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Detection of collective modes in unconventional superconductors using tunneling spectroscopy
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We propose using tunneling spectroscopy with a superconducting electrode to probe the collective modes of
unconventional superconductors. The modes are predicted to appear as peaks in dI/dV at voltages given by
eV = ωi/2 where ωi denotes the mode frequencies. This may prove to be a powerful tool to investigate the
pairing symmetry of unconventional superconductors. The peaks associated with the collective modes appear
at fourth order in the single-particle tunneling-matrix element. At the same fourth order, multiple Andreev
reflection (MAR) leads to peaks at voltage equal to the energy gaps, which, in BCS superconductors, coincides
with the expected position of the amplitude (Higgs) mode. The peaks stemming from the collective modes of
unconventional superconductors do not suffer from this coincidence. For scanning tunneling microscopes, we
estimate that the magnitude of the collective mode contribution is smaller than the MAR contribution by the
ratio of the energy gap to the Fermi energy. Moreover, there is no access to the mode dispersion. Conversely,
for planar tunnel junctions the collective mode peak is expected to dominate over the MAR peak, and the mode
dispersion can be measured. We discuss systems where the search for such collective modes is promising.

DOI: 10.1103/PhysRevB.108.174503

I. INTRODUCTION

In the past three decades, many examples of unconven-
tional superconductors (SCs) have been discovered. Many of
these have multiple order parameters, either due to pairing in
several disconnected Fermi surfaces, or due to pairing that
is intrinsically multicomponent. In the latter case, the order
parameters may be members of a particular irreducible repre-
sentation, prime examples being MgB2 [1] and the iron-based
superconductors [2]. Alternatively, they are of mixed symme-
try due to the breaking of lattice or time-reversal symmetry.
While there are numerous examples of mixed symmetry pair-
ing, very often it is difficult to identify the precise order
parameter symmetry in these materials. In an interesting re-
cent paper Poniatowski et al. [3] pointed out that, since these
systems exhibit collective modes beyond the familiar phase
and amplitude (Higgs) modes, the detection of these modes
may serve as signature of the order parameter symmetry. They
investigated several examples and showed that commonly
these modes lie below the quasiparticle gap 2� and hence
form well-defined excitations. Some of these collective modes
are analogs of the Leggett mode [4], or of the “clapping”
mode, familiar from the He3 literature [5,6]. While progress
in the detection of such modes has been made using nonlinear
optical spectroscopy [7], they are often charge neutral and
thus evade detection using conventional tools. Motivated by
this, we study the question of whether the collective modes
of unconventional superconductors may be detected using
tunneling spectroscopy. We investigate point contact tunnel-
ing such as scanning tunneling microscopy (STM) as well
as planar tunneling and compare their respective advantages
and disadvantages. We will also discuss examples where such
experiments may be feasible.

This paper is structured as follows. In Sec. II we demon-
strate within linear response theory how collective modes
of the pairing give rise to features in the tunneling current
between two SCs. In Sec. III we discuss processes that give
rise to features in the tunneling current at the same order in
perturbation theory which are commonly observed, namely
the Josephson peak and multiple Andreev reflections (MAR).
In Sec. IV we present a microscopic treatment of the current
due to collective modes, which includes the possibility of
multi-component order parameters. In Sec. V we discuss the
magnitude of the features in the collective mode relative to
the Josephson peak and the leading order MAR contribution.
We proceed in Sec. VI by applying our results to several
experimentally relevant multi-component SCs, highlighting
examples where it is promising to look for the current due
to collective modes. Finally, in we conclude Sec. VII with
a discussion of the experimental challenges associated with
measuring the current due to collective modes.

II. COLLECTIVE MODES IN THE TUNNELING
SPECTRUM

The idea of using tunneling to detect pair fluctuations goes
back to the seminal papers by Ferrell [8] and Scalapino [9].
They were interested in pair fluctuations above the critical
temperature Tc, and pointed out that the pair fluctuations ap-
pear in linear response to an external pairing order parameter,
just like magnetization fluctuations appear as the linear sus-
ceptibility to an external magnetic field. More specifically,
they considered a tunnel junction with voltage bias V be-
tween two SCs L (left) and R (right) with different Tc, j and
energy gaps � j , j ∈ {L, R}, where the left SC is assumed
to have a higher Tc. The pair-tunneling Hamiltonian is ob-
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tained by expanding the Josephson energy EJ of a junction
with area A to linear order in �R, which is then replaced by
the pair-destruction operator �̂R(r) = |g0| ψR,↓(r)ψR,↑(r), g0

being the BCS coupling. This gives the coupling Hamiltonian

Hpair =
∫

drCe−i2eV t �̂R(r) + H.c., (1)

which oscillates at the Josephson frequency 2eV (set-
ting h̄ = 1). Here, we defined the coupling strength C =
∂ (EJ/A)/∂�R as well as the Josephson energy EJ =
(g/4π )�RK (

√
1 − �2

R/�2
L ) in terms of the elliptic function

K . Moreover, we introduced the dimensionless conduc-
tance g = (h/e2)/RN , where RN is the junction resistance
in the normal state [10]. In the limit �L � �R, EJ =
(g/2π )�R ln(4|�L/�R|), and we recover the expressions
given in Ref. [9]. Standard linear response theory gives the
current as

Ipair (V, H ) = 4eC2A Im χR(q = 2qH , ω = 2eV ), (2)

where χR(q, ω) is the Fourier transform of the pair suscepti-
bility

χR(r, t ) = −i〈[�̂R(r, t ), �̂R(0)†]〉θ (t ), (3)

and 2qH is the pair momentum induced by a magnetic field
H parallel to the junction [9]. (We have assumed that R is
a two-dimensional SC. Otherwise, the current will depend on
the thickness of R provided it is less than the coherence length;
cf. Ref. [9].)

