of 8
Study of
CP
Asymmetry in
B
0
-
̄
B
0
Mixing with Inclusive Dilepton Events
J. P. Lees,
1
V. Poireau,
1
V. Tisserand,
1
E. Grauges,
2
A. Palano,
3a,3b
G. Eigen,
4
B. Stugu,
4
D. N. Brown,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
M. J. Lee,
5
G. Lynch,
5
H. Koch,
6
T. Schroeder,
6
C. Hearty,
7
T. S. Mattison,
7
J. A. McKenna,
7
R. Y. So,
7
A. Khan,
8
V. E. Blinov,
9a,9b,9c
A. R. Buzykaev,
9a
V. P. Druzhinin,
9a,9b
V. B. Golubev,
9a,9b
E. A. Kravchenko,
9a,9b
A. P. Onuchin,
9a,9b,9c
S. I. Serednyakov,
9a,9b
Yu. I. Skovpen,
9a,9b
E. P. Solodov,
9a,9b
K. Yu. Todyshev,
9a,9b
A. J. Lankford,
10
M. Mandelkern,
10
B. Dey,
11
J. W. Gary,
11
O. Long,
11
C. Campagnari,
12
M. Franco Sevilla,
12
T. M. Hong,
12
D. Kovalskyi,
12
J. D. Richman,
12
C. A. West,
12
A. M. Eisner,
13
W. S. Lockman,
13
W. Panduro Vazquez,
13
B. A. Schumm,
13
A. Seiden,
13
D. S. Chao,
14
C. H. Cheng,
14
B. Echenard,
14
K. T. Flood,
14
D. G. Hitlin,
14
T. S. Miyashita,
14
P. Ongmongkolkul,
14
F. C. Porter,
14
M. Röhrken,
14
R. Andreassen,
15
Z. Huard,
15
B. T. Meadows,
15
B. G. Pushpawela,
15
M. D. Sokoloff,
15
L. Sun,
15
P. C. Bloom,
16
W. T. Ford,
16
A. Gaz,
16
J. G. Smith,
16
S. R. Wagner,
16
R. Ayad,
17
,a
W. H. Toki,
17
B. Spaan,
18
D. Bernard,
19
M. Verderi,
19
S. Playfer,
20
D. Bettoni,
21a
C. Bozzi,
21a
R. Calabrese,
21a,21b
G. Cibinetto,
21a,21b
E. Fioravanti,
21a,21b
I. Garzia,
21a,21b
E. Luppi,
21a,21b
L. Piemontese,
21a
V. Santoro,
21a
A. Calcaterra,
22
R. de Sangro,
22
G. Finocchiaro,
22
S. Martellotti,
22
P. Patteri,
22
I. M. Peruzzi,
22
,b
M. Piccolo,
22
M. Rama,
22
A. Zallo,
22
R. Contri,
23a,23b
M. Lo Vetere,
23a,23b
M. R. Monge,
23a,23b
S. Passaggio,
23a
C. Patrignani,
23a,23b
E. Robutti,
23a
B. Bhuyan,
24
V. Prasad,
24
A. Adametz,
25
U. Uwer,
25
H. M. Lacker,
26
P. D. Dauncey,
27
U. Mallik,
28
C. Chen,
29
J. Cochran,
29
S. Prell,
29
H. Ahmed,
30
A. V. Gritsan,
31
N. Arnaud,
32
M. Davier,
32
D. Derkach,
32
G. Grosdidier,
32
F. Le Diberder,
32
A. M. Lutz,
32
B. Malaescu,
32
,c
P. Roudeau,
32
A. Stocchi,
32
G. Wormser,
32
D. J. Lange,
33
D. M. Wright,
33
J. P. Coleman,
34
J. R. Fry,
34
E. Gabathuler,
34
D. E. Hutchcroft,
34
D. J. Payne,
34
C. Touramanis,
34
A. J. Bevan,
35
F. Di Lodovico,
35
R. Sacco,
35
G. Cowan,
36
J. Bougher,
37
D. N. Brown,
37
C. L. Davis,
37
A. G. Denig,
38
M. Fritsch,
38
W. Gradl,
38
K. Griessinger,
38
A. Hafner,
38
K. R. Schubert,
38
R. J. Barlow,
39
,d
G. D. Lafferty,
39
R. Cenci,
40
B. Hamilton,
40
A. Jawahery,
40
D. A. Roberts,
40
R. Cowan,
41
G. Sciolla,
41
R. Cheaib,
42
P. M. Patel,
42
,e
S. H. Robertson,
42
N. Neri,
43a
F. Palombo,
43a,43b
L. Cremaldi,
44
R. Godang,
44
,f
P. Sonnek,
44
D. J. Summers,
44
M. Simard,
45
P. Taras,
45
G. De Nardo,
46a,46b
G. Onorato,
46a,46b
C. Sciacca,
46a,46b
M. Martinelli,
47
G. Raven,
47
C. P. Jessop,
48
J. M. LoSecco,
48
K. Honscheid,
49
R. Kass,
49
E. Feltresi,
50a,50b
M. Margoni,
50a,50b
M. Morandin,
50a
M. Posocco,
50a
M. Rotondo,
50a
G. Simi,
50a,50b
F. Simonetto,
50a,50b
R. Stroili,
50a,50b
S. Akar,
51
E. Ben-Haim,
51
M. Bomben,
51
G. R. Bonneaud,
51
H. Briand,
51
G. Calderini,
51
J. Chauveau,
51
Ph. Leruste,
51
G. Marchiori,
51
J. Ocariz,
51
M. Biasini,
52a,52b
E. Manoni,
52a
S. Pacetti,
52a,52b
A. Rossi,
52a
C. Angelini,
53a,53b
G. Batignani,
53a,53b
S. Bettarini,
53a,53b
M. Carpinelli,
53a,53b
,g
G. Casarosa,
53a,53b
A. Cervelli,
53a,53b
M. Chrzaszcz,
53a
F. Forti,
53a,53b
M. A. Giorgi,
53a,53b
A. Lusiani,
53a,53c
B. Oberhof,
53a,53b
E. Paoloni,
53a,53b
A. Perez,
53a
G. Rizzo,
53a,53b
J. J. Walsh,
53a
D. Lopes Pegna,
54
J. Olsen,
54
A. J. S. Smith,
54
R. Faccini,
55a,55b
F. Ferrarotto,
55a
F. Ferroni,
55a,55b
M. Gaspero,
55a,55b
L. Li Gioi,
55a
A. Pilloni,
55a,55b
G. Piredda,
55a
C. Bünger,
56
S. Dittrich,
56
