of 6
Optimal Sensor Hop S
elec tion: Sensor Ener gy
Minimization and
Network Lifetime Max imization with Guarantee d S
ystem
Per formance
Ling
Sh i
, Karl Henrik
Johanss on
and Richard M.
Murr ay
Abstract
In this paper
we c
onsider
state e
stimation carr ied
ov er
a sensor network. A fusion ce nter
forms a local multi-hop
tree
of sensors and
ga teway s and
fuses the data into a
state
estimate. It is s
hown that t he optimal estimator ov er
a sensor
tree
is given b
y a
Kalman fi
lter of cer
tain structure . The nu
mber
of hops that t he sensors use to comm
un
icate data with the fusion
ce nter
is optimize d such that either
the ov er all transmiss ion
ener gy
is minimize d
or the network
li fetime is max imize d.
In b
oth cases the fusion ce nter
prov ides a spec ified level of
estimation acc uracy. Some heuristic algo rithms are
proposed
which lead to sub
optimal solutions in the e
ner gy
minimization
problem, whil e an algo rithm
that leads to the global optimal
solution is proposed in the li fetime max imization p
roblem. In
both cases, the algo rithms are
shown to hav e low compu
tational
complexity. Exa mples are
prov ided to demonstrate the theory
and
algo rithms.
I. I
NTRODU
CTION
Wireless s ensor networks have a tt rac ted much att enti on in
the past few yea rs and this area of r esea rch b ring s tog ether
resea rchers fr om compu ter science , comm un ica ti on , con trol,
etc. [1]. A typ ica l wireless s ensor network con sists of a
large nu mber of sensor nod es, some gateway nod
es and
some base stati on s. Sensor nod es are usuall y b att ery po wered
and h ave li mit ed p roce ss ing ca pabiliti es. They interac t wit h
the phy sica l world and coll ec t i nformati on o f interest, e.g,
temperature, hu midit y, press ure, air densit y, etc. Depend ing
on the Media Acce ss Con trol (MAC) and rou ti ng p rotocols,
as well as the a vail able resou rce s (network b and width, nod e
energy , etc.), the c oll ec ted d ata a re transmitt ed to their final
desti nati on , usuall y a fusion ce nter, at app rop riate ti mes.
Sensor networks have a wide rang e of app li ca ti on s, includ ing
env iron ment and h abit at mon it oring , hea lt h ca re, ho me a nd
office a utomati on and traffic c on trol [2].
Alt hough
tremendou
s prog ress has bee n made in the past
few yea rs in making sensor network an enabli ng tec hno logy ,
many chall eng ing p rob lems remain to b e solved, e.g, network
topo logy
con trol and rou ti ng , coll abo rati ve sign al coll ec -
ti on and informati on p roce ss ing , and syn chron iza ti on [3].
In p arti cular any p rac ti ca l design must full y con sider the
con straints po sed by
the li mit ed p roce ss ing ca pabilit y and
energy supp ly o f eac h ind ividu al sensor.
: Con trol and Dyn amica l Systems, Cali fornia Instit ute of Tec hno logy ,
Pasadena, CA 91106
. Email:
{
shili ng , murr ay
}
@cds.ca lt ec h.edu .
: Schoo l of Elec trica l Eng inee ring , Roy al Instit ute of Tec hno logy ,
Stockho lm, Sweden. Email: kall ej@ee .kth.se.
Tel: (626 ) 395 -2313 , Fax: (626 ) 395 -6170 .
The work by
L. Shi and R. M. Murr ay is s uppo rted in p art by AFOSR
grant FA9550 -06 -1-0303 . The work by
K. H. Joh anss on was s uppo rted by
the Swedish Resea rch Coun cil and the Swedish Found ati on for Strategic
Resea rch.
FC
S
1
S
2
S
3
S
5
G
1
G
2
G
3
G
4
G
5
G
6
G
7
G
8
S
4
S
6
S
7
S
8
Fig. 1. Sensor Network wit h Gateways
We inv esti gated such con straints in [4] by look ing at
LQG con trol ov er a wireless s ensor network. We presented a
sensor tree rec on figu rati on algo rit hm to mee t a spec ified level
of con trol perf ormance in such a way that t he total energy
usage of the ac ti ve sensor nod es is minimize d. However,
when a sensor nod e is no t a lea f nod e, it no t on ly n ee ds to
send a mea surement data pac ket, bu t also n ee ds to rece ive,
agg regate a nd forward d ata pac kets fr om it s chil d nod
es.
The fac t t hat rece iving a pac ket costs con siderable a moun t
of energy [2], tog ether wit h the rece ntl y p ropo sed Wireless
HA RT protocol [5], moti vates the c urr ent work. In add iti on to
the set of sensor nod es
S
=
{
S
1
,