The pair fluctuations were successfully measured very
close to the transition temperature Tc,R [11]. In principle, there
is no reason why the same arguments cannot be applied to
low temperatures. In that case, the collective mode dispersion
corresponds to poles in χR(q, ω) and should manifest as peaks
in the tunneling current. In fact, this has been proposed as
a way to measure the Higgs mode [12]. In practice, peaks
corresponding to putative collective modes have never been
observed in tunneling experiments. A purpose of this paper is
to explain this absence, and to point out the conditions under
which such observations may become successful in the future.

III. JOSEPHSON PEAK AND MULTIPLE ANDREEV
REFLECTIONS

We begin by noting that the current Ipair is proportional
to g2 and thus fourth order in the tunneling-matrix element.
We first consider the STM case and consider other terms to
the same order in the tunneling current. STM spectra exhibit
subgap structures stemming from processes commonly known
as multiple Andreev reflection (MAR) [13,15]. They may be
calculated in an expansion in powers of the tunneling-matrix
element [14]. At fourth order, the first set of MAR peaks
appears at eV = �L and �R in dI/dV . They correspond to
processes where a pair tunnels across the junction and gains an
energy 2eV . For 2eV > 2�R this energy can go into exciting
a pair of quasiparticles on the R side. This gives rise to a
step threshold in the current I (V ) and consequently a peak
in dI/dV at eV = �R. A similar argument produces a step at
�L. MAR peaks are commonly seen in STM when the tip is
brought close to the surface, increasing g [13,15]. The ratio
of the lowest-order MAR peak in dI/dV to the conductance
above the coherence peak threshold is simply of order g (see

FIG. 1. Schematic drawing of the STM tunneling conductance
dI/dV with a SC tip (with energy gap �L) showing the expected
subgap features up to fourth order in the tunneling amplitude. The
standard quasiparticle peak starting at �R + �L has been reduced by
g = (h/e2)/RN , the dimensionless normal-state conductance. Below
this energy we find the multiple Andreev reflection (MAR) peaks at
�R and �L which overlap the respective amplitude (Higgs) modes.
Shown in red is the contribution from a collective mode for an
unconventional SC on the R side at frequency ωi. It consists of a
peak at eV = ωi/2 and a tail toward higher voltage. Its height has
been multiplied by EF /�R. Shown in blue is the Josephson current
that has been broadened by dissipation. The line shape is given by
Eq. (4) for kT0 � EJ which is the typical situation [15] and is much
narrower in the opposite limit [16]. The collective mode is the new
feature discussed in this paper.

Fig. 1). We note that g of order 0.01 or even unity can be
achieved [13,17]. Nevertheless, collective modes such as the
Higgs mode have not been reported in STM experiments. One
reason lies in the fact that, in conventional SC, the phase
mode is pushed up to the plasma frequency and the only re-
maining collective mode is the Higgs mode which has energy
2�R. This gives rise to a peak at eV = �R which happens to
coincide with the lowest-order MAR peak. Furthermore, as
shown below, in STM the magnitude of the collective mode
contribution is reduced from the MAR magnitude by a factor
�R/EF where EF is the Fermi energy of the R SC. This
reduction stems from point tunneling: in this case, the current
involves a convolution over the momentum of the mode. The
latter disperses rapidly on the scale of the inverse coherence
length ξ−1, giving rise to this suppression. We conclude that
the collective mode may be visible in STM only for strongly
correlated materials where the factor �R/EF is not too
small.

Another contribution to the same order in g2 commonly
seen in STM is the Josephson current broadened by thermal
noise. Thermal fluctuations dephase the junction and convert
the Josephson current from a delta function to a peak struc-
ture at low but finite bias. The theory has been given by
Ivanchenko and Zilberman [18]. The result depends on the
relative size of the Josephson energy EJ of the junction to the
noise temperature kBT0. (Note that T0 is in general different
from and larger than the sample temperature T .) In the limit
EJ 	 kBT0 the current is given by

IJ (V ) = e
E2

J

kBT0

2eV 
0

(2eV )2 + 
2
0

, (4)

where the width is given by 
0 = kBT0R0(2e)2 with the dis-
sipation parametrized by an effective resistance R0. More
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specifically, the external circuit is modeled by a series resis-
tance R0 (not to be confused with the normal-state junction re-
sistance RN ) which gives rise to voltage fluctuations across the
junction characterized by 〈δV (t )δV (t ′)〉= 2kBT0R0δ(t − t ′).
Note that in Eq. (4) the maximum current is proportional
to E2

J /T0 which is proportional to g2. In fact, STM data are
usually in this limit: the line shape predicted by Eq. (4) is
often seen as a peak in dI/dV whose height is comparable
to and scales in the same way as the MAR peak at eV = �R

with changing tip height [15]. On the other hand, planar
junctions are in the opposite limit EJ � kBT0 because EJ

scales with the area. In this case, the peak is very narrow and
steep [16]. A useful physical picture is that of an overdamped
particle moving in a tilted “washboard potential.” In the limit
EJ 	 kBT0 thermal fluctuations lead to rapid jumps over the
washboard barrier and give rise to phase slips, resulting in
Eq. (4).

