP yield
typically reduces growth rate, as observed in other variants of the model.

23



Figure S3. Flux Balance Analysis of E. coli’s two dimensional metabolic capabilities. Each row denotes a carbon
source, each column a terminal electron acceptor. Black denotes no growth in the iML1515 model (1), while light
brown indicates that the modeled λmax > 0.01 hr−1. TMAO denotes trimethylamine N-oxide and DMSO dimethyl
sulfoxide. In all cases where growth was feasible, maintenance energy consumption did not exceed it’s minimum
allowed value of 6.86 mmol ATP/gDW/hr.
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Figure S4. A redox + resource allocation model of respiration displays a growth-rate maximizing respiratory
rate J∗red . Columns of panels vary a model parameter and display the effect on λmax and mass-specific respiratory flux
Jred in a zero-order model optimized using linear methods. Panels (A-B) show that there is a λ -maximizing value of
Jred = γredφred fred(c) denoted with the star in (A). Panels (C-D) show the effect of increasing the non-catalytic C mass
fraction φO, (E-F) show the effect of increasing the catalytic activity of anabolic enzyme, γana, and (G-H) the effect of
increasing γred .

Figure S5. Typical values of enzyme kinetic constants kcat and KM (A) CDFs of empirical kcat values for different
core metabolic modules. kcat gives the maximum per-active site catalytic rate in mol product/mol enzyme/s. (B) The
same, but for KM in µM units. (C) Typical KM values for energy and redox cofactors are ≈ 100 µM. Data for all
panels from (29).
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Figure S6. Geometric visualization of constraints on a zero order model of heterotrophic growth. (a) Schematic
of a 3D space of the allocation variables φana, φred and φox and the constraints of ECH balance (red), ATP balance
(green) and the biomass allocation constraint (blue) as planes in the positive octant. Increasing φo moves the blue
allocation plane closer to the origin. If φo is allowed to vary a range of allocation planes and growth rates λ are
therefore viable. The joint intersection of all three spaces (two mass balance planes and one allocation space)
corresponds to possible solutions. The growth rate depends on the φana for the solution (black star) and is given by the
formula λ = φana · γana ·mC in our concentration-independent zero order model. (b) Specific model incarnations with
no maintenance (m = 0, top row) and with a finite maintenance cost (m = 0.001, bottom row). In each case, we show
three outcomes: one where growth is infeasible (left column, no common intersection); one where growth is just
feasible and the growth rate is minimum (middle column; common intersection is a point) and one where the growth
rate is maximized (right column, where φO achieves its minimum allowed value). A similar visualization is also valid
for higher-order, concentration-dependent, models albeit where planes move with ATP and ECH concentrations in
more complex ways. 26



Figure S7. Simulations highlight the effect of changing ATP yields on growth. Decreasing the reductive ATP yield
S4 affects the viability of growth for the same allocation strategy. Shown here are ATP and ECH dynamics simulated
numerically using two model variants (see details in section 6.1). In these simulations, ATP and ECH concentrations
dynamically reach steady state, unlike in other versions of the model where it is fixed. (a) shows simulations of the
zero order model, where the fluxes Jα are independent of ATP and NADH concentrations; (b) shows simulations
where the fluxes depend on the concentration through Michaelis-Menten kinetics. Shown are cases with no additional
ATP homeostasis (i.e., φh = 0). In both cases, from left to right, we show the following: (left) at S4 = 1, we show a
simulation with the optimal allocation strategy with φana = 0.45; in this case both ATP and ECH reach a steady state;
(middle) at a lower S4 = 0.1, for the same strategy, ATP no longer reaches a steady state and instead dips to arbitrarily
small concentrations over time; (right) for the same S4 = 0.1, lowering φana to 0.41 and appropriately adjusting the
other allocation variables now allows both ATP and ECH to reach a steady state. This lowering of φana results in a
lower optimal growth rate at a lower S4. Time shown on the x-axis is in arbitrary units.
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Figure S8. Optimization without ATP homeostasis shows the effect of changing ATP yields on growth rate λ .
Decreasing the reductive (left column, S4) ATP yield can broaden the range of viable carbon sources, similar to Figs. 2
and S11. However, decreasing the oxidative ATP yield (right column, S3) only has a quantitative effect of changing
growth rates without affecting the breadth of viable carbon sources ZC,red . Shown here are results from model variants
(detailed in section 6.2) that we numerically optimized. In contrast with Figs. 2 and S11, here ATP and ECH
concentrations are not fixed, but optimized maximize λ while satisfying all model constraints. In this figure,
optimizations disallow allocation towards ATP homeostasis (φh = 0). Additionally, we place bounds on the ATP and
ECH concentrations over a biologically-plausible range — 6×10−6 to 6×10−5 mol/gC (1–10 mM) for ATP, and
6×10−7 to 1.2×10−6 mol/gC (100–200 µM) for ECH. ADP and EC concentrations were assumed to always be a
fixed factor ra = 0.1 and re = 10 times the ATP and ECH concentrations, respectively. Panel (a) shows optimization of
the zero order model where fluxes Jα are independent of ATP and NADH concentrations; (b) shows optimization
where the fluxes depend on the concentration via Michaelis-Menten kinetics.
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Figure S9. Flux-balancing ATP homeostasis enables growth across a wide range of C sources also in a
nonlinear model. In contrast with Fig. S8, where flux-balancing ATP homeostasis was disallowed, here we optimize
models with non-zero φH and JH . As in the linearized model described in the main text, the addition of flux-balancing
homeostasis permits growth on a wide range of carbon sources characterized by ZC,red . Decreasing the reductive (left
column) and oxidative (right column) ATP yield (S4 and S3 respectively) does not shrink the range of viable carbon
sources, but can reduce growth rates, as qualitatively seen in the main text. Shown here are results from model
variants (detailed in section 6.2) we numerically optimized, where the ATP and ECH are optimized to achieve
maximize λ while satisfying the constraints of ATP and ECH balance and biomass allocation. Simulations include the
possibility of flux-balancing homeostasis via ATP hydrolysis. Additionally, we placed bounds on the ATP and ECH
concentrations over a biologically plausible range (6×10−6 to 6×10−5 mol/gC (1–10 mM) for ATP, and 6×10−7 to
1.2×10−6 mol/gC (100–200 µM) for ECH (NADH) in χ units). Panel (a) shows optimization of the zero order
model, where the fluxes Jα are independent of ATP and ECH concentrations; (b) shows optimization where the fluxes
depend on the concentration through Michaelis-Menten kinetics.
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Figure S10. Growth rate penalty for biomass ZC,B deviating from the optimum is approximately quadratic. Plot
showing the growth rate λ as a function of the deviation from optimal ZC,B for the same model of respiratory
heterotophy as Fig. 4A. Red points give growth rates obtained by numerically solving our model along a line
perpendicular to the optimal line ZC,B = KZZC,red +Z0. The x-axis indicates the distance from the optimal line ∆Z.
Blue lines indicate quadratic (left) and linear (right) fits, indicating a clear quadratic trend.