, S
q
}
con sidered in [4],
we a lso ass ume a set of gateway nod
es
G
=
{
G
1
,

, G
p
}
is
avail able (Fig. 1). Gateway nod
es are a lrea dy v ery popu
lar
in Wireless HA RT app li ca ti on s. These gateway nod
es ac t
as relay nod
es, i.e., they do no
t t ake a ny mea surements bu t
simply agg regate a nd forward any incoming d ata pac kets.
The gateways form the bac kbon
es of the network and exec ute
a kno wn rou ti ng p rotocol.
The main con tribu ti on o f this paper is that a c oll ec ti on o f
efficient algo rit hms are propo sed to d etermine which sensor
comm un ica tes to which g ateway in such a way that eit her
the total t ransmiss ion energy o f the sensors is minimize d o r
the network li feti me is maximize d. In bo th ca ses, a ce rtain
spec ified level of esti mati on acc urac y at t he fusion ce nter
is gu arantee d. When the network p ath for the sensor data
is op ti mize d, the resulti ng loca l sensor topo logy h
as the
structure of a tree for which the fusion ce nter is the roo t.
When the plant i s given by
a li nea r system, the op ti mal
esti mator is given by
a Kalman filt er wit h extra memory
Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008
WeA14.4
978-1-4244-3124-3/08/$25.00 ©2008 IEEE
2344
du e to the c omm un ica ti on d elays.
The rapid d evelop ments of wireless and sensor tec hno lo-
gies enable drasti c c hang e of the a rchit ec ture a nd embedd ed
intelli gence in these systems. The theory and d esign too ls for
these systems wit h spati all y and tempo rall y v arying con trol
demand s are no t well develop ed, bu t t here a re a lot of curr ent
resea rch.
One way to d ea l wit h the prob lem of asyn chronou
s
generati on o f sensor data is to u se e vent-trigg ered con trol
instea d o f conv enti on al ti me-trigg ered con trol [6], [7]. How
to efficientl y encod e c on trol i nformati on for event-trigg ered
con trol ov er comm un ica ti on chann els wit h severe band width
li mit ati on s is discuss ed in [8].
Kalman filt ering und
er ce rtain informati on con straints,
such as dece ntrali ze d implementati on , has bee n extensively
stud ied [9]. Implementati on s for which the c ompu tati on s
are distribu ted among n
etwork nod
es is con sidered in [10 ]–
[12 ]. Kalman filt ering ov
er loss y n etworks is con sidered in
[13 ], [14 ]. The interac ti on b
etwee n Kalman filt ering and
ho w data is rou ted on
a network see ms to b e less s tud ied.
Rou ti ng o
f data pac kets in n etworks are typ ica ll y don
e
based on
the distance to the rece iver nod e [15 ]. Some
rece nt work add ress es ho w to coup le data rou ti ng wit h
the sensing task u sing informati on theoreti c mea sures [16 ].
An h euristi c a lgo rit hm for event detec ti on and ac tuator
coo rdinati on is propo sed in [17 ]. For con trol ov er wireless
sensor networks, the e xp erience d d elays and p ac ket l oss es
are impo rtant parameters. Rando mize d rou ti ng p rotocols that
gives prob abili sti c gu arantee s on d elay and loss are propo sed
in [18 ], [19 ].
A robu st con trol app roac h to con trol ov er multi -hop n
et-
works is discuss ed in [20 ]. A general cross -layer app roac h
to con trol and d ata rou ti ng see ms to b e a n op en and rather
difficult t op ic du e to many p
rac ti ca l con straints. Our ap-
proac h is diff erent i n that we make the a ss umpti on that a
tree -structured sensor topo logy wit h ce rtain p rop erti es ca n
be sup erimpo sed on
the sensor network. The rou ti ng o
f
ind ividu al pac kets is no t con sidered, bu t i nstea d p aths are
dyn amica ll y establi shed b etwee n the sensor nod es and the
fusion ce nter.
The rest of the paper is organize d as foll ows. The e nergy
minimiza ti on and n etwork li feti me maximiza ti on p rob lems
are formulated in Sec ti on II . After the op ti mal esti mati on
for fixed nu mber of hop s betwee n the sensors and the fusion
ce nter is ob tained in Sec ti on III , algo rit hms are presented
to solve the e nergy minimiza ti on and the network li feti me
maximiza ti on p rob lems in Sec ti on IV and V respec ti vely. An