In the case of the Josephson current, the voltage bias is
small and the washboard is relatively flat. In the case of
the collective mode we are in a large-voltage regime where
the phase is running rapidly down the washboard and sub-
ject to weak modulation due to EJ . In this case the phase
across the junction is given to a good approximation by
θ (t ) ≈ 2e[Vextt + ∫ t

0 dt ′δV (t ′)]. Hence, the fluctuating part
of the phase correlation is given by 〈(δθ (t ) − δθ (0))2〉 =
(2e)22kBT0R0t . Inserting this into Eq. (3), we find that the
effect of thermal noise is to introduce an additional Lorentzian
convolution to the response function, with a width given by

0. Similar arguments show that the width of the MAR peak
is also given by 
0 (see Appendix B). Thus, the minimal
width of all the subgap structures shown in Fig. 1 is set by the
width of the Josephson peak in Eq. (4) which can be readily
measured. It follows that a condition for the visibility of the
collective mode is simply that its width given by 
0 is not so
large that it will overlap other features such as the Josephson
peak or the MAR peak. Note that the width of the collective
mode and the MAR peak are the same whether kBT0 is large or
small compared with EJ . Only the Josephson peak is affected
by this condition.

IV. MICROSCOPIC TREATMENT OF THE CURRENT DUE
TO COLLECTIVE MODES

Next, we turn to a microscopic treatment of the problem,
including the multicomponent SCs mentioned in the intro-
duction. We will derive an extension of the pair-tunneling
Hamiltonian Eq. (1) by calculating the in-gap current to fourth
order in tk,p, following earlier work by Takayama [19]. The
voltage drop across the junction can be absorbed into a time-
dependent tunneling-matrix element tk,peieV t , rendering the
SC leads at equilibrium. This allows a treatment within the
conventional Matsubara formalism, and the more elaborate
Keldysh treatment [14] is not necessary. The in-gap current
due to collective modes of the R SC is then given by the
diagram Fig. 2(c). Details of the calculation are presented in
Appendix A. Below, we discuss the main results.

In the STM case, tunneling occurs at a single point and
does not resolve the momentum of the pair response function
as in Eq. (2). Instead, the current involves an integral over the

FIG. 2. Diagrams that contribute to the STM tunneling current to
fourth order in the tunneling-matrix element tk,p represented by the
solid dot. The diagram that couples to the collective mode is shown
in (c) where the double line represents the pair propagator of the R
SC which is related to the pair susceptibility χα,β (q, ω = 2eV ) by
analytic continuation. (a) and (b) show the two diagrams M1 and M2

that contribute to the triangle on the right side of (c). Two similar
diagrams contribute to the left triangle related to the right triangle by
complex conjugation. The anomalous Green function of the L SC is
shown in red. In (a) the R SC Green function is the regular G while
in (b) it is the anomalous F function. The latter is shown in (d). Note
that frequency and momentum reverse sign on opposite ends of F .
(e) shows the BCS coupling in separable form for each channel α.

momentum q:

ISTM(V ) = 4e
∑
α,β

∫
dq M∗

α (q,V )Mβ (q,V )Im χα,β

× (q, ω = 2eV ). (5)

Here, we have introduced multiple pairing order parameters
�

(α)
k for the R SC. We will drop the R label from now on.

The label α may refer to pairing in different bands, or to
members of a irreducible representation, or to superposition of
different pairing symmetries when time-reversal or crystalline
symmetry is spontaneously broken. Following Ref. [3], we
assume a separable form for the attractive interaction Uk,k′ =
−∑

α gαζ
(α)
k ζ

(α)
k′ , where the ζ

(α)
k are orthonormal form factors

and the gα are the coupling constants in the corresponding
channel. We neglect the dependence on q, the center-of-
mass momentum of the Cooper pair. This vertex is shown
in Fig. 2(e). The pair-destruction operator is generalized to
�̂

(α)
k (q) = gα

∑
k ζ

(α)
k c(α)

−k,↓c(α)
k+q,↑. For simplicity of notation,

we assume singlet pairing, but the calculation can be straight-
forwardly extended to general pairing symmetry. The pair
susceptibility can be generalized from Eq. (3) in a natural
way as

χα,β (q, t ) = −i
〈[
�̂

(α)
k (q, t ), �̂(β )

k (q,0)†
]〉
θ (t ). (6)

The matrix element Mα (q,V ) is given by the sum of M1 and
M2, which are defined by the two triangle diagrams shown in
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Figs. 2(a) and 2(b), respectively. It is

Mα (q,V ) = T
∑
ωm

∫
dk d p |t̃ |2ζ (α)

p FL(k, ωm)

× [
G(α)

R (p+ q, ωm + ieV )G(α)
R (−p,−ωm + ieV )

− F (α)
R (p+ q, ωm + ieV )F (α)

R (−p,−ωm + ieV )
]
.

