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1. User guide: automated software

Software, in the form of a Mathematica notebook, is provided that automates the inflection point test [1] algorithm
in Fig. 1 (dashed box) together with the Sader-Jarvis method [2] for force recovery. Here, we demonstrate the
operation of this software and provide guidance for its practical use. Basic inputs are required under the following
headings:

i. INPUT - Oscillation amplitude (m). The oscillation amplitude used to measured the frequency shift vs
distance data.

ii. INPUT - Cantilever spring constant (N/m). The cantilever’s dynamic spring constant.

iii. INPUT - Resonant frequency far from surface (Hz). The resonant frequency of the cantilever in the ab-
sence of an interaction force.

iv. INPUT - Frequency shift (Hz) vs distance (m) data file. The measured frequency shift versus dis-
tance data file with two (tab delimited or space separated) columns: distance (m) & frequency shift (Hz).

The software automatically recovers the force using the Sader-Jarvis method and applies the inflection point test,
returning:

i. OUTPUT. The original frequency shift data, recovered force (figure and CSV file in the current directory), an
assessment of its validity and a guide to amplitudes for valid force measurements.

EXAMPLE IMPLEMENTATIONS

We study two model force curves: one force curve gives valid and robust force recovery for all amplitudes, while
the other can produce ill-posed results. The real experimental situation is simulated by:

1. determining the frequency shift versus distance curve (using Eq. (1)); and

2. recovering the force from this frequency-distance data using the Sader-Jarvis method and assessing its validity
using the inflection point test, as embodied in the software.

This two-step process mimics the measurement process (see text).

Matrix method. To demonstrate that the inflection point test automation reported in this study can be used with
any force recovery method—provided it is formulated for arbitrary amplitude—we also apply it to the recovered force
obtained using the matrix method. The matrix method is implemented using separate in-house code and bypassing
the Sader-Jarvis code in the software.

A. Exponentially decaying force-distance curve

The first force law considered decays exponentially with distance, z, and contains no inflection points,

F (z) = F0 exp
(
− z
λ

)
, z ≥ 0, (S1)

where F0 is the maximal force and λ is the length scale of the decay. Here, we choose λ = 1 Å and F0 = 1 nN.

AFM operating conditions. We use the following cantilever properties: dynamic spring constant, k = 2, 000 N/m, and
resonant frequency, f0 = 20, 000 Hz. The oscillation amplitude is set to a = 1.5 Å, and thus comparable to the length
scale of the force, λ; this is precisely where ill-posed behavior can emerge, if it exists [1]. Uncertainty in measuring
the oscillation amplitude always arises in a real experiment. This is modeled by overestimating the true ampli-
tude by +10% when performing the force recovery, as used in Ref. 1; this uncertainty margin is not atypical in practice.
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Simulated FM-AFM force measurement

Step 1. The required frequency-distance data file is generated by substituting Eq. (S1) into Eq. (1) and discretizing
the result over the spatial interval 0 ≤ z ≤ 10 Å; 200 data points are used here, which is typical of real FM-AFM
experimental literature data.

Step 2. The resulting frequency-distance data is shown in Fig. S1(a) together with the resulting recovered force
obtained using both the Sader-Jarvis and matrix methods. For comparison, the true force is also shown in red
where it is clear that both methods work well: the recovered and true forces agree. In a real experiment, this latter
comparison cannot be made—here, it aids in identifying the presence of ill-posed behavior (none is observed) and is
used to assess the software output.

Step 3. The software then produces the outputs in Fig. S1(b), which show the frequency shift, recovered force and
an assessment of its validity.

The software reports that the recovered force curves obtained using both the Sader-Jarvis and matrix methods are
valid for any oscillation amplitude. This is expected because the force law in Eq. (S1) contains no inflection points [1].
It is also consistent with comparisons to the true force law in Fig. S1(a).

Using different oscillation amplitudes gives similar valid recovered force curves (not shown)—because there is no
forbidden zone—which establishes that any of these recovered force curves constitute a robust force ‘measurement’.

This example demonstrates the utility of the software in identifying valid force recovery on discrete force-distance
data, i.e., the real experimental situation, and establishing a robust force measurement.
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B. Oscillatory and decaying force-distance law

The second force-distance law exhibits spatial oscillations, decays with distance and contains an infinite number of
inflection points,

F (z) = F0 exp
(
− z
λ

)
cos

(
2πz

T

)
, (S2)

where λ is length scale over which the force decays while T is its periodic length scale. This force law mimics the
short-range forces induced by structural ordering of liquid molecules near a solid interface [3, 4]. It also does not
belong to Laplace space, i.e., its inverse Laplace transform does not exist, indicating its FM-AFM force measurement
can be ill-posed [1].