O. Grünberg,
56
M. Hess,
56
T. Leddig,
56
C. Voß,
56
R. Waldi,
56
T. Adye,
57
E. O. Olaiya,
57
F. F. Wilson,
57
S. Emery,
58
G. Vasseur,
58
F. Anulli,
59
,h
D. Aston,
59
D. J. Bard,
59
C. Cartaro,
59
M. R. Convery,
59
J. Dorfan,
59
G. P. Dubois-Felsmann,
59
W. Dunwoodie,
59
M. Ebert,
59
R. C. Field,
59
B. G. Fulsom,
59
M. T. Graham,
59
C. Hast,
59
W. R. Innes,
59
P. Kim,
59
D. W. G. S. Leith,
59
P. Lewis,
59
D. Lindemann,
59
S. Luitz,
59
V. Luth,
59
H. L. Lynch,
59
D. B. MacFarlane,
59
D. R. Muller,
59
H. Neal,
59
M. Perl,
59
,e
T. Pulliam,
59
B. N. Ratcliff,
59
A. Roodman,
59
A. A. Salnikov,
59
R. H. Schindler,
59
A. Snyder,
59
D. Su,
59
M. K. Sullivan,
59
J. Va
vra,
59
W. J. Wisniewski,
59
H. W. Wulsin,
59
M. V. Purohit,
60
R. M. White,
60
,i
J. R. Wilson,
60
A. Randle-Conde,
61
S. J. Sekula,
61
M. Bellis,
62
P. R. Burchat,
62
E. M. T. Puccio,
62
M. S. Alam,
63
J. A. Ernst,
63
R. Gorodeisky,
64
N. Guttman,
64
D. R. Peimer,
64
A. Soffer,
64
S. M. Spanier,
65
J. L. Ritchie,
66
A. M. Ruland,
66
R. F. Schwitters,
66
B. C. Wray,
66
J. M. Izen,
67
X. C. Lou,
67
F. Bianchi,
68a,68b
F. De Mori,
68a,68b
A. Filippi,
68a
D. Gamba,
68a,68b
L. Lanceri,
69a,69b
L. Vitale,
69a,69b
F. Martinez-Vidal,
70
A. Oyanguren,
70
P. Villanueva-Perez,
70
J. Albert,
71
Sw. Banerjee,
71
A. Beaulieu,
71
F. U. Bernlochner,
71
H. H. F. Choi,
71
G. J. King,
71
R. Kowalewski,
71
M. J. Lewczuk,
71
T. Lueck,
71
I. M. Nugent,
71
J. M. Roney,
71
R. J. Sobie,
71
N. Tasneem,
71
T. J. Gershon,
72
P. F. Harrison,
72
T. E. Latham,
72
H. R. Band,
73
S. Dasu,
73
Y. Pan,
73
R. Prepost,
73
and S. L. Wu
73
(
B
A
B
AR
Collaboration)
1
Laboratoire d
Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3,
F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy
3b
Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
PRL
114,
081801 (2015)
PHYSICAL REVIEW LETTERS
week ending
27 FEBRUARY 2015
0031-9007
=
15
=
114(8)
=
081801(8)
081801-1
© 2015 American Physical Society
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
7
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9a
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russia
9b
Novosibirsk State University, Novosibirsk 630090, Russia
9c
Novosibirsk State Technical University, Novosibirsk 630092, Russia
10
University of California at Irvine, Irvine, California 92697, USA
11
University of California at Riverside, Riverside, California 92521, USA
12
University of California at Santa Barbara, Santa Barbara, California 93106, USA
13
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
14
California Institute of Technology, Pasadena, California 91125, USA
15
University of Cincinnati, Cincinnati, Ohio 45221, USA
16
University of Colorado, Boulder, Colorado 80309, USA
17
Colorado State University, Fort Collins, Colorado 80523, USA
18
Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
19
Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
20
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
21a
INFN Sezione di Ferrara, I-44122 Ferrara, Italy
21b
Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy
22
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
23a
INFN Sezione di Genova, I-16146 Genova, Italy
23b
Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy
24
Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India
25
Universität Heidelberg, Physikalisches Institut, D-69120 Heidelberg, Germany
26
Humboldt-Universität zu Berlin, Institut für Physik, D-12489 Berlin, Germany
27
Imperial College London, London SW7 2AZ, United Kingdom
28
University of Iowa, Iowa City, Iowa 52242, USA
29
Iowa State University, Ames, Iowa 50011-3160, USA
30
Physics Department, Jazan University, Jazan 22822, Kingdom of Saudi Arabia
31
Johns Hopkins University, Baltimore, Maryland 21218, USA
