Published 2011 | Version Published
Journal Article Open

Two proposals for robust PCA using semidefinite programming

Abstract

The performance of principal component analysis suffers badly in the presence of outliers. This paper proposes two novel approaches for robust principal component analysis based on semidefinite programming. The first method, maximum mean absolute deviation rounding, seeks directions of large spread in the data while damping the effect of outliers. The second method produces a low-leverage decomposition of the data that attempts to form a low-rank model for the data by separating out corrupted observations. This paper also presents efficient computational methods for solving these semidefinite programs. Numerical experiments confirm the value of these new techniques.

Additional Information

© 2011 Institute of Mathematical Statistics. Received December 2010. The authors would like to thank the anonymous referees for their thoughtful suggestions, as well as Alex Gittens, Richard Chen, and Stephen Becker for valuable discussions regarding this work. This work has been supported in part by ONR awards N00014-08-1-0883 and N00014-11-1-0025, AFOSR award FA9550-09-1-0643, and a Sloan Fellowship. This research was performed in part while the authors were in residence at the Institute for Pure and Applied Mathematics at the University of California, Los Angeles.

Attached Files

Published - McCoy2011p16086Electron_J_Stat.pdf

Files

McCoy2011p16086Electron_J_Stat.pdf

Files (854.6 kB)

Name Size Download all
md5:be322d2b9bc06b43b603b4219ae311b9
854.6 kB Preview Download

Additional details

Identifiers

Eprint ID
27362
Resolver ID
CaltechAUTHORS:20111021-161307161

Funding

Office of Naval Research (ONR)
N00014-08-1-0883
Office of Naval Research (ONR)
N00014-11- 1-0025
Air Force Office of Scientific Research (AFOSR)
FA9550-09-1-0643
Sloan Fellowship

Dates

Created
2011-10-24
Created from EPrint's datestamp field
Updated
2021-11-09
Created from EPrint's last_modified field