example is given in Sec ti on VI to d emon strate the theory and
algo rit hms develop ed in the paper. Con clud ing remarks and
future work are given in Sec ti on VII in the e nd .
II . P
ROBLE M
S
ET
-
UP
A. System and S
ensor Network Mod els
Con sider the foll owing LT I system who se state dyn amics
is given by
x
k
=
Ax
k
1
+
w
k
1
,
(1)
where
x
k
IR
n
is the state,
w
k
IR
n
is the proce ss no ise
which is whit e Gauss ian, ze ro-mea n and wit h cov ariance
matrix
Q
IR
n
×
n
, Q
0
.
A w ireless s ensor network is used to mea sure the state in
Eqn (1). The network con sists of a fusion ce nter, a set of
gateways
G
and a set of sensor nod es
S
. When
S
i
takes a
mea surement of the state in Eqn (1), it returns
y
i
k
=
H
i
x
k
+
v
i
k
,
(2)
where
y
i
k
IR
o
i
is the mea surement,
v
i
k
IR
o
i
is the
mea surement no ise which is whit e Gauss ian, ze ro-mea n
and wit h cov ariance matrix
Π
i
IR
o
i
×
o
i
,
Π
i
>
0
. The
sensor mea surements are sent t o the fusion ce nter via these
gateways. The fusion ce nter then p roce ss es the rece ived
mea surements and compu tes the op ti mal state e sti mate.
We suppo
se that t here is a non -ze ro sing le-hop comm u-
nica ti on d elay, which is s mall er than the sampli ng ti me of
the proce ss . All sensors are syn chron ize d in ti me, so the data
pac ket t ransmitt ed fr om
S
i
to the fusion ce nter is delayed on e
sample when compared wit h it s parent nod e. For example, in
Fig. 1,
G
3
is the parent nod e of
S
3
and the mea surement fr om
S
3
to fusion ce nter is delayed on e step compared wit h
S
1
. We
ass ume perf ec t data c omm un ica ti on s, i.e., we do no
t con sider
po ss ible data pac ket drop s introdu ce d by
the wireless li nk s.
B. Sensor Energy Cost Mod el
We a ss ume that t he gateways are e xternall y po wered whil e
the sensor nod es are batt ery po wered. Sensors s pend energy
in many ways, i.e., sensing , idle li stening , compu ti ng , pac ket
transmiss ion and rece pti on , etc. [2]. By app rop riately d esign -
ing the MAC protocol (such as TDMA), pac ket t ransmiss ion
do minates the total energy u sage. Define
e
i
as the e nergy
cost for
S
i
send ing a mea surement pac ket t o it s parent nod e,
which typ ica ll y g rows rapidly wit h the distance to it s parent
nod e
1
. Almost all t ransce ivers in sensor nod es no wadays
have a n adjustable transmiss ion po
wer, so wit hou t l oss of
generalit y, we a ss ume that
S
i
ca n send it s mea surements
to a sub set of the gateways or to fusion ce nter direc tl y by
adjusti ng it s transmiss ion po
wer.
C. Opti mal Hop S elec ti on Prob lem
Define the foll owing qu
antiti es at t he fusion ce nter.
ˆ
x
k
,
E
[
x
k
|
all measurements up to
k
]
,
P
k
,
E
[(
x
k
ˆ
x
k
)(
x
k
ˆ
x
k
)
]
,
P
,
li m
k
→∞
P
k
,
if the li mit exists
.
Deno te
τ
i
as the hop nu
mber betwee n
S
i
and fusion ce nter,
then the delay o f a mea surement fr om
S
i
to fusion ce nter
is
d
i
=
τ
i
1
. Wit hou t l oss of generalit y, we a ss ume the
transmiss ion energy
e
i
(
τ
i
)
is dec rea sing in
τ
i
. For example,
in Fig. 1,
S
6
ca n send it s mea surements to fusion ce nter,
G
1
, G
4
or
G
8
wit h corr espond
ing hop nu
mbers
1
,
2
,
3
or
4
1
An esti mate of
e
i
ca n b e be c ompu ted b ased on
the c on sidered wireless
tec hno logy . A comm on mod el i s that i f the distance betwee n
S
i
and the
rece iver is
d
i
, then
e
i
=
β
i
+
α
i
(
d
i
)
n
i
, where
β
i
represents the stati c part
of the e nergy con sumpti on and
α
i
(
d
i
)
n
i
the dyn amic part. The path loss
expon ent
n
i
is typ ica ll y b etwee n 2 and 6 .
47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008
WeA14.4
2345
and wit h d ec rea sing transmiss ion energy . On the other hand ,
the stea dy state e rr or cov ariance
P
grows wit h increa sing
delays of the mea surements. Hence there is an app arent
tradeoff betwee n
τ
i
and
P
. Let us define the
network
lif eti me
to b e the maximum ti me before a ny on
e of the
sensors s top s working du
e to insufficient energy supp ly, and
we c on sider the foll owing op
ti miza ti on p rob lems
Prob lem 2.1:
(Sensor Energy Minimiza ti on )
min
(
τ
1
,

