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Immersion of an elastic cantilevered sheet in a fluid can strongly affect its dynamic response.

While significant effort has been expended in studying slender cantilevered sheets, the behavior of

wide sheets has received far less attention. Here we study the clamping configuration’s effect on

the vibrational dynamics of wide cantilever sheets of macroscopic size, which naturally generate

inviscid flows. Three practically relevant clamping configurations are investigated: clamping into

(i) a thin and rigid horizontal plate, (ii) a rigid vertical wall, and (iii) a rigid line. These are found to

produce different resonant frequencies, as expected from the nonlocal flows generated by these

cantilevers. The resulting formulas are joined to an existing expression for slender cantilevers,

leading to a universal formula valid for all aspect ratios (cantilever length/width) and mode

numbers; accuracy is verified using finite element analysis. This study is expected to be of practical

value in a host of engineering applications, such as those that utilize fluid-structure interactions for

energy harvesting and aerodynamic design. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4964428]

I. INTRODUCTION

Knowledge of the dynamic response of cantilevered

structures immersed in fluid has been used in a broad range

of applications. These include the development of nanoscale

cantilevers for environmental sensing,1 engineering design

of naval vessels,2–4 imaging and force spectroscopy with

atomic force microscopy (AFM),5–9 microfluidic sensing,10

and energy harvesting in high Reynolds number flows.11–17

While viscosity of the surrounding fluid typically exerts

a strong effect on vibrating micro and nanoscale structures,18

its effect diminishes with increasing device size. For struc-

tures of macroscopic size, i.e., of order of meters, viscosity

has a negligible influence, and modeling these flows using an

inviscid approximation provides a highly accurate frame-

work. Indeed, significant effort has been expended in study-

ing the vibration of elastic structures with this inviscid flow

model, leading to a comprehensive understanding of their

dynamics and the combined effects of structural and radia-

tion damping, e.g., see Refs. 3, 4, and 19–23. In this article,

we focus on the dynamic response of such large scale canti-

levers immersed in fluid.

Many analytical and numerical studies have been devel-

oped to model the fluid-structure interaction of macroscopic

slender cantilevers, i.e., whose aspect ratio (cantilever length/

width) greatly exceeds unity. Chu19 presented an early and

widely used study of this problem, deriving a simple formula

for the resonant frequencies that exhibits excellent agreement

with measurements.3 Crighton21 developed a more compre-

hensive treatment of slender elastic rods in the small and large

acoustic wavelength limit, providing strong insight into the

physics of their damping mechanisms. Strikingly, he found

that intrinsic material damping of cylindrical cantilevers can

be comparable with radiation damping due to the generation

and propagation of sound waves. In a more recent develop-

ment, Elmer and Dreier24 presented a rigorous model for the

resonant frequencies in fluid that accounts for the three-

dimensional flows generated by long and slender cantilevers

vibrating in their higher order flexural modes. This was

extended to torsional modes of vibration by van Eysden and

Sader,25 who also presented analytical formulas for both flex-

ural and torsional modes. Importantly, such inviscid analyses

also apply to small-scale cantilever devices when operated in

their higher-order modes. Flow around a cantilever in these

cases is predominantly inviscid due to the thin viscous pene-

tration depths generated at high oscillation frequency.26

To account for the effect of finite aspect ratio (length/

width), correction factors to the classical resonant frequency

formula of Chu19 have been developed. Pabst2 proposed

an empirical correction (based on measurements) that gives

the resonant frequencies of cantilevered sheets with aspect

ratios greater than unity. Lindholm3 extended this empirical

approach and provided a formula that admits aspect ratios

less than one. In contrast to these studies, which are founded

on the slender result of Chu,19 Atkinson and de Lara27 theo-

retically and rigorously studied the opposite limit of zero

aspect ratio, i.e., a sheet that is infinitely wide relative to its

length. The flow generated by such a 2D cantilever is intrin-

sically nonlocal with respect to position, i.e., the fluid pres-

sure at any position on the cantilever depends on the

complete deflected mode shape. This differs from the fluid

pressure generated by a vibrating slender cantilever, which

only depends on its local displacement at a given position.

As such, the resonant frequency of a cantilevered sheet of

zero aspect ratio is expected to also depend on the shape of

the clamp used to restrain it. That is, a horizontally aligned

cantilever that is clamped into a vertical wall will exhibit dif-

ferent dynamics to that of an identical cantilever held by aa)Email: jsader@unimelb.edu.au
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rigid horizontal sheet. While Atkinson and de Lara studied

the rigid horizontal sheet clamp, no comparison was made

with other practical clamping configurations, e.g., a vertical

wall and/or a line clamp.14,28 The principal aim of this article

is to fill this gap in the literature and provide analytical for-

mulas and numerical results for these three complementary

cases. This is critical to the analysis and interpretation of

measurements that naturally make use of cantilevers of low

aspect ratio.14,16,17,28,29 The flexural modes of vibration are

considered throughout.