Analytical inflection point test. The inflection point test [1] is applied analytically to Eq. (S2) and yields the following
forbidden zone (where ill-posed behavior can exist),(

4π2

T 2
+

1

λ2

)− 1
2

<∼ a <∼ z
(n)
inf , (S3)

for each inflection point,

z
(n)
inf =

T

2

[
n+

1

π
tan−1

(
πλ

T
− T

4πλ

)]
, n = 0, 1, 2, ... . (S4)

Note that the lower limit of Eq. (S3) is independent of the inflection point index, n.
Here, we choose F0 = 10 nN and λ = T = 3 Å, length scales which are motivated by reported measurements of

water [3, 4]. Equations (S3) and (S4) then give the following analytical expressions for the individual forbidden zones,

0.472 <∼ a <∼
z
(n)
inf

2
(Å), (S5)

where the inflection points are

z
(n)
inf ≈ 0.599 + 1.5n (Å), n = 0, 1, 2, ... . (S6)

AFM operating conditions. These are identical to those used for the exponentially decaying force in Section 1-A.
The chosen oscillation amplitude of a = 1.5 Å is comparable to both length scales, λ = T = 3 Å, of the force law in
Eq. (S2), which again is precisely where ill-posed behavior can occur. Indeed, analytical solution to the inflection
point test in Eq. (S5) shows that the measurement can exhibit ill-posed behavior for this chosen amplitude of
a = 1.5 Å. Equation (S5) is used to benchmark the software.

Simulated FM-AFM force measurement 1 (a = 1.5 Å)

Step 1. The required frequency-distance data file is generated by substituting Eq. (S2) into Eq. (1) and discretizing
the result over the spatial interval 0 ≤ z ≤ 20 Å; again, 200 spatial data points are used.

Step 2. The resulting frequency-distance data is shown in Fig. S2(a) together with the recovered force obtained using
the Sader-Jarvis and matrix methods, with a ‘measurement’ amplitude of a = anew = 1.1× 1.5 = 1.65 Å (simulating
experimental uncertainty). These methods give different recovered force-distance curves, with the matrix method
exhibiting greater discrepancy (relative to the true force law)—this exceeds known inversion errors in these methods.
The Sader-Jarvis method produces a recovered force closely aligned with the true force.

Step 3. The software then produces the outputs in Fig. S2(b).

The software advises that the recovered force (obtained using both Sader-Jarvis and matrix methods) is ill-posed
for the chosen oscillation amplitude of a = 1.1 × 1.5 = 1.61 Å. Note that the maximal forbidden zone in Fig. S2(b)
agrees with the analytical solution for the individual forbidden zones in Eq. (S5), while being generated purely from
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discrete numerical data [5]. The observed large discrepancy in the output of the matrix method relative to the true
force (in Fig. S2(a)) is consistent with this observation.

Comparison of Eq. (S5) and Fig. S2(b) demonstrates the efficacy of the software in automatically implementing
the inflection point test on discrete force curves, as needed by AFM practioners. The software guides the practioner
to choose a new amplitude, anew, outside of the maximal forbidden zone,

0.48 <∼ a <∼ 2.5 (Å), (S7)

which agrees well with the analytical solution in Eq. (S5). The upper limit chosen by the notebook in Eq. (S7) ensures
(i) the necessary and sufficient condition, Eq. (4), is implemented and (ii) the inflection point does not occur in the
measurement noise floor at large distance [5].

Important. The observed agreement between the true force and the force law generated by the Sader-Jarvis
method (Fig. S2(a)(middle)), with the matrix method providing an erroneous result (Fig. S2(a)(right)), does not
suggest that the Sader-Jarvis method should be used in the forbidden zone. Instead, it highlights that such an
erroneous conclusion must be avoided. Neither the Sader-Jarvis or matrix method should be used in the forbidden
zone, because they are not designed to handle the ill-posedness that can exist there. This provides a counterexample
to Fig. 3(b).

Guided by the advice from the software, we choose a new oscillation amplitude, a = anew = 5 Å—above the upper
limit of Eq. (S7)—and repeat the FM-AFM force measurement. This is discussed in ‘Simulated FM-AFM force
measurement 2 (a = 5 Å)’ below. Because the upper limit of Eq. (S7) is approximate, choosing a new amplitude well
above the upper limit is advisable.