q
)
q
i
=1
e
i
(
τ
i
)
sub jec t t o
P
(
τ
1
,

, τ
q
)
P
desired
1
τ
i
m
i
, i
= 1
,

, q.
Prob lem 2.2:
(Network Lifeti me Maximiza ti on )
max
(
τ
1
,

q
)
min
i
E
i
e
i
(
τ
i
)
sub jec t t o
P
(
τ
1
,

, τ
q
)
P
desired
1
τ
i
m
i
, i
= 1
,

, q,
where
m
i
is the upp er bound o
f the maximum nu mber of
hop s betwee n
S
i
and the fusion ce nter, and
E
i
is the initi al
energy level of
S
i
.
Intuiti vely, the total t ransmiss ion energy o f the sensors
is minimize d in Prob lem 2.1 and the network li feti me is
maximize d in Prob lem 2.2. The first prob lem is moti vated
fr om the ca se where the diff erence betwee n sensor energy
levels is s mall , and the sec ond on
e is moti vated fr om the
ca se when the diff erence is large. For bo th p rob lems, the
variables that t he ob jec ti ve fun cti on is op ti mize d ov er are
the hop nu
mbers betwee n
S
i
’s and fusion ce nter. We will
present soluti on s to bo th p rob lems in the next few sec ti on s.
III . O
PTIMAL
E
STIMATION FOR
F
IXED
τ
i
In o rder to solve Prob lems 2.1 and 2 .2, we nee d to evaluate
P
(
τ
1
,

, τ
q
)
given
(
τ
1
,

, τ
q
)
so as to find the fea sible
set t o the prob lems. Let
S
i
j
be a nod e that i s
j
hop s away
fr om fusion ce nter and for
X
IR
n
×
n
, X
0
, define
τ
min
,
min
{
τ
1
,