We begin by reviewing the framework of Atkinson and

de Lara27 for a 2D cantilever clamped into a horizontal sheet,

which provides the theoretical foundation for this study. This

previous formulation is then extended and applied to clamps

in the form of a rigid line and a vertical wall. The resulting

formulas for these three complementary cases are joined to

the slender cantilever formula of Chu19 using a matched

asymptotic approach. This produces a formula, Eq. (33) (to

be used with Eqs. (29) and (35)), that is universally valid for

all aspect ratios and mode numbers. Finite element analysis

is used to assess and validate the accuracy of these results.

This development also allows for rigorous assessment of the

empirical formulas for arbitrary aspect ratio proposed by

Pabst2 and Lindholm et al.3

II. ZERO ASPECT RATIO CANTILEVERED SHEET

We first define the overriding assumptions used in this

study and briefly review the theoretical framework of

Atkinson and de Lara.27

The cantilevered sheet consists of a thin elastic plate of

rectangular platform. Its length is L, width is b, and thickness

is h. One edge of the sheet that is aligned in the long axis

direction is restrained in a clamp while the other three edges

are free to vibrate with angular frequency, x. The sheet

thickness is infinitesimal relative to the plan view dimen-

sions, i.e., h=L; h=b! 0. The vibration amplitude of the

sheet is also assumed to be infinitesimally small. As such,

the sheet deformation obeys the small deflection theory of

thin elastic plates.30 The fluid is incompressible with density,

q, and the inviscid approximation is used throughout. In this

initial part of our study, we consider the limiting case of a

sheet whose width greatly exceeds its length, i.e., its aspect

ratio, L=b! 0.

Three practically relevant clamping configurations for

the cantilevered sheet are analyzed: (i) the horizontal sheet

clamp, which was previously studied by Atkinson and de

Lara,27 (ii) the line clamp which approximates a cantilevered

sheet held by a thin rigid pole,14,28 and (iii) the commonly

used vertical wall clamp.

A Cartesian coordinate system is implemented such that

the cantilevered sheet lies in the x-y plane with the clamp at

x¼ 0 and the free end at x¼L. The sheet is uniform and

extends infinitely in the y-direction. A schematic of a canti-

levered sheet clamped into a vertical wall is given in Fig. 1,

showing all cantilever dimensions in perspective and the

coordinate system. All clamping configurations are illus-

trated in Fig. 2 which also shows the fundamental mode of

vibration.

A. Flow field and pressure distribution generated
by a vibrating sheet

General formulas for the flow field and pressure distri-

bution generated by a cantilevered elastic sheet immersed in

fluid are now presented for the limiting case, L=b! 0.27

These formulas are then coupled to the small deflection the-

ory of thin elastic plates30 to examine the dynamics of these

resonating structures.

Under the above-stated assumptions, a vibrating cantile-

ver immersed in fluid generates a potential flow that satisfies

the incompressible continuity condition and the linearized

Bernoulli equation31

r � u ¼ 0; pþ q
@/
@t
¼ 0; (1)

where p is the pressure, t is the time, and / is the velocity

potential and is related to the (2D) velocity field by u

¼ r/ ¼ @/=@x x̂ þ @/=@z ẑ with x̂ and ẑ being unit vectors

FIG. 1. Schematic illustration showing all dimensions of a rectangular canti-

lever and the Cartesian coordinate system. Origin of the coordinate system

is at the center-of-mass of the sheet’s cross section at its clamped end.

FIG. 2. Schematic diagrams of a canti-

levered sheet in the small aspect ratio

limit, L=b� 1, with three different

clamping configurations. The funda-

mental mode of the resonant oscillation

is illustrated (deflection magnitude not

to scale). The x-axis is dimensionless.
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in the x and z directions, respectively; flow in the y-direction

is zero in this L=b! 0 limit.

We assume an explicit time dependence of expð�ixtÞ
for the flow (and cantilever deformation) and scale all varia-

bles as follows: the spatial coordinates are scaled by the

sheet’s length, L; time by the reciprocal of the oscillation fre-

quency, x�1; and the fluid velocity by U ¼ xW, where W is

the displacement amplitude at the sheet’s free end. These

lead to the following scales for the flow: velocity potential is

scaled by LU and the fluid pressure by q xLU. All variables

in Section II A (only) shall henceforth refer to their non-

dimensional quantities. Equation (1) then becomes

r2/ ¼ 0; (2)

p ¼ i/: (3)

Flow generated by a vibrating sheet of infinitesimal

thickness is solved using a singularity method. Specifically,

the Laplace equation, Eq. (2), has a point singularity solu-

tion centered at z¼ 0 (the position of the sheet) and x¼ s,

given by

/ ¼ arctan
z

x� s

� �
: (4)

General solution to the Laplace equation can then be con-

structed by linear superposition, leading to the required

result

/ x; zð Þ ¼
ð1
�1

f sð Þarctan
z

x� s

� �
ds; (5)

where f(s) is an (as yet) unspecified function to be deter-

mined by imposing the boundary conditions.