Simulated FM-AFM force measurement 2 (a = 5 Å)

Step 1. The newly chosen oscillation amplitude of a = anew = 5 Å is used and the required frequency-distance data
file is generated, as before.

Step 2. This frequency-distance data is shown in Fig. S3(a) together with the resulting recovered force obtained using
the Sader-Jarvis and matrix methods, with a ‘measurement’ amplitude of a = anew = 1.1 × 5 = 5.5 Å (simulating
experimental uncertainty). Both methods now give good agreement with the true force curve.

Step 3. The software then produces the outputs in Fig. S3(b).

The software now advises that the recovered forces from the Sader-Jarvis and matrix methods using the amplitude
of a = 5.5 Å are valid; see Fig. S3(b). Note that this new amplitude of a = 5.5 Å is outside of all individual forbidden
zones in Fig. S3(b). The individual forbidden zones for each inflection point may not necessarily overlap; they guide
the practitioner to additional amplitudes where the force recovery is valid. In line with the assessment that the
recovered force is valid, the Sader-Jarvis and matrix methods produce force laws that overlap with the true force.

As discussed in the text and Ref. 1, it is always important to perform force measurements using multiple amplitudes
outside the forbidden zone—to show independence of valid force measurements on the chosen oscillation amplitude—
and hence establish a robust force measurement. Accordingly, we conduct a further simulated measurement but
now using an oscillation amplitude below the lower limit of all forbidden zones in Fig. S3(b): a = anew = 0.1 Å,
which is again well away from the approximate lower limit. Details are discussed next in ‘Simulated FM-AFM force
measurement 3 (a = 0.1 Å)’.

Simulated FM-AFM force measurement 3 (a = 0.1 Å)

Step 1. The additional chosen oscillation amplitude of a = anew = 0.1 Å is used and the required frequency-distance
data file generated again.

Step 2. This frequency-distance data is shown in Fig. S4(a) together with the recovered force obtained using the
Sader-Jarvis and matrix methods, with a ‘measurement’ amplitude of a = anew = 1.1 × 0.1 = 0.11 Å (simulating
experimental uncertainty). Both methods again give good agreement with the true force curve.

Step 3. The software then produces the outputs in Fig. S4(b).
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(a)	Frequency	and	recovered	force-distance	curves	
	

			 			 	
	
(b)	OUTPUT:	Mathematica	notebook	
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𝑎 = 5	Å 

FIG. S3: Oscillatory and decaying force-distance law. Simulated FM-AFM force measurement and application
of the inflection point test using a = 5 Å (with +10% amplitude uncertainty for force recovery). (a) Simulated
frequency shift and recovered force curves. (b) Output of automated software. Uncertainties are 95% C.I. from fits
to Eq. (7) only.

The software again advises that the recovered force is valid and reports individual forbidden zones in Fig. S4(b)
that are identical to those in Fig. S3(b) (obtained using a different amplitude). This is expected because the recovered
force is valid in both cases and thus should be independent of the chosen measurement amplitude. The recovered forces
obtained using the Sader-Jarvis and matrix methods again agree well with the true force, see Fig. S4(a), consistent
with the software output.
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(a)	Frequency	and	deconvoluted	force-distance	curves	
	

			 			 	
	
(b)	OUTPUT:	Mathematica	notebook	
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Individual forbidden zones (from each in�ection point):

1. 0.48 ± 0.0047 ≲ a ≲ 1.0 ± 0.0011 Å
2. 0.49 ± 0.0094 ≲ a ≲ 1.8 ± 0.0016 Å
3. 0.48 ± 0.0092 ≲ a ≲ 2.5 ± 0.0016 Å

===================================================================================
Uncertainties: 95% C.I.

Matrix method

MEASURED FREQUENCY SHIFT & RECOVERED FORCE CURVES

0 5 10 15 20

-400

-200

0

200

400

600

800

Distance (Å)

Fr
eq
ue
nc
y
sh
ift

(H
z)

0 5 10 15 20
-6

-4

-2

0

2

4

6

8

Distance (Å)

Fo
rc
e
(n
N
)

INFLECTION POINT TEST
===================================================================================
Valid forcemeasurement: chosen amplitude, a = 0.11 Å, is outside of maximal forbidden zone.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Amplitude (Å)

Individual forbidden zones

Individual forbidden zones (from each in�ection point):

1. 0.48 ± 0.0040 ≲ a ≲ 1.1 ± 0.0010 Å
2. 0.49 ± 0.0092 ≲ a ≲ 1.8 ± 0.0019 Å
3. 0.49 ± 0.0090 ≲ a ≲ 2.6 ± 0.0019 Å
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𝑎 = 0.1	Å 

FIG. S4: Oscillatory and decaying force-distance law. Simulated FM-AFM force measurement and application
of the inflection point test using a = 0.1 Å (with +10% amplitude uncertainty for force recovery). (a) Simulated
frequency shift and recovered force curves. (b) Output of automated software. Uncertainties are 95% C.I. from fits
to Eq. (7) only.