, τ
q
}
τ
max
,
max
{
τ
1
,

, τ
q
}
Γ
j
,
[
H
1
j
;
H
2
j
;

]
, j
=
τ
min
,

, τ
max
C
i
,
1
;

; Γ
i
]
, i
=
τ
min
,

, τ
max
Υ
j
,
diag
{
Π
1
j
,
Π
2
j
,

}
, j
=
τ
min
,

, τ
max
R
i
,
diag
{
Υ
1
,

,
Υ
i
}
, i
=
τ
min
,

, τ
max
h
(
X
)
,
AXA
+
Q,
g
C
i
(
X
)
,
AXA
+
Q
AXC
i
[
C
i
XC
i
+
R
i
]
1
C
i
XA
.
Further define
Y
k
i
+1
k
as all mea surements avail able a t t he
fusion ce nter f or ti me
k
i
+1
at ti me
k, i
=
τ
min
,

, τ
max
.
For example, in Fig. 1,
τ
min
= 1
, τ
max
= 4
and
Y
k
k
=
{
y
1
k
}
,
Y
k
1
k
=
{
y
1
k
1
, y
2
k
1
, y
3
k
1
, y
4
k
1
}
,
Y
k
2
k
=
{
y
1
k
2
, y
2
k
2
, y
3
k
2
, y
4
k
2
, y
6
k
2
}
.
Wit h these definiti on s, we have the foll owing theorem
which sho ws ho w w e ca n ob tain the c losed form soluti on
to
P
(
τ
1
,

, τ
q
)
.
Theorem 3.1:
Given
(
τ
1
,

, τ
q
)
,
ˆ
x
k
and
P
k
ca n b e c om-
pu ted as
ˆ
x
k
=
A
τ
min
1
x
k
τ
min
+1
)
P
k
=
h
τ
min
1
(
P
k
τ
min
+1
)
and
x
k
i
+1
, P
k
i
+1
) =
KF
x
k
i
, P
k
i
,
Y
k
i
+1
k
, C
i
, Q, R
i
)
where
i
=
τ
min
,

, τ
max
and
KF
deno tes the stand ard
Kalman filt er. If the li mit s exists,
P
sati sfies
P
=
h
τ
min
1
(
P
P
C
τ
min
Σ
1
C
τ
min
P
)
(3)
where
Σ =
C
τ
min
P
C
τ
min
+
R
τ
min
P
=
g
C
τ
min
+1

g
C
τ
max
1
(
̄
P
)
and
̄
P
is the un iqu e soluti on to
g
C
τ
max
(
̄
P
) =
̄
P
.
Proo f:
Simil ar to the proo f f or Theorem 4.1 in [4].
IV. O
PTIMAL
H
OP
S
ELE
CTION
: M
INIMIZING
T
OTAL
E
NERGY
In this s ec ti on , we prov ide soluti on to Prob lem 2.1.
When
q
and
m
i
’s are small , we ca n find the glob al op ti mal
soluti on to Prob lem 2.1 v ia the foll owing algo rit hm.
Globa l Opti mal Search Algo rit hm
1 :
For eac h
i
= 1
,

, q
for eac h
τ
i
= 1
,

, m
i
if
P
(
τ
1
,

, τ
i
)
P
desired
,
rec ord
(
τ
1
,

, τ
q
)
as well as
q
i
=1
e
i
(
τ
i
)
.
2 :
Return arg
min
q
i
=1
e
i
(
τ
i
)
.
App arentl y, the
Globa l Opti mal Search Algo rit hm
takes
ti me
O
(
q
i
=1
m
i
)
. For large
q
i
=1
m
i
, it t hen b ec omes
very inefficient, therefore we propo se some loca l sea rch
algo rit hms to app rox imate the op ti mal soluti on . Before we
present some c lass ica l l oca l sea rch algo rit hms, we prov ide
ano ther efficient algo rit hm. It i s also simpler to implement
than most l oca l sea rch algo rit hms [21 ].
The a lgo rit hm we propo se is
Gree dy Efficiency Search
Algo rit hm
. For simpli cit y, let us define
E
(
τ
) =
q
i
=1
e
i
(
τ
i
)
as the total energy cost given
τ
. We a lso writ e
E
(
τ
)
as
E
(
τ
i
, τ
i
)
when we look at t he hop nu
mber of
S
i
.
Gree dy Efficiency Search Algo rit hm
1 :
τ
i
:= 1
, i
= 1
,