The sheet generates a flow whose pressure distribution

is antisymmetric about the z¼ 0 plane,25 i.e.,

pjz¼0þ ¼ �pjz¼0� ; (6)

and the appropriate branch of the arctan function in Eq. (5) is

chosen to be

arctan
z

x� s

� �
¼

p; z ¼ 0þ; x < s

0; z ¼ 0þ; x > s

�p; z ¼ 0�; x < s

0; z ¼ 0�; x > s:

8>>>><
>>>>:

(7)

The no-penetration condition for inviscid flow is imposed at

the sheet’s surface, leading to continuity of the sheet’s nor-

mal (z-component) velocity and that of the fluid at z¼ 0.

While the flow will separate at the unclamped edge of

the cantilevered sheet (at x¼ 1) in a real viscous flow, its

(nonlinear) effect on the overall dynamics will decrease with

a reduction in oscillation amplitude. This is demonstrated by

excellent agreement between the large aspect ratio inviscid

theory of Chu19 and measurements on macroscopic plates in

Ref. 3. As mentioned above, we consider the limiting case of

zero oscillation amplitude where a linear analysis is formally

valid.

Next, we quote the result for the pressure jump across

the cantilevered sheet derived by Atkinson and de Lara27 for

a rigid horizontal plane clamp. This is followed by new for-

mulas for a rigid line and vertical wall clamp, the derivations

of which are relegated to the Appendix for clarity. These

complementary formulas are used in Section II B to calculate

the resonant frequencies of the cantilever and explore the

effect of varying the clamping configuration.

1. Horizontal plate clamp

Atkinson and de Lara27 calculated the pressure distribu-

tion over a cantilevered sheet that is clamped into a rigid

semi-infinite horizontal thin plate; see Fig. 2(a). The fixed

edge of the cantilever lies at x ¼ z ¼ 0, with the no-

penetration condition for the fluid across the clamp given by

uz¼ 0 for x< 0 and z ¼ 06. The pressure jump over the

sheet’s vibrating upper and lower surfaces (0 � x � 1) has

the closed form expression27

Dp ¼ 2i

p

ð1

0

v nð Þlog

����
ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

�
ffiffiffiffiffiffiffiffiffiffiffi
1� n
pffiffiffiffiffiffiffiffiffiffiffi

1� x
p

þ
ffiffiffiffiffiffiffiffiffiffiffi
1� n
p

���� dn; (8)

where Dp � pjz¼0þ � pjz¼0� and vðnÞ is the sheet’s non-

dimensional local velocity in the z-direction at position n.

This provides an explicit expression for the pressure jump

across the sheet.

2. Line clamp

The cantilevered sheet is fixed along the line x ¼ z ¼ 0;

see Fig. 2(b). This can be realized in practice by clamping

the sheet into a thin rigid cylinder that is restrained from

rotating.14,28 This leads to the required mixed boundary

conditions:

1. The fluid velocity normal to the sheet is continuous over

the sheet’s surface, i.e.,

uzjz¼0þ ¼ uzjz¼0� ¼ vðxÞ; 0 � x � 1; (9)

where uz is the (normal) z-component of the fluid velocity.

2. Away from the cantilever, the pressure is antisymmetric

about the symmetry plane z¼ 0

/jz¼0 ¼ 0; x < 0 [ x > 1: (10)

The function f(s) in Eq. (5) is uniquely determined from Eqs.

(9) and (10), leading to the required expression for the pres-

sure jump for 0 � x � 1

Dp ¼ 2i

p

ð1

0

v nð Þlog

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þn

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nð Þx

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þn

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nð Þx

p
�����

����� dn; (11)

the derivation of which is presented in Appendix A 1.

3. Vertical wall clamp

Here, the elastic sheet is clamped at a 90� orientation

into a rigid and unbounded vertical wall at x¼ 0; see Fig.

2(c). The flow is thus restricted to the half space x� 0, with

144504-3 Shen, Chakraborty, and Sader J. Appl. Phys. 120, 144504 (2016)
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the horizontal flow velocity ux¼ 0 at x¼ 0. The pressure

jump across the sheet in this case takes the form of a double

integral

Dp ¼ 4i

p

ð1

0

v nð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 1� n2
� �q ð1

x

s ds

n2 � s2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p dn: (12)

The reader is referred to Appendix A 2 for a derivation of

this result.

B. Fluid-structure interaction of a vibrating cantilever

Next, we turn our attention to calculation of the resonant

frequencies of a cantilevered sheet immersed in fluid. For a

2D flat elastic sheet, infinitely wide in the y-direction, the

governing (dimensional) equation for its deflection, w(x, t),
in the z-direction is30

D
@4w

@x4
þ qch

@2w

@t2
¼ Pfluid; (13)

where D � Eh3=ð12ð1� �2ÞÞ is the flexural rigidity of the

sheet in which E is the Young’s modulus, � is the Poisson’s

ratio, qc is the mass density of the sheet, and Pfluid is the fluid

reaction net pressure (in the z-direction). The associated

boundary conditions for the cantilever are

w 0; tð Þ ¼ @w

@x

����
x¼0

¼ @
2w

@x2

����
x¼L

¼ @
3w

@x3

����
x¼L

¼ 0: (14)

Using the same scaling as in Section II A, all variables in

Eqs. (13) and (14) are nondimensionalized. Specifically, the

x-coordinate is scaled by L, the deflection function by W, time

by x�1, and fluid reaction pressure by qx2LW. An explicit

time dependence of expð�ixtÞ is again implemented. Scaled

variables are used from this point forward in Section II.