(7)

Here, as appropriate for STM tunneling, we have neglected
the momentum dependence of the tunneling-matrix element
tk,p, replacing it by t̃ . We have further used the fact that
the anomalous electron Green function satisfies F↓↑(k, ωm) =
−F↑↓(k, ωm) which accounts for the negative sign in the
second term. Note that one factor of ζ

(α)
k enters the matrix

element in Eq. (7) and one factor enters the pair susceptibility
in Eq. (5). It is easy to see that the left triangle in Fig. 2(c)
is the complex conjugate of the right triangle. The product
ζ (α)

p FL(k, ωm) in Eq. (7) determines which components of the
pair fluctuation can be probed. For example, if L is a conven-
tional s-wave SC, only collective modes with a component α

corresponding to s wave will couple, as we shall illustrate by
an example below.

Based on the form Eq. (5), we suggest a nonlocal general-
ization of the pair-tunneling Hamiltonian,

H̃pair =
∑

α

∫
dr′ C̃α (r − r′,V )e−i2eV t �̂

(α)
R (r′) + H.c., (8)

for STM tunneling at position r. [Integration over r in Eq. (8)
gives the generalization of Eq. (1) for planar junctions.] It is
clear that linear response based on Eq. (8) leads to Eq. (5) if
we identify the Fourier transform of C̃α (r,V ) with Mα (q,V ).
As shown in Appendix A, M has a smooth V dependence
which can usually be ignored. More importantly, Eq. (5) in-
volves a convolution in momentum space between the pair
susceptibility and the product of the matrix element. We find
that Mα (q,V ) goes to a constant for small q and falls off with
q on a scale given by the inverse of the coherence length ξR

when �L � �R (see Appendix A for details). The physical
origin of the nonlocality in Eq. (8) and the convolution over
q in Eq. (5) is that the Cooper pair is injected from the L SC
one electron at a time by the single-particle tunneling-matrix
element. Consequently quasiparticles exist virtually over a
distance of order ξR before recombining to form a Cooper
pair on the R SC. We note that for the single order parameter
case the simple pair-tunneling Hamiltonian Eq. (1) can be
readily derived from Eq. (8). Focusing on the planar case,
in the absence of a magnetic field, and for V 	 �R, it is
C̃ 
 M(q = 0,V = 0)/A = ∂ (EJ/A)/∂�R (see Appendix A),
fully consistent with Eq. (1).

V. VISIBILITY

Next, we estimate the magnitude of the collective mode
contribution to the current. For simplicity we discuss the
single order parameter case. In this case, the inverse pair
propagator generically takes the form χ−1(q, ωn) = N (0)[1 +
(ω2

n + biv
2
F q2)/(ai�

2)], where ai and bi are numbers of order
unity [3]. The zeros of this function give the collective mode

dispersion ωi(q). The pair susceptibility thus takes the form

Im χ (q, ω) = 1

N (0)

πω2
i0

2ωi(q)
δ(ω − ωi(q)), (9)

where ω2
i (q) = ω2

i0 + biv
2
F q2 and ωi0 = √

ai�. Note that the
dispersion is very steep: ωi(q) roughly doubles in value when
q is of order the inverse of the coherence length ξ = vF /π�.
In planar junctions this form leads to delta functions in the
current I (V ) at 2eV = ωi(q). Thus, planar junction tunneling
allows access to the dispersion of the mode. This is not the
case which requires an additional integration over q. Instead
of a delta function, the I (V ) now features a step at 2eV = ωi0

followed by a smooth drop-off on a scale set by M(q,V ). The
step function gives rise to a delta function in dI/dV ,

dISTM

dV
= e2 8π2ai�

2

N (0)biv
2
F

|M(0,V )|2δ(2eV − ωi0), (10)

which is followed by a negative tail toward larger voltages as
sketched in Fig. 1. To estimate M in Eq. (10), it suffices to
consider its V = 0 limit. Focusing on a symmetric junction
�R = �L = �, it is M = ∂EJ/∂� = g/8 [10]. With this, we
may compare the peak in dI/dV due to the collective mode to
the step in the MAR current which is given by eg2� [14]. (See
also Appendix B.) Using N (0) = m/2π and EF = mv2

F /2 we
find the relative magnitude of the collective mode and MAR
steps to be approximately �/EF as stated earlier. For conven-
tional SCs this ratio is very small which makes the detection
of the collective mode infeasible. Nonetheless, there are now
examples of strongly correlated SCs where this ratio is not
very small. It is worthwhile to look for the collective mode
contribution in STM in such systems.

The situation is more promising for planar junctions. (See
Appendix A for details.) It is useful to consider the ratio of
the collective mode current Iplanar to the current in the normal
state at eV = 2�R which is given by IN = 2�/(eRN ). For
simplicity, we again consider the symmetric case
�R = �L = �. We find the ratio

Iplanar

IN
= π3

32

aig

Ak2
F

�EF

ωi0




(2eV − ωi0)2 + 
2
. (11)

Here, we have replaced the delta function in Eq. (9) by a
Lorentzian with width 
 which is given by 
0 plus other
sources of broadening such as inhomogeneity. A similar ra-
tio for the planar MAR current is obtained in Appendix B,
where it is found to have parametrically the same prefactor
up to numerical constants, but with the Lorentzian in Eq. (11)
replaced by (eV/�)[(eV )2 − �2]−1/2. The latter should also
be broadened by voltage noise and inhomogeneity. Since this
form is less singular than the Lorentzian, the collective mode
contribution should dominate over the MAR peak in planar
junctions, in contrast to the situation in STM. More precisely,
with the same broadening 
, the peak currents due to the
collective mode and the MAR have a ratio of