, q
2 :
For eac h
i
, if
P
(
τ
i
, τ
i
+ 1)
P
desired
compu te
∆(
i
) =
E
i
P
i
where
E
i
=
E
(
τ
i
, τ
i
)
E
(
τ
i
, τ
i
+ 1)
P
i
=
P
(
τ
i
, τ
i
+ 1)
P
(
τ
i
, τ
i
)
3 :
Let
s
=
arg
max ∆(
i
)
. Upd ate
τ
s
:=
τ
s
+ 1
.
4 :
Repea t Step 2 un
til t he incremental dec rea se of the
total energy is wit hin a ce rtain thresho ld.
47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008
WeA14.4
2346
Remark 4.1:
It i s ea sy to v erify that t he soluti on fr om
the
Gree dy Efficiency Search Algo rit hm
always s ati sfies the
acc urac y con straint. And in every it erati on , the total energy
dec rea ses. It i s also ea sy to no te that i f at ce rtain it erati on ,
the glob al op ti mal soluti on is ac hieved, then the a lgo rit hm
stop s and returns that op ti mal soluti on .
We prov ide a no ther two class ica l sea rch algo rit hms, i.e.,
the
Rando
mized Gree dy Search
and the
TAB U Search
, and
we c ompare the perf ormance s of the three a lgo rit hms in
Sec ti on VI.
Define
N
(
τ
)
as the neighbo
rhood
soluti on s of
τ
. The size
of
N
(
τ
)
determines the ti me c omplexit y and the op ti malit y
of the soluti on . App arentl y, we nee d to p ick up
N
(
τ
)
of
rea son able size . For instance , we define
N
(
τ
) =
{
τ
: 1
τ
i
m
i
,
|
τ
i
τ
i
|
1
}
as the neighbo
rhood
soluti on s for the e xample in Sec ti on VI.
In the e xtreme ca se, if
N
(
τ
) =
{
τ
: 1
τ
i
m
i
}
, then
the
Rando
mized Gree dy Search a lgo rit hm
is the same a s
the
Globa l Opti mal Search Algo rit hm
. The multi ple see ds
version o f the
Rando
mized Gree dy Search a lgo rit hm
run s
by exec uti ng the on e see d v ersion a few ti mes. Let
E
(
t
)
deno tes the op ti mal soluti on found
at eac h ti me
t
. The the
minimum of
E
(
t
)
and the c orr espond
ing
τ
(
t
)
is returned.
Rando
mized Gree dy Search: One See d
1 :
τ
is rando mly d etermined.
E
:=
E
(
τ
)
.
2 :
Whil e (stop crit erion is no t met)
generate
N
(
τ
)
for eac h
τ
N
(
τ
)
- if
E
(
τ
)
<
E
τ
:=
τ,
E
:=
E
(
τ
)
As we ca n see ,
Rando
mized Gree dy Search
algo rit hm uses
a fixed structure of neighbo
rhood
soluti on s
N
(
τ
)
at eac h
it erati on . The
TAB U Search
algo rit hm [22 ], [23 ], on the other
hand , uses a dyn amic structure of neighbo
rhood
soluti on s. It
maintains a memory structure: on ce a
po tenti al soluti on is
visit ed, it i s marked as “taboo ” a nd is inserted into a tabu
li st,
T
, so that t he a lgo rit hm do es no t visit t hat soluti on
repea tedly. The leng th o f
T
, the size of
N
(
τ
)
, as well as
the initi al soluti on aff ec t t he perf ormance of the a lgo rit hm.
There a re variou s version s of
TAB U Search
algo rit hms, and
we c on sider on e version b elow.
TAB U Search
1 :
Selec t an initi al
τ
.
τ
:=
τ
,
E
:=
E
(
τ
)
. Set t he
it erati on coun ter
t
:= 0
and b egin wit h
T
empty.
2 :
Generate
N
(
τ
)
.
If
N
(
τ
)
T
is empty, go to Step 4 .
Otherwise, set
t
:=
t
+ 1
and selec t
s
k
(
τ
)
N
(
τ
)
T
which h as
min
E
(
s
k
(
τ
)
)
.
3 :
Let
τ
:=
s
k
(
τ
)
. If
E
(
τ
)
<
E
, let
τ
:=
τ
.
4 :
If a c ho sen nu mber of it erati on s has elapsed eit her
in total or since
τ
was last upd ated, or if
N
(
τ
)
T
=
upon
reac hing this s tep d irec tl y
fr om Step 2 , stop ; Otherwise, insert
τ
into
T
and d elete the oldest entry in
T
if it i s full .
Return to Step 2 .
V. O
PTIMAL
H
OP
S
ELE
CTION
: M
AX IMIZING
L
IFET IME
In this s ec ti on , we study Prob lem 2.2. Unli ke Prob lem 2.1,
where the glob al op ti mal soluti on ca nno t be found
efficientl y
in g eneral, glob al op ti mal soluti on to Prob lem 2.2 ca n b e
solved v ery efficientl y v ia the foll owing algo rit hm.
Max Lif eti me Search Algo rit hm
1 :
c
:= 1
2 :
For
i
= 1
,

, q
let
τ
i
[
c
] = min
{
τ
i
:
e
i
(
τ
i
)
E
i
c
}
if
τ
i
[
c
]
> m
i
, go to Step 4 .
3 :
If
P
(
τ
1
[
c
]
,

, τ
q
[
c
])
P
desired
τ
i
=
τ
i
[
c
]
c
:=
c
+ 1
; go to Step 2 .
else go to Step 4 .
4 :
Return
τ
.
Define
l
as the maximum network li feti me, i.e.,
l
= max
(
τ
1
,

q
)
min
i
E
i
e
i
(
τ
i
)
.
Theorem 5.1:
The
Max Lif eti me Search Algo rit hm
returns
the op ti mal
τ
and
l
=
c
1
when the a lgo rit hm stop s.
Proo f:
Let
τ
be the op ti mal soluti on corr espond
ing to
l
.
We divide the proo f into two p arts.
1) For any
c < l
,
P
(
τ
1
[
c
]
,

, τ
q
[
c
])
P
desired
,
and
τ
i
[
c
]
m
i
for all
i
= 1
,

, q
.
2) For any
c > l
, eit her
P
(
τ
1
[
c
]
,

, τ
q
[
c
])