Importantly, the fluid reaction net pressure, Pfluid

� �Dp, differs for the three clamping configurations solved

in Section II A, but they can all be expressed in the general

form

Pfluid ¼ �2i

ð1

0

vðnÞgðx; nÞ dn; (15)

where gðx; nÞ is the “pressure kernel” for each clamp, speci-

fied in Eqs. (8), (11), and (12), respectively. These expres-

sions are

g x; nð Þ ¼ 1

p

log

ffiffiffiffiffiffiffiffiffiffiffi
1� x
p

�
ffiffiffiffiffiffiffiffiffiffiffi
1� n
pffiffiffiffiffiffiffiffiffiffiffi

1� x
p

þ
ffiffiffiffiffiffiffiffiffiffiffi
1� n
p

����
����; Horizontal plate clamp

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þn

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nð Þx

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þn

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nð Þx

p
�����

�����; Line clamp

ð1

x

2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 1� n2
� �q

n2 � s2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p ds; Vertical wall clamp:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(16)

Equations (13)–(15) then give the required (dimensionless)

governing equation for a cantilever vibrating in fluid

d4w

dx4
� X2 w� 2K

ð1

0

w nð Þg x; nð Þ dn

 !
¼ 0; (17)

with boundary conditions,

wð0Þ ¼ w0ð0Þ ¼ w00ð1Þ ¼ w000ð1Þ ¼ 0: (18)

The scaled resonant frequency, X, is defined

X ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffi
qchL4

D

r
; (19)

and the added mass parameter is

K ¼ qL

qch
: (20)

Note that the resonant frequency, X, in fluid for a given

clamping configuration is completely characterized by the

added mass parameter, K. It is the ratio of oscillatory fluid

inertia to inertia in the solid structure. It, therefore, provides

a measure of the relative strength of fluid loading on the can-

tilevered sheet.

C. Resonant frequencies in fluid

Equation (17) and its associated boundary conditions in

Eq. (18) are solved using a (spectral) Galerkin method. The

basis functions are chosen to satisfy Eq. (18) whose govern-

ing equation is that for a flat elastic sheet in vacuum

d4Uk

dx4
� C4

kUk ¼ 0; (21)

where

Ukð0Þ ¼ U0kð0Þ ¼ U00k ð1Þ ¼ U000k ð1Þ ¼ 0; (22)

and the eigenvalue, Ck, is the k-th positive root of

1þ cos CkcoshCk ¼ 0; (23)
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with k¼ 1, 2, 3,…. Solutions to Eqs. (21) and (22) form a

complete orthonormal basis set; explicit expression for Uk

can be found in Eq. (24) of Ref. 18. The required deflection

function, w, of the cantilever immersed in fluid is specified

by a general linear combination of the basis modes, Uk. This

infinite series is truncated at N terms

wðxÞ ¼
XN

k¼1

akUkðxÞ; (24)

and the number of terms systematically increased until con-

vergence is achieved; the coefficients, ak, are determined in

the process (see below).

Substituting Eq. (24) into Eq. (17), and making use of

Eq. (21), then gives

XN

k¼1

ak ðC4
k � X2ÞUkðxÞ þ 2X2K

ð1

0

UkðnÞgðx; nÞ dn

" #
¼ 0:

(25)

Using orthogonality of Um leads to the following linear sys-

tem of equations for the unknown coefficients, ak, and the

resonant frequency, X,

XN

k¼1

C4
m � X2

� �
dmk þ X2KTmk

� 	
ak ¼ 0; (26)

where m¼ 1, 2, 3,…, N, and

Tmk ¼ 2

ð1

0

ð1

0

UmðxÞUkðnÞgðx; nÞ dx dn; (27)

and dmk is the Kronecker delta function.

Thus, for a specified added mass parameter, K, the reso-

nant frequencies, X, of the cantilever are determined by solv-

ing the eigenvalue equation

det C4
m � X2

� �
dmk þ X2KTmk

� 	
¼ 0: (28)

The coefficients, ak, are then evaluated from Eq. (26), which

immediately gives the modes shapes via Eq. (24).

Mode n of the cantilevered sheet is specified by the n-th

root of Eq. (28), yielding the normalized frequency, Xn,

where n¼ 1, 2, 3,…, N.