32
Laboratoire de l
Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d
Orsay,
F-91898 Orsay Cedex, France
33
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
34
University of Liverpool, Liverpool L69 7ZE, United Kingdom
35
Queen Mary, University of London, London E1 4NS, United Kingdom
36
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
37
University of Louisville, Louisville, Kentucky 40292, USA
38
Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
39
University of Manchester, Manchester M13 9PL, United Kingdom
40
University of Maryland, College Park, Maryland 20742, USA
41
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
42
McGill University, Montréal, Québec, Canada H3A 2T8
43a
INFN Sezione di Milano, I-20133 Milano, Italy
43b
Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy
44
University of Mississippi, University, Mississippi 38677, USA
45
Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
46a
INFN Sezione di Napoli, I-80126 Napoli, Italy
46b
Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
47
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, Netherlands
48
University of Notre Dame, Notre Dame, Indiana 46556, USA
49
Ohio State University, Columbus, Ohio 43210, USA
50a
INFN Sezione di Padova, I-35131 Padova, Italy
50b
Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
51
Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6,
Université Denis Diderot-Paris7, F-75252 Paris, France
52a
INFN Sezione di Perugia, I-06123 Perugia, Italy
52b
Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
53a
INFN Sezione di Pisa, I-56127 Pisa, Italy
PRL
114,
081801 (2015)
PHYSICAL REVIEW LETTERS
week ending
27 FEBRUARY 2015
081801-2
53b
Dipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy
53c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
54
Princeton University, Princeton, New Jersey 08544, USA
55a
INFN Sezione di Roma, I-00185 Roma, Italy
55b
Dipartimento di Fisica, Università di Roma La Sapienza, I-00185 Roma, Italy
56
Universität Rostock, D-18051 Rostock, Germany
57
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
58
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
59
SLAC National Accelerator Laboratory, Stanford, California 94309 USA
60
University of South Carolina, Columbia, South Carolina 29208, USA
61
Southern Methodist University, Dallas, Texas 75275, USA
62
Stanford University, Stanford, California 94305-4060, USA
63
State University of New York, Albany, New York 12222, USA
64
Tel Aviv University, School of Physics and Astronomy, Tel Aviv 69978, Israel
65
University of Tennessee, Knoxville, Tennessee 37996, USA
66
University of Texas at Austin, Austin, Texas 78712, USA
67
University of Texas at Dallas, Richardson, Texas 75083, USA
68a
INFN Sezione di Torino, I-10125 Torino, Italy
68b
Dipartimento di Fisica, Università di Torino, I-10125 Torino, Italy
69a
INFN Sezione di Trieste, I-34127 Trieste, Italy
69b
Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
70
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
71
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
72
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
73
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 10 November 2014; published 25 February 2015)
We present a measurement of the asymmetry
A
CP
between same-sign inclusive dilepton samples
l
þ
l
þ
and
l
l
(
l
¼
e
,
μ
) from semileptonic
B
decays in
Υ
ð
4
S
Þ
B
̄
B
events, using the complete data
set recorded by the
BABAR
experiment near the
Υ
ð
4
S
Þ
resonance, corresponding to
471
×
10
6
B
̄
B
pairs.
The asymmetry
A
CP
allows comparison between the mixing probabilities
P
ð
̄
B
0
B
0
Þ
and
P
ð
B
0
̄
B
0
Þ
,
and therefore probes
CP
and
T
violation. The result,
A
CP
¼½
3
.
9