P
desired
or there e xists at l ea st on e
S
i
such that
τ
i
[
c
]
> m
i
.
Once these two p arts are prov ed, the op ti malit y o f the
algo rit hm foll ows as the a lgo rit hm stop s exac tl y at
c
=
l
+1
.
Proo f f or part 1): Since
l
is op ti mal,
τ
i
[
l
]
m
i
for all
i
= 1
,

, m
i
, and
τ
must be fea sible, i.e.,
P
(
τ
1
[
l
]
,

, τ
q
[
l
])
P
desired
.
Hence for any
c < l
,
τ
i
[
c
] = min
{
τ
i
:
e
i
(
τ
i
)
E
i
c
}
min
{
τ
i
:
e
i
(
τ
i
)
E
i
l
}
=
τ
i
[
l
]
m
i
.
The first i nequ alit y ho lds as
e
i
(
τ
i
)
is dec rea sing in
τ
i
. From
Lemm a 1.1 in App end ix ,
P
(
τ
1
[
c
]
,

, τ
q
[
c
])
P
(
τ
1
[
c
+ 1]
,

, τ
q
[
c
])
.
.
.
P
(
τ
1
[
l
]
,

, τ
q
[
c
])
.
.
.
P
(
τ
1
[
l
]
,

, τ
q
[
l
])
P
desired
47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008
WeA14.4
2347
0
100
200
300
400
500
−4
−2
0
2
4
6
k
x
k
T_0\S_3
true state
estimate
0
100
200
300
400
500
−4
−2
0
2
4
6
k
T0 −> T1 −> T2 −> T0
true state
estimate
0
100
200
300
400
500
−5
0
5
k
e
k
0
100
200
300
400
500
−5
0
5
k
e
k
Fig. 2. Dyn amic Sensor Selec ti on
which completes the proo f f or part 1).
Proo f f or Part 2): If
c > l
and
P
(
τ
1
[
c
]
,

, τ
q
[
c
])
P
desired
and
τ
i
[
c
]
m
i
for all
S
i
, then
τ
[
c
]
is a fea sible soluti on and
c > l
violates the op ti malit y ass umpti on o f
l
.
VI. E
XA MPLE
In this s ec ti on , we c on sider an example to d emon strate
the a lgo rit hms develop ed so far. As the
Max Lif eti me Search
Algo rit hm
returns the op ti mal soluti on , we focus on the
algo rit hms for the e nergy minimiza ti on p rob lem presented
in Sec ti on IV.
We c on sider the foll owing system and sensor mod els.
x
k
= 0
.
9
x
k
1
+
w
k
1
y
i
k
=
x
k
+
v
i
k
, i
= 1
,
2
,
3
.
The foll owing p arameters are used throughou
t t his s ec ti on .
Q
= 0
.
5
,
Π
1
= Π
2
= Π
3
= 0
.
5
e
1
(
τ
1
) = [5 3
.
8 2
.
6 1
.
5 1 0
.
4 0
.
1 0
.
08 ]
e
2
(
τ
2
) = [5
.
0 4 2
.
8 1
.
8 1
.
2 0
.
5 0
.
15 0
.
12 ]
e
3
(
τ
3
) = [4
.
5 3
.
3 2
.
1 1
.
2 0
.
5 0
.
24 0
.
05 0
.
04 ]
Ass ume the foll owing p erf ormance spec ifica ti on is rece ived
at t he fusion ce nter:
P
1
,
1
k
100
,
P
0
.
25
,
101
k
200
,
P
1
.
5
,
201
k
300
,
P
1
,
301
k
500
.
Define
γ
as
the nu mber of f easible soluti on s tha t each
algo rit hm visit s
du ring it s exec uti on . Table I- III
sho w the
result s when we run the diff erent algo rit hms corr espond
ing
to d iff erent
P
desired
. Since in this example,
3
i
=1
m
i
= 512
,
we a re a ble to compu te the glob al op ti mal soluti on v
ia
exh austi ve sea rch.
When
P
desired
= 0
.
25
, the
Gree dy Efficiency Search
is
the best among all t hree a lgo rit hms which is also the same
TABLE I
P
DESIRED
= 0
.
25
Algo rit hms
τ
1
τ
2
τ
3
E
(
τ
)
P
γ
Glob al Opti mal
8
1
1
9.58
0.1802
512
Gree dy Sea rch
1
1
8
10 .04
0.1802
24
Gree dy Efficiency
8
1
1
9.58
0.1802
26
TABU Sea rch
1
1
8
10 .04
0.1802
88
TABLE II
P
DESIRED
= 1
Algo rit hms
τ
1
τ
2
τ
3
E
(
τ
)
P
γ
Glob al Opti mal
8
8
2
3.5
0.7419
512
Gree dy Sea rch
8
8
2
3.5
0.7419
136
Gree dy Efficiency
8
2
8
4.12
0.7419
48
TABU Sea rch
8
8
2
3.5
0.7419
182
as the glob al op ti mal soluti on , as s ho wn in Table I. It also
visit s the lea st nu mber of f ea sible soluti on s before returning
the op ti mal soluti on . When
P
desired
= 1
, bo th
Rando
mized
Gree dy Search
and
TAB U Search
return the op ti mal soluti on
and are bett er than
Gree dy Efficiency Search
, bu t at t he
price of visiti ng much more fea sible soluti on s. When we
further increa se
P
desired
to b e 1.5, neit her algo rit hm return the
op ti mal soluti on and the
Gree dy Efficiency Search
algo rit hm
still visit s the lea st nu mber of f ea sible soluti on s.
In p rac ti ce , we ca n run the three a lgo rit hms and take the
best soluti on o f them. Fig. 2 sho ws the simulati on result
of esti mati ng
x
k
using the e sti mati on scheme presented in
Theorem 3.1. The left hand figu res demon strate the result
when a fixed topo logy is used (
τ
= [8 8 2
]
) in which ca se,
P
= 0
.
7419
and a c on stant energy con sumpti on o f 3.5
un it s per ti me is requ ired. The righ t hand figu res s ho w that
the dyn amic hop selec ti on is used to adapt t o p erf ormance
spec ifica ti on . As we ca n see , du ring
101
k
200
, a new
topo logy is used (
τ
= [8 1 1
]
) and the e nergy con sumpti on
is increa sed to 9 .58 un
it s per ti me, ho wever,
P
redu ce s to
0.1802
which sati sfies the perf ormance spec ifica ti on . Simi-
larly
P
is requ ired to b e less than 1 .5 when
201
k
300
,
a diff erent sensor topo logy (
τ
= [4 8 8
]
) is adop ted which
on ly requ ires 1.66 un
it s energy con sumpti on p er ti me.
By dyn
amica ll y d etermine the sensor hop nu
mbers, we
ca n therefore minimize the sensor energy con sumpti on as
much as po ss ible yet still gu arantee a
spec ified level of
perf ormance .
TABLE III
P
DESIRED
= 1
.
5
Algo rit hms
τ
1
τ
2
τ
3
E
(
τ
)
P
γ
Glob al Opti mal
8
8
4
1.4
1.3918
512
Gree dy Sea rch
4
8
8
1.66
1.3918
155
Gree dy Efficiency
8
4
8
1.92
1.3918
54
TABU Sea rch
4
8
8
1.66
1.3918
182
47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008
WeA14.4
2348
G
1
G
2
G
3
FC
S
1
S
2
G
1
G
2
G
3
FC
S
1
S
2
Fig. 3.
τ
2
τ
2
+ 1
VII . C
ON CLUSION AND
F
UTURE
W
ORK
In this paper, we have c on sidered the op ti mal sensor
hop selec ti on p rob lem for state e sti mati on ov
er a wireless
sensor network. Efficient algo rit hms are propo sed to solve
the e nergy minimiza ti on and n etwork li feti me maximiza ti on
prob lems. For bo th p rob lems, a ce rtain spec ified level of
system perf ormance is gu arantee d.
There a re a few extension s of the c urr ent work that we
will pu rsue in the future which includ e c losing the loop
based on
the e sti mati on scheme; exp erimentall y evaluate the
algo rit hms develop ed in the paper; con sider pac ket drop s
iss ues in the c omm un ica ti on li nk which is often see n du e to
the nature of wireless comm un ica ti on s.
Ack no wledg ement:
The a utho rs wou ld li ke to thank Profes-
sor Mikae l Joh anss on at KTH for discuss ion s of the variou s
loca l sea rch method s.
A
PP END IX
Lemm a 1 .1:
For any
1
i
q
,
P
([
τ
1
,