III. ARBITRARY ASPECT RATIO

The effect of fluid loading on the resonant frequencies

of a thin cantilevered sheet, in the large aspect ratio limit, is

often characterized by its hydrodynamic function, C,18 i.e.,

xfluid ¼ xvac 1þ pqb

4qch
C

� ��1=2

; (29)

where the subscripts “fluid” and “vac” refer to the resonant

frequencies in fluid and vacuum, respectively. In this large

aspect ratio limit19,24,25

Clarge ¼ 1;
L

b
	 1; (30)

for small mode numbers, n � L/b. In the opposite limit of

small aspect ratio, Eq. (17) gives

Csmall ¼
4L

pb
asmall;

L

b
� 1; (31)

where asmall is henceforth termed the “rescaled hydrody-

namic function” and is an order one coefficient that depends

on the specific clamping configuration used, mode number,

n, and the hydrodynamic loading via the added mass parame-

ter, K.

In the asymptotic limit of large n24,25

C ¼ 8

np2

L

b
; n	 L

b

� �
and n	 1ð Þ; (32)

regardless of the cantilever’s aspect ratio, L/b.

A composite solution can then be constructed from the

asymptotic results in Eqs. (30)–(32) using a Pad�e approxim-

ant, giving the required result

C ¼ 1þ p
4asmall

b

L

� ��1

: (33)

This simple formula holds for all aspect ratios, L/b, and all

mode numbers, n.

Analogous to Eq. (31), the hydrodynamic function for

all aspect ratios can be rescaled to give

a � pb

4L
C: (34)

This expression is used in the examination of the accuracy of

Eq. (33) in Section IV B.

IV. NUMERICAL RESULTS

In this section, we first present numerical results for the

resonant frequencies of a cantilevered sheet of zero aspect

ratio, i.e., L=b! 0, and examine the effect of clamping con-

figuration. The dependence on mode number is also studied.

This is achieved using the theoretical formulation in Section

II C. This is followed by a comparison of Eq. (33) with rigor-

ous finite element solutions of a cantilevered sheet with finite

aspect ratio.

A. Zero aspect ratio

The theory in Section II C is implemented in

MATHEMATICA
VR

10.0. The number of basis modes, N, in Eq.

(24) are systematically increased to achieve a convergence

greater than 99.9% in the rescaled hydrodynamic function,

asmall, for the first 10 modes; N¼ 12 gives this required pre-

cision. The number of basis modes needed, N, increases with

mode number, n, and fluid strength, K. This suggests that the

mode shapes in fluid may also change as a result of increas-

ing fluid loading; this is studied below.

1. Effect of clamping configuration

The (dimensionless) hydrodynamic function, C, speci-

fies the effect of the surrounding fluid on the resonant
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frequencies of the cantilever; see Eq. (29). For a sheet of

zero aspect ratio, under consideration in this section, it is

more natural to use the rescaled hydrodynamic function,

asmall, as defined in Eq. (31). Numerically, this parameter is

calculated using asmall ¼ ðC4
n=X

2 � 1Þ=K.

Figure 3 gives the rescaled hydrodynamic function,

asmall, as a function of the clamping configuration and

the added mass parameter, K. The function, asmall, is clearly

delineated into two separate regions, with a transition occur-

ring at K 
 Oð1Þ. This coincides with the added mass of the

fluid (due to its inertia) being comparable with the actual

mass of the cantilevered sheet. In such cases, the fluid load-

ing is strong and thus can potentially impact the mode shapes

of vibration.

The results in Fig. 3 establish that changing the clamp

from one that is a horizontal sheet to a line clamp and finally

to a vertical wall strongly affects the resonant frequencies of

all modes. This is expected because the 2D potential flow

generated by a vibrating zero aspect ratio cantilever always

exhibits nonlocal behaviour, i.e., the pressure at any position

depends on the overall mode shape rather than the deflection

at that point.

To highlight this behavior, Fig. 4 shows a direct compar-

ison of asmall for these three clamping configurations. The

line clamp is observed to exhibit the smallest value of asmall,

as may be expected because it provides the least obstruction

to the flow. The horizontal plate possesses the next largest

value of asmall, followed by the vertical wall clamp. These

results provide guidance for the design of clamps of cantilev-

ered sheets, in cases where the effect of the surrounding fluid

is to be minimized or maximized.

Interestingly, the rescaled hydrodynamic function for

the fundamental mode (n¼ 1) is very weakly dependent on

the added mass parameter, K. This function increases only

slightly as K is varied from zero to infinity. In contrast, the

higher order modes (n> 1) display a much stronger effect,

but now decrease with increasing K; see Figs. 3 and 4.

The results in Fig. 4 also show that the clamp affects the

fundamental mode frequency weakly, relative to modes 2, 3,

and 4. Taken collectively, these observations suggest that the

deflection functions, w, of the higher order modes are more

strongly affected than those of the fundamental mode

(n¼ 1). The physical mechanisms giving rise to these fea-

tures are examined in Section IV A 2.

2. Mode shapes and pressure distributions

Figure 5 gives the deflection functions (mode shapes)

and pressure distributions for the first 3 modes of a cantilev-

ered sheet with a line clamp, as a function of the added mass

parameter, K; analogous results for horizontal plate and

vertical wall clamps are presented in Section S1 of the

supplementary material.