√
�/
 which

is greater than 1.
We now address the size of the signal from the collective

mode contribution given by Eq. (11). We interpret Ak2
F as

the number of tunneling channels in a planar junction and
use the Landauer formula to define the ratio Teff = g/(Ak2

F )
as the effective tunneling probability per channel. Teff gives

174503-4



DETECTION OF COLLECTIVE MODES IN … PHYSICAL REVIEW B 108, 174503 (2023)

the intrinsic transparency of a tunnel junction and is gener-
ally a very small number. Conversely, the peak value of the
Lorentzian is 1/
i, and the ratio EF /
i is a very large number.
For a typical planar junction, Teff is so small that the product
is still too small to be observable for reasonable 
i. This may
be the reason why neither MAR nor collective modes have
been observed in planar junctions. However, as we shall see,
the numbers are not too far off, and there may be reasons for
optimism. To see this we estimate that for the typical oxide
tunnel barrier used in Ref. [11], the transparency is Teff ≈ 10−8

(assuming A ∼ 1002 nm2, kF ∼ 1 Å−1, and RN ∼ 2 �). In
this experiment a fluctuating pair-tunneling peak with width
of about 1 µeV was readily observed. We conclude that a col-
lective mode with width of order 1 µeV should be observable
in a conventional oxide planar junction, because the signal
in Eq. (11) is proportional to the ratio Teff/
i. The minimal
contribution to the width comes from voltage fluctuations
and the corresponding 
0 can be made very small [16]. In
practice, in many of the strongly correlated SCs of interest,
such as cuprates or iron-based SCs, local inhomogeneity may
lead to significant broadening of the collective mode in planar
junctions. Their detection may require higher tunneling trans-
parency Teff and possibly smaller area junctions. The latter
requirement will reduce the current, making the experiment
more challenging.

Apart from the larger signal compared with STM, we note
that the current itself is predicted to show a narrow peak, so
that the dI/dV signal is the derivative of a Lorentzian which
has a distinctive line shape with a large negative part. Further-
more, the planar junction has the advantage that the dispersion
of the collective mode may be probed by applying an in-plane
magnetic field. These distinctive features will provide strong
evidence that a collective mode is being observed.

VI. PROMISING EXPERIMENTAL PLATFORMS

Now, we discuss several multicomponent examples where
the collective modes may be detected in I (V ) or dI/dV as
sharp peaks. We note that generalization of Eqs. (10) and (11)
to the case of multiple order parameters is straightforward.
Indeed, one may assume that the pair susceptibility takes the
form of a weighted sum of delta functions, Im χα,β (q, ω) =∑

i w
i
α,β (q)δ(ω − ωi(q)). This translates directly into a sum

of peaks at 2eV = ωi0 and weighted by wi
α,β in the dI/dV

[I (V )] for STM [planar] tunneling. We expect the magnitude
estimates, which were obtained above in the single order
parameter case, to apply also in the more general case. For
simplicity, we assume that the SC being probed is inver-
sion symmetric. If the L SC is conventional, only s-wave
Cooper pairs can be injected from the L electrode and only
the α-components corresponding to s-wave pairing survive.
Consider first multiband SCs, where s-wave pairing occurs in
two different Fermi surfaces α = 1, 2, as, e.g., in MgB2 and in
iron-based superconductors. In the latter case the two s-wave
components are out of phase, referred to as s± state. We
expect a collective mode (the Leggett mode) corresponding
to the out-of-phase oscillation of the two order parameters
�(1) and �(2). This mode will manifest as a pole in χ1,2.
The Leggett mode has been observed by Raman scattering
in MgB2 at a relatively high energy of 9.2 meV which lies

between the two doubled energy gaps [20]. Hence, this mode
is damped, but it is nonetheless interesting to search for this
peak within tunneling spectroscopy. We note that MgB2 pla-
nar tunneling junctions have been successfully fabricated [21].
For the Fe-based SCs, the situation is not so clear. We note
that recently an observation of the Leggett mode was reported
in single-layer NbSe2 in an experiment using a normal STM
tip [22]. Here, the Leggett mode is interpreted as giving an
excitation above the gap at energy � + ωi. Interestingly, the
experiment found that ωi/2 ≈ 0.7� which places the peak
well inside the gap and well below the MAR structure. Note
that NbSe2 features a small ratio of �/EF so that the STM
signal of the Leggett mode is expected to be very small, but
perhaps a planar junction experiment can be attempted.