, τ
i
,

, τ
q
])
P
([
τ
1
,

, τ
i
+ 1
,

, τ
q
])
.
Proo f:
We give a proo f f or the foll owing ca se (Fig. 3).
The e xtension to g eneral ca se is s traigh tforward. From The-
orem 3.1,
P
([
τ
1
= 2
, τ
2
= 3]) =
h
(
̃
g
(
̄
P
)
)
where
̃
g
(
X
) =
X
XH
2
[
H
2
XH
2
+ Π
2
]
1
H
2
X
and
̄
P
sati sfies
g
[
H
1
;
H
2
]
(
̄
P
) =
̄
P
. Simil arly,
P
([
τ
1
= 2
, τ
2
= 4]) =
h
(
̃
g
(
P
)
)
where
P
=
g
H
2
(
̄
P
)
. Therefore
P
([
τ
1
= 2
, τ
2
= 4])
=
h
(
̃
g
(
g
H
2
(
̄
P
)
)
)
h
(
̃
g
(
g
[
H
1
;
H
2
]
(
̄
P
)
)
)
=
h
(
̃
g
(
̄
P
)
)
=
P
([
τ
1
= 2
, τ
2
= 3])
where the inequ alit y foll ows fr om Lemm a 1.2.
Lemm a 1 .2:
For any
X
Y
0
, the foll owing ho
lds
1)
h
(
X
)
h
(
Y
)
and
̃
g
(
X
)
̃
g
(
Y
)
.
2)
g
[
H
1
;
H
2
]
(
X
)
g
H
2
(
X
)
.
Proo f:
For proo f of part 1), see [13 ]. For proo f of part
2), see [4].
R
EFERENCES
[1] D. Cull er, D. Estrin, and M. Srivastava, “Overview of wireless s ensor
networks,”
IEEE
Compu ter, Sp ec ial Iss ue in S ensor Networks
, Aug
2004 .
[2] N. P. M. (Ed.),
Sensor Networks and Configu
rati on
. Spring er, 2007 .
[3] C.-Y. Chong
and S. P. Kumar, “Sensor networks: Evo luti on , oppo rtu-
niti es, and chall eng es,”
Procee ding s of t he IEEE
, vo l. 91 , no . 8, Aug
2003 .
[4] L. Shi, K. H. Joh anss on , and R. M. Murr ay, “Chang e sensor topo logy
when n ee ded: How to efficientl y u se system resou rce s in con trol and
esti mati on ov
er wireless networks.” Procee ding s of the 46 th IEEE
Con ference on Dec ision and Con trol, New O rlea ns, Dec 2007 .
[5] htt p:// www
.hartcomm 2.org.
[6] H. Kop etz, “Shou ld respon sive systems be e vent t rigg ered o r ti me
trigg ered?”
IEICE Tran s. on Informati on and S
ystems
, vo l. E76 -D(10 ),
pp . 1525–1532
, 1993 .
[7] K. J.
̊
Astr ̈om and B. Bernh ardss on , “Comparison o f period ic a nd event
based sampli ng for first-order stochasti c systems,” vo l. J. In Preprints
14 th World Cong ress of I FAC, Beiji ng , P.R. China, pp . 301–306
.
[8] L. Bao, M. Skog lund , and K. H. Joh anss on , “Encod er–d ec od er de-
sign for event-trigg ered fee db ac k con trol ov er band li mit ed chann els.”
America n Con trol Con ference , Minn ea po li s, Minn esota, USA, 2006 .
[9] D. Silj ak,
Large-Scale Dyna mic Systems: Stab ilit y and S
tructure
.
North-Holl and , New Y ork, 1978 .
[10 ] P. Alrikss on and A. Rantze r, “Distribu ted k alman filt ering u
sing
weigh ted averaging .” Proc. 17 th Internati on al Sympo sium on Math-
emati ca l Theory o f Networks and Systems, Kyo to, Japan, 2006 .
[11 ] R. Olfati -Saber, “Distribu ted k alman filt er wit h embedd ed con sensus
filt ers.” Procee ding s of the 44 th IEEE
Con ference on Dec ision and
Con trol and Europ ea n Con trol Con ference , 2005 .
[12 ] D. Spano s, R. Olfati -Saber, and R. M. Murr ay, “Distribu ted k alman
filt ering in sensor networks wit h qu anti fiable perf ormance .” Procee d-
ing s of the 4th Internati on al Con ference on Informati on Proce ss ing in
Sensor Networks, 2005 .
[13 ] B.Sinopo li , L.Schenato, M.France schetti , K.Poo ll a, M.Jordan, and
S.Sastry, “Kalman filt ering wit h intermitt ent ob servati on s,”
IEEE
Tran sacti on s on Automati c Con trol
, vo l. 49 , no . 9, pp . 1453–1464
,
2004 .
[14 ] J. Hespanh a, P. Nagh shtabrizi, and Y. Xu, “Networked con trol systems:
Analysis and d esign ,”
To app
ear in the Proc. of IEEE , Sp ec ial Iss ue
on Networke d Con trol Systems
, 2007 .
[15 ] D. P. Bertsekas and R. Gall ager,
Data Networks
, 2nd ed. Prenti ce
Hall , 1991 .
[16 ] F. Z. Juan Liu and D. Petrov ic, “Informati on -direc ted rou ti ng in ad
ho c sensor networks,”
IEEE
JOU RNAL ON SELECTED AREA
S IN
COMM UNICATIONS
, vo l. 23 , no . 4, April 2005 .
[17 ] E. Ngai, M. Lyu , and J. Liu, “A rea l-ti me c omm un ica ti on fr amework
for wireless s ensor- ac tuator networks.” Aerospace Con ference , 2006
IEEE , 2006 .
[18 ] A. Bon ivento, C. Fischion e, and A. Sang iov ann i-Vince ntelli , “Ran-
do mize d p rotocol stac k for ub iqu it ou s networks in indoo r env iron -
ment,”
IEEE
CCNC
, vo l. 1, April 2006 .
[19 ] W. Lai and I. C. Paschali dis, “Rou ti ng through no
ise a nd slee ping
nod es in sensor networks: l atency v s. energy trade-off s.” Procee ding s
of the 45 th IEEE
Con ference on Dec ision and Con trol, San Diego , CA,
USA, Dec 2006 , pp . 551 – 555
.
[20 ] A. Panou sopou lou , G. Niko lakopou
los, A. Tze s, and J. Lyg eros, “Ex-
perimental evaluati on o f a mob il e a d-ho c networked (manet)con troll ed
system.”
Proc. 17 th Internati on al Sympo sium on Mathemati ca l
Theory o f Networks and Systems, Kyo to, Japan, 2006 .
[21 ] C. Blum and A. Roli , “Metaheuristi cs in combinatorial op ti miza ti on :
Overview and con ce ptual comparison ,”
ACM Compu ti ng Su
rvey s
,
vo l. 35 , no . 3, pp . 268–308
, September 2003 .
[22 ] F. Glov er, “Tabu sea rch - part i ,”
ORSA Jou rna l on Compu ti ng
, vo l. 1,
pp . 190–206
, Summ er 1989 .
[23 ] —— , “Tabu sea rch - part ii ,”
ORSA Jou rna l on Compu ti ng
, vo l. 2,
pp . 4–32 , Winter 1990 .
47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008
WeA14.4
2349