3
.
5
ð
stat
Þ
1
.
9
ð
syst
Þ
×
10
3
,is
consistent with the standard model expectation.
DOI:
10.1103/PhysRevLett.114.081801
PACS numbers: 13.20.He, 11.30.Er
A neutral
B
meson can transform to its antiparticle
through the weak interaction. A difference between the
probabilities
P
ð
̄
B
0
B
0
Þ
and
P
ð
B
0
̄
B
0
Þ
is allowed by
the standard model (SM) and is a signature of violations
of both
CP
and
T
symmetries. This type of
CP
violation,
called
CP
violation in mixing, was first observed in the
neutral kaon system
[1]
, but has not been observed in the
neutral
B
system, where the SM predicts an asymmetry of
the order of
10
4
[2]
. The current experimental average
of
CP
asymmetry in mixing measured in the
B
0
system
alone is
A
CP
¼ðþ
2
.
3

2
.
6
Þ
×
10
3
[3]
, dominated by the
BABAR
[4,5]
,D0
[6]
, and Belle
[7]
experiments. The most
recent LHCb result,
A
CP
¼ð
0
.
2

1
.
9

3
.
0
Þ
×
10
3
[8]
,
had not been included in the aforementioned average.
A recent measurement in a mixture of
B
0
and
B
0
s
mesons
by the D0 Collaboration deviates from the SM expectation
by more than 3 standard deviations
[9]
. Improving the
experimental precision is crucial for understanding the
source of this apparent discrepancy.
The neutral
B
meson system can be described by an
effective Hamiltonian
H
¼
M
i
Γ
=
2
for the two states
j
B
0
i
and
j
̄
B
0
i
. Assuming
CPT
symmetry, the mass eigen-
statescanbewrittenas
j
B
L=H
p
j
B
0
i
q
j
̄
B
0
i
.If
j
q=p
j
1
,
both
CP
and
T
symmetries are violated. Details of the
formalism can be found in Refs.
[10,11]
.
The
B
0
̄
B
0
pair created in the
Υ
ð
4
S
Þ
decay evolves
coherently until one
B
meson decays. In this analysis,
we use the charge of the lepton (electron or muon) in
semileptonic
B
decays to identify the flavor of the
B
meson
at the time of its decay. If the second
B
meson has oscillated
to its antiparticle, it will produce a lepton that has the
same charge as the lepton from the first
B
decay. The
CP
asymmetry
A
CP
between
P
ð
̄
B
0
B
0
Þ
and
P
ð
B
0
̄
B
0
Þ
can be measured by the charge asymmetry of the same-sign
dilepton event rate
P

ll
:
A
CP
¼
P
þþ
ll
P
−−
ll
P
þþ
ll
þ
P
−−
ll
¼
1
j
q=p
j
4
1
þj
q=p
j
4
:
ð
1
Þ
This asymmetry is independent of the
B
decay time.
We present herein an updated measurement of
A
CP
using
inclusive dilepton events collected by the
BABAR
detector
at the PEP-II asymmetric-energy
e
þ
e
storage rings at
PRL
114,
081801 (2015)
PHYSICAL REVIEW LETTERS
week ending
27 FEBRUARY 2015
081801-3
SLAC National Accelerator Laboratory. The data set
consists of
471
×
10
6
B
̄
B
pairs produced at the
Υ
ð
4
S
Þ
resonance peak (on peak) and
44
fb
1
of data collected
at a center-of-mass (c.m.) energy 40 MeV below the peak
(off peak)
[12]
. Monte Carlo (MC) simulated
B
̄
B
events
equivalent to 10 times the data set based on EVTGEN
[13]
and GEANT4
[14]
with full detector response and event
reconstruction are used to test the analysis procedure. The
main changes with respect to the previous
BABAR
analysis
[4]
include doubling the data set, a higher signal selection
efficiency, improved particle identification algorithms, and
a time-independent approach instead of a time-dependent
analysis.
The
BABAR
detector is described in detail elsewhere
[15]
. Events are selected if the two highest-momentum
particles in the event are consistent with the electron or
muon hypotheses. All quantities are evaluated in the c.m.
frame unless stated otherwise. The higher-momentum
and lower-momentum lepton candidates are labeled as 1
and 2, respectively. Four lepton combinations are allowed,
l
1
l
2
¼f
ee; e
μ
;
μ
e;
μμ
g
, as are four charge combinations,
for a total of 16 subsamples. We assume
e
-
μ
universality,
i.e., equal
A
CP
for all
l
1
l
2
combinations. The time-
integrated signal yields can be written as
[16]
N

l
1
l
2
¼
1
2
N
0
l
1
l
2
ð
1

a
l
1

a
l
2

A
CP
Þ
χ
l
1
l
2
d
;
ð
2
Þ
N

l
1
l
2
¼
1
2
N
0
l
1
l
2
ð
1

a
l
1
a
l
2
Þð
1
χ
l
1
l
2
d
þ
r
B
Þ
;
ð
3
Þ
in the limit of
A
CP
1
and
a
l
j
1
, where
a
l
j
¼ð
ε
þ
l
j
ε
l
j
Þ
=
ð
ε
þ
l
j
þ
ε
l
j
Þ
is the average charge asymmetry of the
detection efficiency for lepton
j
,
r
B
is the
B
þ
=B
0
event
ratio,
χ
l
1
l
2
d
is the effective mixing probability of neutral
B
mesons including efficiency corrections, and
N
0
l
1
l
2
is the
neutral
B
signal yield for the
l
1
l
2
flavor combination.
A small fraction of the background comes from
e
þ
e
f
̄
f
ð
γ
Þ
continuum events (
f
f
u; d; s; c; e;
μ
;
τ
g
). This
contribution is subtracted using the off-peak data and the
integrated luminosity ratio
[12]
between the on-peak
and off-peak data sets. The remaining background comes
from
B
̄
B
events, where at least one lepton candidate
originates from
B
X
l
Y
cascade decays, or from a
hadron misidentified as a lepton.
Including the background, we expand Eqs.
(2)
and
(3)
to
parametrize the total observed numbers of events as
M