Robust force measurement

Because two valid recovered force curves that use different oscillation amplitudes (a = 0.1 Å and a = 5 Å) agree, we
can conclude that a robust force curve has been ‘measured’; see text. This is also obvious here by comparison to the
true force, which is not available in a real measurement.

In practice, use of more than two amplitudes outside the forbidden zone may be preferable.
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2. Sample fits to Eq. (7) from the automated software

The software is fully automated. It first recovers the force using the Sader-Jarvis method, then fits Eq. (7) to
this discrete force data to determine the inflection points and force derivatives at these points, thereby evaluating
the S-factor at each inflection point. This information is substituted into Eq. (5) to identify the forbidden zones.
Figures S5 and S6 show sample fits to Eq. (7) and S-factors for force-distance curves in Fig. 3; the force curves
are identical to those reported in Ref. 6, as discussed in the text. While the z-ranges—over which fits to Eq. (7)
occur—differ for the Sader-Jarvis and matrix methods, the resulting S-factors are consistent. These z-ranges are
automatically determined by the software and do not require user input. The outputs in Figs. S5 and S6 are hidden
by default in the software, and can be displayed by changing the showintermediatesteps variable; see INPUT →
Other operating parameters (advanced users only). 

Figure 2: CO/Cu (111) dataset – A = 75 pm 
 

 Sader-Jarvis Method                          Matrix method 
 

           
 

Comparison of polynomial �t to dataset with minimum relative error:

0.1 0.2 0.3 0.4

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

Distance, z (Å)

F
Fmax

--------------------------------------
S-factor

--------------------------------------
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--------------------------------------
Uncertainties: 95% C.I.

Comparison of polynomial �t to dataset with minimum relative error:
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FIG. S5: CO/Cu(111) dataset using a = 75 pm. Sample fits of Eq. (7) to two force-distance curves in Fig. 3(a)
(obtained using Sader-Jarvis and matrix methods), generated by the automated software. Sader-Jarvis method: Two
other inflection points are identified, but one does not satisfy Eq. (4) and the other has S(F ) > 0 (no force jump).
Matrix method: Recovered force has more noise than Sader-Jarvis method (see plot), leading to identification of
additional inflection points; these all have S(F ) > −1 (well-posed) with uncertainties larger than their S-factor. Both
methods show that this force measurement is valid for all amplitudes because S(F ) >∼ −1; see Eq. (2). Uncertainties
are 95% C.I. from fits to Eq. (7) only.



11Sample	polynomial	fits	of	force	dataset	in	Figure	3:		Fe	trimer/Cu(111)	dataset	(𝐴 = 30	pm)	
	

	 Sader-Jarvis	Method													 	 	 	 	 									Matrix	method	
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Comparison of polynomial �t to dataset with minimum relative error:
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Comparison of polynomial �t to dataset with minimum relative error:
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FIG. S6: Fe trimer/Cu(111) dataset with a = 30 pm. Sample fits of Eq. (7) to two force-distance curves
in Fig. 3(b) (obtained using the Sader-Jarvis and matrix methods), generated by the automated software. The
amplitude used for this force measurement is on the lower edge of the maximal forbidden zones: Sader-Jarvis method,
0.29±0.023 <∼ a <∼ 0.69±0.0015 Å; Matrix method, 0.32±0.013 <∼ a <∼ 0.68±0.0032 Å. Such borderline measurements
should be avoided, with the amplitude chosen to be well outside of the forbidden zone; see text. Uncertainties are
95% C.I. from fits to Eq. (7) only.
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3. Fit data generated by the automated software

Tables S1 and S2 lists all fit parameters automatically generated by the software for the recovered experimental
force-distance curves in Figs. 3 and 5, respectively. This collective dataset illustrates how the maximal forbidden zone
is derived from the individual forbidden zones of each inflection point.
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