As a second application we consider the case of a time-
reversal-breaking SC, more specifically of the type s + id , i.e.,
an admixture of s- and d-wave pairing. This case is treated
in detail in Ref. [3] and here we only summarize the salient
features. The important point is that the presence of the s-wave
component allows us to couple to novel collective modes
such as clapping modes. We define the s- and d-wave or-
der parameter components as (�(0),�(2) ) = (η0,−iη2)�0eiθ ,
where θ is the overall pair phase, and η0 and η2 are real
numbers satisfying η2

0 + η2
2 = 1. It is convenient to introduce

�± = �(0)/η0 ± �(2)/(iη2). The saddle-point solution occurs
at �+ = �0 and �− = 0. Expanding around the saddle point
we find the coordinates of the collective modes as

�+(r, t ) = eiθ [�0 + h(r, t )], (12)

�−(r, t ) = eiθ [a(r, t ) + ib(r, t )]. (13)

Here, h denotes the amplitude or Higgs mode, while a and
b denote two new modes which are generalizations of the
clapping mode in p + ip SCs. Poniatowski et al. [3] show
that these modes lie at approximately

√
2�0. We will now

show that they appear in the s-wave pair fluctuation channel
in Eq. (10). To this end, we expand

�(0)(r, t ) = eiθ [η0�0 + �̃(0)(r, t )]. (14)

It is easy to see that the fluctuating part is given by

�̃(0)(r, t ) = η0[h(r, t ) + a(r, t ) + ib(r, t )]. (15)

Hence, all three modes will appear in the α = 0 pair fluctu-
ation component in Eq. (10). In particular, the generalized
clapping modes will show up as peaks in the vicinity of
eV = �0/

√
2, well separated from the MAR peak at �0.

This is shown schematically in Fig. 1. In the iron-based SC
Ba1−xKxFe2As2, a time-reversal-breaking SC state appears
for x between 0.7 and 0.8 and is suspected to be an s + id
SC [23]. This is an excellent candidate to search for these
collective modes.

We consider a third example of triplet pairing where the
time-reversal-breaking state may be of the p + ip or p + i f
type. UTe2 may be an example [24]. This rather complicated
structure preserves inversion in the bulk, but it is possible,
indeed likely, that the top layer breaks inversion due to some
local structural relaxation. In this case the s-wave pair injected
by the L SC is admixed with the p- and f -wave order param-
eter in the first layer of the R SC, and the matrix element Mα

in Eq. (5) is nonzero for non-s-wave components. In this way,
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collective modes may couple to the current. Indeed, a recent
STM experiment using a Nb tip found a subgap peak near the
expected energy gap for UTe2 and a peak in dI/dV near zero
voltage suggestive of a broadened Josephson current [24]. The
latter observation points to an admixture of s-wave pairing in
the top layer, as we need. Unfortunately, the ratio �/EF may
be too small for STM to observe the collective mode in this
system.

VII. DISCUSSION

We end by discussing the feasibility of probing collective
modes of unconventional SC using either planar or STM
tunnel junctions. It is generally considered difficult to make
planar tunnel junctions in these systems, but with modern
fabrication techniques it may be possible to create nanoscale
tunnel junctions with high transparency that are free of pin-
holes. Another approach may involve stacks of van der Waals
materials such as transition metal dichalcogenides (TMDs). A
variety of insulating TMDs may be used to create monolayer
barriers between SC layers. In cuprates, a single layer of
insulating parent state may be used as tunneling barrier [25].
On the STM front, it has been demonstrated that it is possible
to pick up a piece of layered SC with an STM tip, which
then serves as the SC electrode [26]. This holds promise for
the present application: e.g., a cuprate SC tip would allow
the collective modes of systems with d-wave [27] or d + id
pairing symmetry to be probed. As noted above, the detection
of collective modes in STM relies on a relatively large ratio
of �/EF . Recently, a range of strongly correlated SCs have
been discovered, which represent promising candidates for the
present proposal. Notable examples are twisted bilayer and
trilayer graphene, where the ratio is so large that the BEC
limit may be reached [28]. Another example is the iron-based
topological SCs, which have very small Fermi energy [17].
An example that is not well understood is the superconductiv-
ity observed in YPtBi which involves doping of a quadratic
touching band with a very small Fermi energy and a short
coherence length [29]. We conclude that, while they are chal-
lenging, tunneling experiments probing the signatures of the
collective modes in unconventional SCs are within reach.
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APPENDIX A: DERIVATION OF TUNNELING CURRENT
DUE TO COLLECTIVE MODES

We model the junction by the single-electron tunneling
Hamiltonian

Htun =
∑
k,p,σ

tk,peieV t c†
L,k,σ

cR,p,σ + H.c., (A1)

where we have included the voltage V across the junction
through time-dependent tunneling. In this framework, one
may assume the electrons of both sides to be in equilibrium
and standard Matsubara diagrammatic techniques may be
applied. The DC current is given by averaging the current
operator related to Htun over time,

I = 1

β

∫ ∞

0
dτ I (τ ) = −2e

β

∑
kpσ

Im
∫ ∞

0
dτ 〈Tτ tk,pei(ieV )τ c†

Lkσ

× (τ )cRpσ (τ )U (β )〉, (A2)

where we defined the imaginary-time evolution operator

U (β ) = Tτ exp

[
−

∫ β

0
dτ ′Htun(τ ′)

]
. (A3)

(See Appendix B for a more careful treatment of the time-
dependent factor in imaginary time.) We can now expand
Eq. (A2) to fourth order in tk,p and proceed with the usual
decoupling into products of Green functions. We are inter-
ested in diagrams that involve the imaginary-time ordered pair
propagator for the R SC,

χα,β (q, τ ) = −〈
Tτ

[
�̂

(α)
k (q, τ ) �̂

(β )
k (q, 0)†

]〉
. (A4)