l
1
l
2
¼
1
2
N
0
l
1
l
2
ð
1
þ
R

l
1
l
2
Þ

1

a
l
1

a
l
2

1
þ
δ
l
1
l
2
R

l
1
l
2
1
þ
R

l
1
l
2
A
CP

χ
l
1
l
2
d
;
ð
4
Þ
M

l
1
l
2
¼
1
2
N
0
l
1
l
2
ð
1
þ
R

l
1
l
2
Þð
1

a
l
1
a
l
2
Þð
1
χ
l
1
l
2
d
þ
r
B
Þ
;
ð
5
Þ
where
R

l
1
l
2
and
R

l
1
l
2
are background-to-signal ratios
under the condition
A
CP
¼
0
, and
δ
l
1
l
2
is the probability
of a same-sign background event being consistent with the
flavors of the neutral
B
pairs at the time of their decay after
B
0
-
̄
B
0
mixing, i.e.,
l
þ
l
þ
(
l
l
) for
B
0
B
0
(
̄
B
0
̄
B
0
), minus
the probability of the opposite case, i.e.,
l
þ
l
þ
(
l
l
) for
̄
B
0
̄
B
0
(
B
0
B
0
). The detailed derivation can be found in the
Supplemental Material
[16]
. For the opposite-sign events,
signal is
CP
symmetric. The background originating
from
B
0
B
0
(
̄
B
0
̄
B
0
) preferably contributes to
l
þ
l
(
l
l
þ
)
because a primary lepton tends to have a higher momentum
than a cascade lepton. Therefore, the background yield is
also a function of
A
CP
. However, the coefficient of
A
CP
is
less than 0.01 for the final data sample, so it is ignored in
the fits.
Events with
1
lepton (single-lepton sample) are used
to constrain the charge asymmetry of the detector efficiency
a
l
ð
a
l
1
þ
a
l
2
Þ
=
2
. The inclusive single-lepton asymmetry
a
on
in on-peak data can be expressed as
[16]
a
on
¼
α
þ
βχ
d
A
CP
þ
γ
a
l
;
ð
6
Þ
where parameters
α
,
β
, and
γ
are functions of the following
quantities: the fractions and asymmetries of the continuum
background, misidentified leptons, and cascade leptons;
the
B
0
=B
þ
ratio; and
w
casc
B
0
the probability of the cascade
lepton
s charge incorrectly identifying the
B
flavor at the
time of the
B
decay.
We build a
χ
2
fit using the
8
þ
8
þ
1
equations repre-
sented by Eqs.
(4)
(6)
to extract
A
CP
. For the single-lepton
sample, we use only electrons since the purity is much
higher than that of muons.
The event selection requires
4
charged particle tracks
and the normalized second-order Fox-Wolfram moment
[17]
R
2
<
0
.
6
. The leptons should satisfy
0
.
6
<p
l
2
p
l
1
<
2
.
2
GeV. The polar angle
θ
of the electron (muon)
candidate in the laboratory frame is required to satisfy
0
.
788
<
cos
θ
<
0
.
961
(
0
.
755
<
cos
θ
<
0
.
956
). The
lepton is rejected if, when combined with another lepton
of opposite charge, the invariant mass is consistent with that
of a
J=
ψ
or a
ψ
ð
2
S
Þ
meson, or the kinematics is consistent
with a photon conversion. The lepton tracks must pass a set
of quality requirements. For dilepton events, the invariant
mass of the lepton pair must be greater than 150 MeV. The
PRL
114,
081801 (2015)
PHYSICAL REVIEW LETTERS
week ending
27 FEBRUARY 2015
081801-4
proper decay time difference
Δ
t
of the two
B
mesons can
be determined from the distance along the collision axis
between the points of closest approach of the lepton
tracks to the beam spot and the boost factor (
0
.
56
)of
the c.m. frame. We require
j
Δ
t
j
<
15
ps and its uncertainty
σ
Δ
t
<
3
ps.
Electrons and muons are identified by two separate
multivariate algorithms that predominately use the shower
shape and energy deposition in the electromagnetic calo-
rimeter for electrons and the track path length and cluster
shape in the instrumented flux return for muons. The
electron (muon) identification efficiency is approximately
93% (40%
80% depending on momentum). The proba-
bility of a hadron being identified as an electron (muon) is
<
0
.
1%
(
1%
).
To further suppress background, we use random forest
multivariate classifiers
[18]
. Off-peak data are used to
represent continuum events, and simulated events are used
for signal and
B
̄
B
background. In the dilepton sample, we
use six variables:
p
l
1
,
p
l
2
, thrust and sphericity
[19]
of the
rest of the event, the opening angle
θ
12
of the two tracks
in the c.m. frame, and
Δ
t
. Separate classifiers are trained
on the same-sign and opposite-sign samples. The
ee
,
e
μ
,
μ
e
, and
μμ
samples are also trained separately. The dilepton
signal probability distributions of the classifiers are shown
in Fig.
1
. We select events with a probability
>
0
.
7
to
minimize the statistical uncertainty based on fits to the
B
̄
B
MC sample. The final on-peak data sample includes 2.5%
continuum background for all dilepton samples, and 35%
(8%)
B
̄
B
background in the same-sign (opposite-sign)
sample.
Approximately 0.1% (3%) of selected electrons (muons)
in dilepton samples are misidentified. According to the
simulation, nearly 98% of the misidentified electrons come
from pions and 87% (12%) of the misidentified muons
come from pions (kaons). To correct for the difference in
the muon misidentification rates between data and MC
samples, we study the muon identification efficiency in
clean kaon and pion control samples from the process
D
D
0
ð
K
π
þ
Þ
π
þ
(and the charge-conjugate proc-
ess). The ratios of the efficiencies between data and MC
samples are used to scale the misidentified muon component
in the MC sample. The correction to
μ
þ
(
μ
)is
0
.
792

0
.
012
(
0
.
797

0
.
013
). Since the misidentification rate is
very low for electrons, we use a much larger pion control
sample from
K
0
s
π
þ
π
decays. This control sample has a
lower momentum spectrum and does not cover the region
of
p>
2
.
5
GeV in the laboratory frame, which accounts
for less than 8% of the misidentified leptons. The correction
to misidentified
e
þ
(
e
)is
1
.
00