Figure S11. An intrinsic tension between metabolic flexibility and maximum growth rates. Plots are for the
zero-order model presented in the main text. (A) Increasing the ATP yield of reduction (S4) makes respiration more
thermodynamically efficient. This increases the modeled λmax at the expense of decreasing the range of reduced C
sources that can be consumed without requiring ATP homeostasis (dashed green lines). (B) Likewise, increasing the
ATP yield of catabolic C source oxidation (S3) reduces the range of usable C sources. (D) Shifting the redox state of
biomass (ZC,B), e.g. by making more reduced compounds, affects the ECH stoichiometry of anabolism (S6). Making
more reduced biomass shifts the curve in the reduced direction (left) while oxidized biomass shifts it to the right. That
is, ZC,B≈ ZC,red is advantageous, permitting near-maximal growth rates without requiring flux-balancing homeostasis
mechanisms that inevitably use resources (C atoms, energy, catalytic activity) and thereby reduce the growth rate λ .
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Figure S12. Enforcing conservation of internally-produced organic carbon (Cred) limits maximal autotrophic
growth rates. Each panel compares equivalent models of respiration and photosynthesis with identical sampled
kinetic parameters (γα ) in a zero-order model as in the main text. In (A) the photosynthetic model was not forced to
balance production and consumption of Cred . In this case, photosynthetic and respiratory growth rates are roughly
equal. In panels (B-D) conservation was required at different fixed concentrations of Cred given in the title and
respiratory (heterotrophic) growth rates always exceed autotrophic (photosynthetic) ones. This effect depends on the
Cred concentration (units of mol C per gram biomass C) when it is very high, as in panel (D). Note that using the same
kinetic parameters in both models means that we neglect kinetic difficulties often associated with specific processes,
for example CO2 fixation through rubisco in the Calvin-Benson cycle (32, 33). So our analysis here indicates that the
fastest-growing autotrophs would grow more slowly than similarly distinguished heterotrophs even if rubisco was a
“typical” central metabolic enzyme (29).
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Figure S13. Geometric explanation as to why balancing intracellularly-produced organic C during autotrophic
growth reduces λ . Schematic of the 2D space of allocation variables φred and φana, along with relevant constraints for
comparable heterotrophic (red) and autotrophic (green) metabolisms. The solid lines show the constraints on each
metabolism: joint ECH and ATP balance in heterotrophy (red), ECH and ATP balance in autotrophy (dark green), Cred
balance (green) and the biomass allocation constraint (blue). Despite almost all parameter values being the same, ECH
and ATP balance constraints in autotrophy and heterotrophy differ in slope due to a sign flip in the ATP stoichiometry
of reduction S4. Cred balance is an additional constraint that applies only to autotrophy (see Fig. 3 in the main text).
This additional constraint involves φana and φred and represents a line at a fixed angle depending on the steady-state
concentration of reduced carbon Cred . Without this constraint, the maximum growth rates λ max in both autotrophy and
heterotrophy are comparable (filled red and dark green circles) because they are essentially determined by the kinetics
of anabolism (γana) which we assumed to be identical. With this constraint, the only viable autrophic growth rate is the
one where the Cred balance line cuts the ECH and ATP balance line (filled light green circle), which corresponds to a
much lower φana and thus a lower autotrophic growth rate. At any non-negligible steady-state Cred concentration, the
additional Cred balance constraint reduces φana, yielding a ≈ 3-fold lower autotrophic growth rate when compared to a
model of heterotrophy with identical γα values, as shown in Fig. 3 and S12.
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Figure S14. Aminoacyl tRNA synthetases span a wide range of ZC values. (A) E. coli protein coding sequence ZC
values are bimodally distributed with two approximately Gaussian components. The blue fitted Gaussian component
represents globular proteins while the green represents membrane proteins (13). Membrane proteins are more reduced
(fit mean µ =−0.21 e−/C and standard deviation σ = 0.11) than cytosolic proteins (µ =−0.13 e−/C and σ = 0.04).
(B) The grey distribution in the background reproduces the distribution of E. coli ZC values from (A). The distribution
of ZC values of aminoacyl tRNA synthetases across ≈ 60,000 GTDB representative genomes is given on top in white.
The mean and variance of tRNA synthetase ZC values (µ =−0.14 e−/C and σ = 0.03) is comparable to soluble
proteins in E. coli.
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Figure S15. A range of Pearson correlation coefficients between vectors of ZC values calculated for bac120
genes in GTDB representative genomes. This gallery spans the full range of raw correlation coefficients, ρ , more
than 99% of which were within the interval [0.077, 0.77]. As indicated by Fig. 4, nearly all raw correlations were
positive.
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Figure S16. Controlling for the mean ZC of protein coding sequences. Panel (A) gives a histogram of ZC values for
all bac120 sequences analyzed. This distribution has a mean of µ =−0.158 and a standard deviation of σ = 0.055.
Panel (B) gives raw Pearson correlations between pairs of bac120 genes (dark grey). These were almost uniformly
positive, with an interquartile range IQR = +0.41-0.59. Controlling for the mean ZC of coding sequences in each
genome eliminated much of this correlation (partial correlation IQR = +0.07-0.21, white bars), indicating that most of
the effect is genome-wide. The residual positive correlation coincides with our intuition that bac120 are indeed
distinct, given their central and predominantly anabolic roles.