Upon Fourier transform and analytic continuation,
χα,β (q, iωn → ω + iη), η positive infinitesimal, becomes
the retarded pair susceptibility defined in Eq. (6). The
relevant diagrams are shown in Fig. 2(c). They consist of
the propagator connected to a triangular graph on each side.
The sides of the triangle that connect to χ must refer to
the R SC, which means the remaining side refers to the L
SC. Furthermore, this side must couple to the anomalous
propagator FL because we want to inject a pair from L to R.
There are two versions of the triangles, depending on whether
the L Green function is the normal G or the anomalous F .
We call the ones on the right of the pair propagator M1 and
M2. It is easy to see that the ones on the left are the respective
complex conjugates. In this way, we arrive at Eq. (7) where
M = M1 + M2. After analytic continuation, we obtain Eq. (5).
Note that the voltage eV is injected at each tunneling vertex
and is passed directly to the pair propagator. This has the
important consequence that the voltage gives a direct measure
of the collective mode frequency via 2eV = ωi.

1. Collective mode: STM junction

The momentum label on the triangles depends on the
nature of the tunnel junction. We first discuss the STM or
point contact tunneling case. The corresponding diagrams
are shown in Figs. 2(a) and 2(b). To simplify notation, we
consider a single s-wave component and suppress the α label.
The tunneling occurs at a single point, which means that tk,p

is independent of momentum and can be set to a constant t̃ .
In contrast to frequency, momentum is not conserved at the
vertex for tunneling at a point. The integration over k for
the L SC can be done separately, which simply gives the
anomalous Green function at r = 0, i.e., FL(r = 0, ωn) =
πNL(0)�L/

√
ω2

m + �2
L, where N (0) is the density of states at

the Fermi level. Furthermore, a finite momentum q is passed
on to the propagator, which needs to be integrated over. This

174503-6



DETECTION OF COLLECTIVE MODES IN … PHYSICAL REVIEW B 108, 174503 (2023)

gives rise to the integral over q shown in Eq. (4). This is the
main difference between STM and planar tunneling, as shall
be discussed below.

The full expression for M(q,V ) requires numerical inte-
gration. Here we consider some simple limits. First we set
q = 0 and then consider the expansion to quadratic order in
q. Equation (7) becomes

M(q = 0,V = 0) = T
∑

m

t̃2FL(r = 0, ωm)

×
∫

d p [GR(ωm, p)GR(−ωm,−p)

− FR(ωm, p)FR(−ωm,−p)] (A5)

= T
∑

m

t̃2 �L√
ω2

m + �2
L

NL(0)NR(0)

×
∫

dξp

[(
iωm + ξp

ω2
m + E2

p

)(−iωm + ξp

ω2
m + E2

p

)

× − �2
R

(ω2
m + E2

p )2

]
, (A6)

where Ep =
√

�2 + ξ 2
p and ξp = ε(p) − μ. We have set

V = 0 in this expression because its dependence on V is ex-
pected to be smooth for the following reason. As seen from the
diagrams in Fig. 2, the effect of V is to shift ωm to ωm + ieV
and ωm − ieV in the two normal Green functions G. The sum
over ωm in Eq. (A5) can be converted to an integral over
the real variable ωm → ω in the T → 0 limit. It is clear that
adding an imaginary part will affect the integral in a smooth
way.

The factor in square brackets in Eq. (A5) can be written as

1

ω2
m + ξ 2

p + �2
R

− 2�R(
ω2

m + ξ 2
p + �2

R

)2

= d

d�R

[
�R

ω2
m + ξ 2

p + �2
R

]
. (A7)

On the other hand, the Josephson energy is given by [10]

EJ = T
∑

m

t̃2
∫

dkd p FL(ωm, k)FR(ωm, p)

= T
∑

m

t̃2NL(0)NR(0)
∫

dξp
�L√

ω2
m + �2

L

�R

ω2
m + ξ 2

p + �2
R

.

(A8)

Hence, we find that

M(q = 0,V = 0) = ∂EJ

∂�R
(A9)

as quoted in the text.
Next we calculate the leading q2 term in M(q,V ). We

expand ξp+q ≈ ξp + vF q cos θ where θ is the angle between
p and q. We keep only the linear in q term in this expansion.
This amounts to assuming a constant Fermi velocity vF . After

FIG. 3. Diagrams that contribute to M1 in planar tunnel junc-
tions. (a) Momentum parallel to the plane is conserved. (b),
(c) Diffusive case. Dashed line represents averaging over the random
tunneling-matrix elements. (b) is in position space. Note that the
averaging forces both ends of the red line to be at the same r. (c) The
momentum-space version of (b) obtained by Fourier transform.

a straightforward but laborious calculation, we arrive at

M(q,V = 0) − M(q = 0,V = 0)

≈ −v2
F q2 π

4
t̃2NL(0)NR(0)

∫
dω

2π

�L√
ω2 + �2

L

�2
R − ω2(

�2
R + ω2

)5/2

(A10)

= −q2ξ 2
R

π2

8
t̃2NL(0)NR(0) f (y = �L/�R), (A11)

where we defined the BCS coherence length of the R SC ξR =
vF /π�R, as well as the dimensionless function

f (y) = y
∫

dw
1√

w2 + y2

1 − w2

(1 + w2)5/2
. (A12)

For y � 1, f → 2/3, while for y 	 1 it behaves as
f ∼ y ln 1/y. At �L = �R, f (1) = π/4. Thus, for �L � �R

and �L ∼ �R, M(q,V = 0) decreases with q on the scale of
the inverse of the coherence length ξR. The physical picture is
that the injected quasiparticle pair can travel a distance ξR in
the R SC before forming a Cooper pair. In the �L 	 �R limit
the scale depends on �L as well.