0
.
10
(
0
.
56

0
.
10
).
The quoted uncertainties are conservative estimates that
result from mismatched momentum spectra and from a
small fraction of kaons and protons among misidentified
electrons.
For the single-lepton sample, the random forest algo-
rithm uses the number of tracks, the event thrust,
R
2
, the
difference between the observed energy in the event and
the sum of the
e
þ
e
beam energies, the cosines of the
angles between the lepton and the axes of the thrust and
the sphericity of the rest of the event, and the zeroth-order
and second-order polynomial moments
L
0
and
L
2
, where
L
n
¼
P
p
i
ð
cos
θ
i
Þ
n
,
p
i
is the momentum of a particle in
the rest of the event and
θ
i
is the angle between that particle
and the single-lepton candidate. We optimize the selection
requirement by minimizing the uncertainty of the charge
asymmetry after the continuum component is subtracted
from the on-peak data. A total of
8
.
5
×
10
7
single electrons
are selected in the on-peak data, of which approximately
63% are from direct semileptonic
B
decays. Finally, the
single electrons are randomly sampled so that the signal
momentum spectrum matches that of the dilepton events.
Raw asymmetries of the single electrons in the on- and
off-peak data are found to be
a
on
¼ð
4
.
16

0
.
14
Þ
×
10
3
and
a
off
¼ð
11
.
1

1
.
4
Þ
×
10
3
. The larger asymmetry
in the off-peak data is primarily due to the radiative
Bhabha background and the larger detector acceptance
in the backward (positron-beam) direction. The continuum
fraction
f
cont
¼ð
10
.
32

0
.
02
Þ
%
is obtained from the
ratio of the selected single electrons and the integrated
luminosities in off- and on-peak data
[12]
. The neutral
B
fraction in the
B
̄
B
component
f
B
0
¼ð
48
.
5

0
.
6
Þ
%
is the
Υ
ð
4
S
Þ
B
0
̄
B
0
branching fraction
[20]
corrected for the
selection efficiency. The cascade event fractions
f
casc
B
0
¼
19
.
8%
and
f
casc
D

¼
15
.
3%
are obtained from simulation,
(a)
(b)
FIG. 1 (color online). Signal probability distributions from the
dilepton multivariate algorithm for (a) the same-sign sample and
(b) the opposite-sign sample; all lepton flavors are combined.
Points are continuum-subtracted data; shaded regions from
bottom to top are for signal,
B
̄
B
background with
1
mis-
identified lepton, and
B
̄
B
background with both real leptons.
Hatched region is rejected. Data/MC simulation ratios are shown
in inset plots. Regions below 0.45 are not shown.
PRL
114,
081801 (2015)
PHYSICAL REVIEW LETTERS
week ending
27 FEBRUARY 2015
081801-5
with negligible statistical uncertainties. The fraction of
the misidentified electron is 0.19%, and the asymmetry
is approximately 35%. The difference between direct and
cascade electron asymmetries is
ð
1
.
16

0
.
25
Þ
×
10
3
in
MC simulation. The probability
w
casc
B
0
in MC simulation
is found to be
ð
73
.
8

0
.
1
Þ
%
. Using these numerical
values, we determine the coefficients in Eq.
(6)
:
a
on
α
¼ð
2
.
60

0
.
20
Þ
×
10
3
,
βχ
d
¼
0
.
057

0
.
001
, and
γ
¼
0
.
8951

0
.
0002
.
The fitting procedure is tested on the
B
̄
B
MC sample; the
result
A
MC
CP
¼ð
1
.
00

1
.
04
Þ
×
10
3
is consistent with the
CP
-symmetric simulation model. We artificially create a
nonzero
A
CP
by reweighing mixed events in the MC sample
and confirm that the fitting procedure tracks the change
in the
A
CP
without bias. The continuum-subtracted event
yields are shown in Table
I
and are used in Eqs.
(4)
and
(5)
for the fit. The result of the fit to data, after correcting
for the small bias (
1
.
0
×
10
3
) in the simulation, is
A
CP
¼ð
3
.
9

3
.
5
Þ
×
10
3
,
a
e
1
¼ð
3
.
4

0
.
6
Þ
×
10
3
,
a
e
2
¼
ð
3
.
0

0
.
6
Þ
×
10
3
,
a
μ
1
¼ð
5
.
6

1
.
1
Þ
×
10
3
, and
a
μ
2
¼
ð
6
.
5

1
.
1
Þ
×
10
3
. The remaining free parameters are
N
0
l
1
l
2
and
χ
l
1
l
2
d
. The
χ
2
value is 6.2 for 4 degrees of
freedom. The correlations between
A
CP
and
a
e
1
,
a
e
2
,
a
μ
1
,
and
a
μ
2
are
0
.
41
,
0
.
47
,
0
.
54
, and
0
.
51
, respectively.
Correlations among other parameters are negligible.
Figure
2
shows the fit results for the six data-taking periods
and the four flavor subsamples.
The systematic uncertainties are summarized in Table
II
.
The branching fractions in the
B
decay chain partially
determine the background-to-signal ratio. We correct the
MC samples so that important branching fractions are
consistent with the world average
[20]
. These branching
fractions correspond to inclusive
B
semileptonic decays,
B
τν
τ
X
, charm production (
D
0
,
̄
D
0
,
D