The deflection function, w, for the fundamental mode

(n¼ 1) is weakly dependent on the strength of fluid loading;

see Fig. 5(a). This observation is consistent with the results

for the pressure distribution in Fig. 5(d), which also show

very little variation with respect to K. This explains why the

rescaled hydrodynamic function, asmall, for the fundamental

mode varies only slightly with the fluid loading strength; see

Fig. 4.

The behavior of modes 2 and 3, however, is markedly

different with the deflection function and pressure distribu-

tion varying strongly with K; see Figs. 5(b), 5(c), 5(e), and

5(f). While the fundamental mode exhibits a very simple

deflection function, increasing monotonically with distance

from the clamp, the higher order modes contain nodes,

i.e., where the displacement is zero. This facilitates an

adjustment in the hydrodynamic pressure through a

change in the positions of these nodes, when the fluid load-

ing is strong. The dramatically different mode shapes,

relative to light fluid loading, then leads to a strong

change in the rescaled hydrodynamic function, asmall, for

K �Oð1Þ.

FIG. 3. Rescaled hydrodynamic func-

tions, asmall, for the first four resonant

modes (n¼ 1, 2, 3, 4) as a function of

the added mass parameter, K. (a), (b),

and (c) give results for the line clamp,

horizontal plate clamp, and vertical

wall clamp, respectively.

FIG. 4. Comparison of the rescaled

hydrodynamic function, asmall, for dif-

ferent clamping configurations. Results

given for the first three resonant modes

in (a), (b), and (c).
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3. Limit of high mode number

Despite the above-mentioned variations in the rescaled

hydrodynamic function for modes 2 and 3, Eq. (32) indicates

that the resonant frequency is insensitive to the clamping

configuration in the limit of high mode number, i.e., n 	 1.

This suggests that the influence of the clamp diminishes with

increasing n, with the exception of the singular case, n¼ 1.

Numerical results for the line clamp are given in Fig. 6,

which provides a comparison of the predictions of Eq. (32)

with numerical results in the limits of small and large K. The

large n asymptotic solution lies between the small and large K
results. As the mode number, n, increases, these upper and

lower values approach the large n solution; note that a loga-

rithmic vertical scale is used to highlight the relative differ-

ences. This verifies the above prediction that the fluid’s effect

on the rescaled hydrodynamic function diminishes with

increasing n. While the flow is strictly nonlocal, as discussed

in Section IV A 1, increasing mode number restricts the

domain in x over which this nonlocality applies. In the asymp-

totic limit of large n, the deflection functions are sinusoidal

with small wavelength relative to the cantilever length, L.

This ensures a strict local dependence of the pressure distribu-

tion on position, x.

The horizontal plate and vertical wall clamps also dis-

play convergence of the high and low K solutions, but this

occurs for larger n; see Section S2 of the supplementary

material.

4. Empirical fit function

To facilitate application in practice, the generated

numerical results for the rescaled hydrodynamic function are

fitted to the following empirical equation:

asmall ¼
a 0ð Þ

small þ a 1ð ÞsmallK
c

1þ Kc ; (35)

where the parameters að0Þsmall and að1Þsmall are the values of asmall

in the limits of small and large added mass parameter, K,

whereas c is determined using a nonlinear least squares fit for

each mode number and clamping configuration. Numerical

values for these parameters are listed in Table I. The error of

the resulting fit function, Eq. (35), relative to the calculated

numerical results using the theory in Section II, is also

provided.

B. Arbitrary aspect ratio

Equation (33) together with Eqs. (29) and (35) allow the

resonant frequencies of a cantilevered sheet of arbitrary

aspect ratio, L/b, to be calculated. Importantly, Eq. (33) is

derived by linking the results for small and large aspect ratio

using a matched asymptotic approach. It is therefore impor-

tant to examine and validate its accuracy. This is performed

here by comparing its prediction with rigorous finite element

FIG. 5. Normalized deflection func-

tions and pressure distributions for a

cantilevered sheet with a line clamp,

for the first three modes. In (a), (b),

and (c), deflection functions are given

for increasing added mass parameter,

K¼ 0, 1, and 100, corresponding to

vacuum, light, and heavy fluid load

conditions, respectively. In (d), (e),

and (f), pressure distributions are com-

pared for moderate and heavy fluid

loads, specifically when K¼ 1 and

K¼ 100, respectively.

FIG. 6. Rescaled hydrodynamic function, asmall, for a cantilevered sheet

with a line clamp as a function of mode number, n. The range that asmall

varies in response to increasing fluid load, K, is indicated by the vertical dis-

tance between the two open circles for each n. The large mode number

asymptotic result is the solid curve. A logarithmic scale is used for the verti-

cal axis to facilitate comparison.
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solutions of the complete fluid-structure problem for a canti-

lever of finite aspect ratio immersed in fluid.