Figure S17. Altering amino acid ZC via nucleotide changes typically requires more than one substitution. The
genetic code is conservative for measures of hydrophobicity (8, 9). As such, single nucleotide changes tend to
conserve hydrophobicity metrics. Panels (A-B) show that amino acid ZC is correlated with two different metrics of
hydrophobicity — hydropathy and polar requirement (8, 9) – which are rough inverses of each other. For panel (C),
pairs of codons were binned by the ZC difference (∆ZC) between their associated amino acids, assuming the standard
genetic code. Notice that substitutions that meaningfully alter amino acid ZC — i.e. lead to a high ∆ZC on the right —
require a larger number of nucleotide substitutions on average.
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Figure S18. Various E. coli proteomic datasets evidence similar ZC changes. Despite differences in extraction,
quantification and analysis, three different proteomic datasets show that E. coliproteins become more reduced during
faster growth rates.

36



Figure S19. Trends in proteome ZC with λ are due to many groups of proteins. Because proteome ZC,P is a
carbon-weighted average of individual proteins’ ZC values, a linear model can certainly account for 100% of ZC,P
variation with λ . Yet proteins’ expression patterns and ZC values are correlated, meaning that we need not use the full
set of condition-dependent expression levels to reconstruct ZC,P changes. We used sparse regression to ask how many
individual proteins’ expression changes are required reconstruct ZC,P(λ ). As shown in panels (A-C), roughly 10
proteins are needed to achieve near-perfect reconstructions approaching 100% variance explained. Panel (D) shows
that the proteins selected represent a diversity of protein functional groups. Categories are given for models generated
with Lasso regression (Python sklearn package) with the regularization parameter α set to 10−8, which provided
near-perfect reconstruction in all cases. COG functional groups are not available for eukaryotic genomes, so yeast data
is omitted from this panel.
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Figure S20. Protein coding sequences do not accurately estimate the ZC values of expressed proteins. In panels
(A-C) 1000 individual proteins were repeatedly sampled from the protein coding sequences in each genome to
estimate a range of ZC,P values. In all cases, the sampled ranges (gray histograms) did not overlap with the range of
measurements (blue range), which account for protein expression. Protein levels are roughly log-normally distributed.
Panels (D-F) calculate ZC,P after sampling expression levels from a log-normal distribution spanning roughly 6 orders
(i.e. σ ≈ 2.3 estimated from E. coli data). This produces much wider ranges of ZC,P values that include
measurements.

Figure S21. E. coli total lipids ZC decreases as λ increases. Total lipid composition as a function of growth
temperature was reported in (22), but the temperature-dependence of the λ was not. We estimated λ from
measurements in similar media from (23). This estimate is given on the upper X axis.
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