,
D

s
,
Λ
þ
c
, and
̄
Λ
c
) from
B
decays, and inclusive charm semileptonic
decays. The corrections vary for most decays between
0.57 and 1.32, depending on the channel. We estimate the
systematic uncertainty by varying the corrections over their
uncertainties, which are dominated by the errors of the
world averages.
The systematic uncertainties due to misidentified leptons
are estimated by varying the uncertainties of the corrections
to
e
þ
,
e
,
μ
þ
, and
μ
individually, and separately for the
dilepton and single-electron samples.
In the single-electron MC sample, the charge asymmetry
of the electron in
B
0
̄
B
0
is slightly different from that in
B
þ
B
by
ð
0
.
46

0
.
18
Þ
×
10
3
. Since we cannot separate
B
þ
B
electrons from
B
0
̄
B
0
electrons in the data, the single-
electron asymmetry measurement is the average of the two
asymmetries, which is half the difference away from the
B
0
̄
B
0
electron charge asymmetry. The systematic uncer-
tainty is determined by the change in
A
CP
after shifting the
asymmetry in the signal component of the single-electron
sample by half the charge asymmetry difference.
The difference in charge asymmetry between the direct
and the cascade electrons is found to be
a
casc
e
a
dir
e
¼
ð
1
.
16

0
.
25
Þ
×
10
3
in the single-electron MC sample.
The difference between the lower-momentum and the
higher-momentum electron asymmetries is negative. This
trend is consistent with the result of the fit to the dilepton
data:
a
e
2
a
e
1
¼ð
0
.
4

0
.
7
Þ
×
10
3
. For muons, the
corresponding values are
a
casc
μ
a
dir
μ
¼ð
0
.
47

0
.
28
Þ
×
10
3
and
a
μ
2
a
μ
1
¼ð
0
.
9

1
.
2
Þ
×
10
3
. In each case,
we set the cascade lepton charge asymmetry to that of the
direct lepton and use the change in
A
CP
as a systematic
uncertainty.
The background-to-signal ratios
R

l
1
l
2
and
R

l
1
l
2
(under
the condition
A
CP
¼
0
) in the dilepton sample are deter-
mined from the MC sample. The correction for the
misidentified lepton background has been dealt with above.
The real lepton portion of the ratio is in principle the same
between
l
þ
l
þ
and
l
l
samples because the particle
identification efficiencies cancel between the background
FIG. 2 (color online).
A
CP
of the six data-taking periods (dots),
the first four and the last two periods (squares), and the four flavor
subsamples (rhombuses). The horizontal band is the

1
σ
region
of the final fit result. All error bars are statistical only.
TABLE I. Continuum-subtracted number of events.
l
þ
l
þ
l
þ
l
l
l
þ
l
l
ee
82 303

320 426 296

783 425 309

782 81 586

323
e
μ
55 277

263 384 552

684 378 261

660 55 878

264
μ
e
67 399

290 467 591

737 475 363

744 67 152

290
μμ
47 384

243 277 936

619 278 691

618 48 145

247
TABLE II. Summary of systematic uncertainties on
A
CP
.
Source
ð
10
3
Þ
Generic MC bias correction
1.04
MC branching fractions
0.43
Misidentified lepton corrections in dilepton events
0.77
Misidentified
e
correction in single electron events
0.65
Difference between neutral and charged
B
0.74
Asymmetry difference between direct and cascade
e
0.44
Asymmetry difference between direct and cascade
μ
0.34
Background-to-signal ratios
0.68
Random forest cut efficiency
0.08
Total
1.90
PRL
114,
081801 (2015)
PHYSICAL REVIEW LETTERS
week ending
27 FEBRUARY 2015
081801-6
and the signal. In the MC sample, they are consistent within
1
σ
. Varying
R
þþ
l
1
l
2
and
R
−−
l
1
l
2
or
R
þ
l
1
l
2
and
R
þ
l
1
l
2
simulta-
neously in the same direction results in negligible changes
in
A
CP
. If they are varied independently, the quadratic
sum of the changes in
A
CP
is larger. We use the latter as a
systematic uncertainty.
The random forest output distribution in the data could
be different from that in the MC sample. The selection
efficiency in the MC
B
̄
B
dilepton events is approximately
2% larger than that in the data. We move the dilepton
random forest selection for the MC sample, while keeping
data the same, so that the selected MC events are reduced
by up to 6%. We take the average change in
A
CP
as a
systematic uncertainty.
Several other sources of systematic uncertainties are
studied and found to be negligible. These include the
overall dilepton signal fraction estimate, the kinematic
difference between on-peak and off-peak data due to
different c.m. energies, the continuum component fraction,
the probability
w
casc
B
0
, the neutral-to-charged
B
ratio,
the same-sign background dilution factors
δ
l
1
l
2
, and the
overall cascade event fraction.
In conclusion, we measure the
CP
asymmetry
A
CP
¼
ð
3
.
9