The finite element solution is performed with the com-

mercial finite element software COMSOL Multiphysics,

using its eigenfrequency solver. Rather than implementing

the thin plate equation,30 the cantilevered sheet is modeled

using full three-dimensional solid elements. The surrounding

fluid is characterized by Eq. (1), which is expressed in terms

of the 3D velocity potential. At the interface between the

fluid and solid domains, the usual conditions of continuity of

stress, and no-penetration are imposed. This provides direct

coupling between Eq. (1) and Navier’s equation for the solid.

The cantilever’s thickness is systemically reduced to mimic

the infinitesimal thickness of the theoretical model presented

in Section II. A thickness-to-length ratio of 0.01 is used

throughout; see Section S3 of the supplementary material

which shows that finite thickness leads to an overestimation

of the hydrodynamic function.24,32 Far from the cantilever, a

zero fluid pressure condition is imposed. Only the vertical wall

clamp is studied here, because its impact on the cantilever’s

resonant frequency is greatest relative to the other clamps

studied. A Poisson’s ratio of 0.25 is used throughout.

Systematic mesh refinement is employed. The reported results

are independent of mesh and domain size, and are converged

to better than 99.9%.

Figure 7 presents a comparison of results for the

rescaled hydrodynamic function, a [see Eq. (34)], obtained

using finite element analysis and Eq. (33). The added mass

parameter, K [Eq. (20)], is varied to encompass fluid loading

strengths ranging from small to large. Also shown in Fig. 7

are the predictions of the previous solution of Lindholm3

CLindholm ¼ 1þ b

2L

� ��1

; (36)

which is derived for all aspect ratios, L/b, by extending the

empirical formula of Pabst2

CPabst ¼ 1� b

2L
;

L

b
> 1: (37)

The Pabst expression is formulated for aspect ratios, L/b,

greater than one only.

Importantly, the formulas of both Pabst and Lindholm

do not include any dependency on the clamping configura-

tion, mode number, or added mass parameter. This contrasts

to the present formula, Eq. (33), which is derived for all

aspect ratios and contains these dependencies.

The finite element results in Fig. 7 clearly demonstrate

the effect of the added mass parameter and mode number on

the rescaled hydrodynamic function. For mode 1, Eq. (33)

accurately captures the benchmark finite element solutions

for all added mass parameter values studied—here, the

hydrodynamic function is very weakly dependent on the

added mass parameter; see Fig. 7(a). While the Lindholm

formula, Eq. (36), works well in the high aspect ratio limit

(where it is formally exact), strong deviations relative to the

finite element solutions emerge as aspect ratio is reduced.

For small aspect ratios, the Lindholm formula strongly over-

estimates the hydrodynamic function (by a factor of �2).

Figure 7(b) shows corresponding results for mode 2,

where the present solution, Eq. (33), accurately captures the

TABLE I. Fit parameters for Eq. (35) and the maximum relative error this

formula exhibits for all K. Results given as a function of clamping configu-

ration and mode number, n.

Mode number, n að0Þsmall að1Þsmall c Error (%)

Horizontal plate clamp

1 0.680 0.687 0.974 0.1

2 0.693 0.415 0.981 3.2

3 0.355 0.259 0.847 2.6

4 0.250 0.183 0.833 1.8

5 0.182 0.143 0.781 1.9

6 0.148 0.117 0.776 1.5

7 0.120 0.0986 0.739 1.6

8 0.104 0.0852 0.737 1.4

9 0.0890 0.0752 0.706 1.4

10 0.0795 0.0669 0.698 1.3

Line clamp

1 0.565 0.569 0.939 0.1

2 0.507 0.357 0.949 3.1

3 0.282 0.234 0.756 3.0

4 0.200 0.171 0.698 2.5

5 0.152 0.135 0.605 2.2

6 0.124 0.111 0.573 1.9

7 0.104 0.0947 0.508 1.7

8 0.0895 0.0823 0.488 1.6

9 0.0785 0.0728 0.435 1.4

10 0.0702 0.0651 0.412 1.4

Vertical wall clamp

1 0.744 0.754 0.986 0.1

2 0.807 0.447 0.994 2.8

3 0.407 0.272 0.872 1.9

4 0.285 0.189 0.861 0.9

5 0.204 0.146 0.823 1.1

6 0.165 0.119 0.818 0.8

7 0.133 0.100 0.792 1.0

8 0.114 0.0863 0.789 0.8

9 0.0975 0.0761 0.769 0.9

10 0.0869 0.0676 0.760 0.8

FIG. 7. Rescaled hydrodynamic function, a, for the first two modes of a can-

tilevered sheet with a vertical wall clamp, as a function of the sheet’s aspect

ratio. Solid lines are due to Eq. (33) and open circles are the finite element

simulation results; dashed line is Lindholm’s empirical formula, Eq. (36),

which depends only on the aspect ratio. In (b) the fluid loading strength is

given for K¼ 0.1, 1, and 10, while in (a) only the results of K¼ 0.1 are

shown because varying K results in an indiscernible difference to the data

shown.
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dependence of a on the added mass parameter, K; this depen-

dency is no longer negligible, as it was for n¼ 1. The

Lindholm formula does not predict any dependence on the

added mass parameter, in stark disagreement with the finite

element results.