3
.
5

1
.
9
Þ
×
10
3
in
B
0
-
̄
B
0
mixing using inclusive
dilepton decays. This result is consistent with the SM
prediction and the world average
[3]
. This measurement
represents a significant improvement with respect to our
previous result
[4]
(superseded by this result), and is among
the most precise measurements
[8,20]
. A comparison of
experimental results and averages is shown in Fig.
3
.
We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues, and for the
substantial dedicated effort from the computing organiza-
tions that support
BABAR
. The collaborating institutions
wish to thank SLAC for its support and kind hospitality.
This work is supported by DOE and NSF (U.S.), NSERC
(Canada), CEA and CNRS-IN2P3 (France), BMBF and
DFG (Germany), INFN (Italy), FOM (Netherlands),
NFR (Norway), MES (Russia), MINECO (Spain), STFC
(United Kingdom), and BSF (U.S.-Israel). Individuals have
received support from the Marie Curie EIF (European
Union) and the A. P. Sloan Foundation (U.S.).
a
Now at: University of Tabuk, Tabuk 71491, Saudi Arabia.
b
Also at: Università di Perugia, Dipartimento di Fisica,
I-06123 Perugia, Italy.
c
Now at: Laboratoire de Physique Nucléaire et de Hautes
Energies, IN2P3/CNRS, F-75252 Paris, France.
d
Now at: University of Huddersfield, Huddersfield HD1
3DH, United Kingdom.
e
Deceased.
f
Now at: University of South Alabama, Mobile, Alabama
36688, USA.
g
Also at: Università di Sassari, I-07100 Sassari, Italy.
h
Also at: INFN Sezione di Roma, I-00185 Roma, Italy.
I
Now at: Universidad Técnica Federico Santa Maria,
2390123 Valparaiso, Chile.
[1] J. Christenson, J. Cronin, V. Fitch, and R. Turlay,
Phys. Rev.
Lett.
13
, 138 (1964)
; D. E. Dorfan, J. Enstrom, D.
Raymond, M. Schwartz, S. Wojcicki, D. Miller, and M.
Paciotti,
ibid.
19
, 987 (1967)
; S. Bennett, D. Nygren, H.
Saal, J. Steinberger, and J. Sunderland,
ibid.
19
, 993 (1967)
.
[2] A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon,
A. Jantsch, C. Kaufhold, H. Lacker, S. Monteil, V. Niess,
and S. T
Jampens,
Phys. Rev. D
83
, 036004 (2011)
; A. Lenz
and U. Nierste,
arXiv:1102.4274.
[3] Y. Amhis
et al.
(Heavy Flavor Averaging Group),
arXiv:
1207.1158 and online update http://www.slac.stanford.edu/
xorg/hfag/osc/spring 2014/.
[4] B. Aubert
et al.
(
BABAR
Collaboration),
Phys. Rev. Lett.
96
,
251802 (2006)
.
[5] J. Lees
et al.
(
BABAR
Collaboration),
Phys. Rev. Lett.
111
,
101802 (2013)
.
[6] V. M. Abazov
et al.
(D0 Collaboration),
Phys. Rev. D
86
,
072009 (2012)
.
[7] E. Nakano
et al.
(Belle Collaboration),
Phys. Rev. D
73
,
112002 (2006)
.
[8] R. Aaij
et al.
(LHCb Collaboration),
arXiv:1409.8586.
[9] V. M. Abazov
et al.
(D0 Collaboration),
Phys. Rev. D
89
,
012002 (2014)
.
[10] V. A. Kostelecky,
Phys. Rev. D
64
, 076001 (2001)
.
[11] B. Aubert
et al.
(
BABAR
Collaboration),
Phys. Rev. D
70
,
012007 (2004)
.
FIG. 3 (color online). Measurements of
CP
asymmetry in
neutral
B
mixing, including this measurement (red square),
recent LHCb result
[8]
(teal rhombus), Refs.
[4
7]
(
B
0
, green
triangles), Refs.
[21,22]
(
B
0
s
, blue dots), and Ref.
[9]
(
B
0
,
B
0
s
mixture, magenta contour). The vertical band is the average of
Refs.
[4
7]
and several other older measurements (not shown).
The horizontal band is the average of Refs.
[21,22]
. The 2014
average
HFAG Spring
14
[3]
(excluding LHCb
[8]
and this
result) is also shown (orange contour).
PRL
114,
081801 (2015)
PHYSICAL REVIEW LETTERS
week ending
27 FEBRUARY 2015
081801-7
[12] J. Lees
et al.
(
BABAR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
726
, 203 (2013)
.
[13] D. Lange,
Nucl. Instrum. Methods Phys. Res., Sect. A
462
,
152 (2001)
.
[14] S. Agostinelli
et al.
(GEANT4 Collaboration),
Nucl.
Instrum. Methods Phys. Res., Sect. A
506
, 250 (2003)
.
[15] B. Aubert
et al.
(
BABAR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002)
;
729
, 615 (2013)
.
[16] See Supplemental Material at
http://link.aps.org/
supplemental/10.1103/PhysRevLett.114.081801
for the de-
tailed derivation of the equation.
[17] G. C. Fox and S. Wolfram,
Phys. Rev. Lett.
41
, 1581 (1978)
.
[18] L. Breiman,
Mach. Learn.
45
, 5 (2001)
.
[19] D. Boutigny
et al.
(
BABAR
Collaboration), Report
No. SLAC-R-504, edited by P. F. Harrison and H. R. Quinn,
1998, Chap. 4.
[20] J. Beringer
et al.
(Particle Data Group),
Phys. Rev. D
86
,
010001 (2012)
.
[21] V. Abazov
et al.
(D0 Collaboration),
Phys. Rev. Lett.
110
,
011801 (2013)
.
[22] R. Aaij
et al.
(LHCb Collaboration),
Phys. Lett. B
728
, 607
(2014)
.
PRL
114,
081801 (2015)
PHYSICAL REVIEW LETTERS
week ending
27 FEBRUARY 2015
081801-8