The Pabst formula, Eq. (37), exhibits similar behavior to

that of Lindholm (data not shown). This is entirely expected

because the latter is derived from the Pabst formula. We

refrain from presenting results for different clamping config-

urations because their behavior is comparable with those

given in Fig. 7 for the vertical wall clamp.

V. CONCLUSIONS

We have investigated the effect of fluid loading on the

flexural resonant frequencies of cantilevered sheets of arbi-

trary aspect ratio.

This was achieved by first using the formulation of

Atkinson and de Lara27 to study the effect of clamping con-

figuration on a (2D) infinitely wide cantilever sheet, i.e., the

zero aspect ratio limit. A strong dependence on clamping

configuration, added mass parameter, and mode number was

observed. A formula, Eq. (35), obtained by fitting the numer-

ical results, was presented for the rescaled hydrodynamic

function to facilitate application in practice.

The (2D) zero aspect ratio result was connected to

the well known solution of Chu19 for a cantilever of infinite

aspect ratio, using a match asymptotic approach. A simple

and universally valid formula resulted, Eq. (33) (to be used

with Eqs. (29) and (35)), which exhibits excellent agreement

with finite element analysis of cantilever sheets over all

aspect ratios. This analysis shows that previous formulas for

finite aspect ratio sheets can exhibit significant errors and do

not capture the required dependence on clamping configura-

tion, fluid loading strength, and mode number.

These results are expected to be of practical value in

engineering and device design, where cantilever structures

are frequently encountered.

SUPPLEMENTARY MATERIAL

See supplementary material for numerical results for

horizontal plate and vertical wall clamps that are analogous

to Figs. 5 and 6, and the effect of finite thickness.
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APPENDIX: DERIVATION OF PRESSURE
DISTRIBUTION

In this Appendix, we calculate the pressure distribution

on a vibrating cantilever of zero aspect ratio immersed in

fluid, for two distinct clamping configurations: (1) a line

clamp and (2) a vertical wall. This is achieved by determin-

ing the unknown function, f(s), in Eq. (5) for each clamping

configuration.

1. Line clamp

The boundary conditions for the flow field are given in

Eqs. (9) and (10). Using the principal branch in Eq. (7), the

velocity potential, /, in Eq. (5) at the cantilever surface

(z¼ 0) is

/jz¼06 ¼ 6p
ð1

x

f ðsÞ ds: (A1)

The zero pressure condition away from the cantilever,

Eq. (10), is then enforced giving

f ðsÞ ¼ 0; s < 0 [ s > 1; (A2)

and ð1

0

f ðsÞ ds ¼ 0: (A3)

Differentiating Eq. (5) with respect to z gives the fluid

velocity in the z-direction

@/
@z
¼
ð1

0

f sð Þ

x� sð Þ 1þ z

x� s

� �2
" # ds; (A4)

which can be evaluated at z¼ 0 to give an integral equation

relating f(s) to the normal velocity of the cantilever

v xð Þ ¼
ð1

0

f sð Þ
x� s

ds; 0 � x � 1; (A5)

where the singular integral is defined as a Cauchy principal

value. The general solution to this integral equation is33

f sð Þ ¼
1

p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 1� sð Þ

p ð1

0

v nð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 1� nð Þ

p
n� s

dnþ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 1� sð Þ

p ;

(A6)

where the constant C¼ 0 is specified by Eq. (A3).

Equations (A1) and (3) then give the required pressure

jump along the cantilever’s surface

Dp ¼ 2i

p

ð1

0

v nð Þlog

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þn

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nð Þx

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þn

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nð Þx

p ���� dn: (A7)

2. Vertical wall

To calculate the pressure distribution for a cantilevered

sheet clamped into a vertical wall, we reflect the cantilever

along the negative x-axis and remove the wall. This produces

an identical flow to the original problem with the origin at

the original clamp position.

The required boundary conditions for this equivalent

flow are specified on the entire line z¼ 0, which yields even

solutions (with respect to x) for the velocity field and

pressure

vðxÞ ¼ uzðxÞ ¼ uzð�xÞ; �1 � x � 1; (A8)
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Dp ¼ 0; jxj > 1: (A9)

The function f(s) to be solved is subject to

f ðsÞ ¼ 0; jsj > 1; (A10)

and ð1

�1

f ðsÞ ds ¼ 0: (A11)

Equations (A8) and (5) give the required integral equa-

tion for f(s)

v xð Þ ¼
ð1

�1

f sð Þ
x� s

ds; �1 � x � 1; (A12)

whose general solution is33

f sð Þ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p þ 2s

p2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p

ð1

0

v nð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
n2 � s2

dn; (A13)

where the constant A¼ 0 is determined from Eq. (A11).

This analysis gives the required pressure jump over

0� x� 1, for the original cantilever problem

Dp ¼ 4i

p

ð1

0

v nð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 1� n2
� �q ð1

x

s ds

n2 � s2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p dn:

(A14)
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