2. Collective mode: Planar junction

We now turn to the case of a planar tunnel junction. We
consider two tunneling models. First, we assume that momen-
tum parallel to the plane is conserved during the tunneling
process. The momentum labels in the triangle graph are shown
in Fig. 3(a). Note the difference from the STM case shown
in Fig. 2. Now there is only one momentum integration. Im-
portantly, the pair propagator carries momentum q = 0. This
will be changed to qH in the presence of a parallel magnetic
field [9]. In contrast to the STM case, there is no convolution
over q. We thus recover the prediction from linear response
to the pair-tunneling Hamiltonian Eq. (1). Second, we con-
sider diffusive scattering at the junction interface. We follow
Takayama [19] and assume local tunneling of the form

Hlocal tun =
∫

dr t̂ (r)
∑

σ

ψ
†
L,σ (r)ψR,σ (r) + H.c., (A13)

where r is the spatial coordinate in the plane, and t̂ is a random
variable such that 〈t̂ (r)t̂ (r′)〉 = t2

0 δ(r − r′). This model has
the desirable feature that the current, when computed to
fourth order in t0, scales correctly with the junction area. A
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more realistic model would have a nonzero average 〈t̂ (r)〉.
This latter part conserves parallel momentum and thus may
be included by simply adding the diagrams of Figs. 3(a) and
3(c). In Fig. 3(b) we show the triangle diagram in real space
where the dashed line represents averaging over the random
variable. Upon Fourier transform we obtain the diagram in
momentum space as shown in Fig. 3(c). The momentum
transfer to the pair propagator is zero in this case. In a parallel
magnetic field, momentum qH is injected at the tunneling
vertices, leading to qH dependence of M and excitation of the
collective mode at 2qH . We conclude that in both cases, the
planar tunneling case can be described by a pair-tunneling
Hamiltonian which is analogous to Eq. (1), except that C
should be replaced by a slowly varying function of V which
is nonlocal in space. Indeed, this function is readily obtained
from its Fourier transform C̃(q,V ) = M(q,V ), as described
in the main text below Eq. (8).

APPENDIX B: CALCULATION OF LEADING MAR
SUBGAP STRUCTURES

In this section we employ the Matsubara method to treat the
leading MAR structure which is fourth order in the tunneling-
matrix element. The equivalent calculation was done by
Cuevas et al. [14] for the STM case using the Keldysh tech-
nique. We first present results for the planar tunneling case,
including also finite-temperature effects. We were not able to
find this case treated in the literature, and we find the Matsub-
ara method to be less laborious than the Keldysh method, even
though some subtlety is involved.

As noted in the text, the voltage drop across the junction
can be absorbed into a time-dependent tunneling-matrix el-
ement tk,peieV t . After this step the SCs in the leads are at
equilibrium so that conventional Matsubara method can be
used. This was done in calculating the matrix element M
that couples to the collective mode in the last section. The
proper procedure was given by Tsuzuki [30] and used by
Takayama [19]. The idea is to introduce �n = 2πnT , where
n is a positive integer, and replace tk,peieV t by tk,pei�nτ , where
τ = it . In this way the evolution in τ is unitary. At the end
of the calculation, after internal Matsubara frequencies have
been summed, we replace i�n with eV . In a slight departure
from Tsuzuki, we keep the adiabatic turning on term eηt as
e−iητ so that i�n → eV + iη. We will see that failure to fol-
low this procedure will result in erroneous thermal factors.
This subtlety did not arise in the calculation of the matrix
element M in the previous section which involves only virtual
excitations of quasiparticles. In contrast MAR involves the
real excitation of quasiparticles and their thermal occupation
appears in a crucial way.

1. MAR: Planar junction

To illustrate this point, we give some details for the case
of planar junctions with diffusive scattering using the random
tunneling model described in the last section [19]. A repre-
sentative diagram for the current that shows the flow of mo-
mentum and frequency is shown in Fig. 4(a). There are other
diagrams where each solid line can be either G or F functions.
In other words, the diagram should be viewed as the trace of
the matrix product of four Green functions in Nambu space. In

FIG. 4. Representative diagrams that contribute to the MAR cur-
rents. (a) Planar junction, diffusive case. Dashed line represents
averaging over the random tunneling-matrix elements. (b) Planar
junction, clean case. Momentum parallel to the plane is conserved
resulting in a single momentum integral over k. (c) STM case.
The tunneling-matrix element represented by the solid dots add or
remove Matsubara frequency �n which is analytically continued to
�n → eV + iη after the sum over ωm is performed. In addition to the
diagrams shown, each solid line can be either G or F functions.

addition, the dashed line representing averaging over random
tunneling-matrix elements can connect the ends of the solid
lines on the top and bottom instead of left and right as shown
in Fig. 4(a). However, its contribution can be shown to be less
singular. Here, we show the evaluation of this particular dia-
gram which we label by i. The sum over k and k′ converts the
anomalous Green function FL to the local form, and we have
a single sum over p. We write the contribution of this diagram
to the MAR current for the diffusive planar junction as

IMAR
planar,i = 4e|t0|4Im Ji(i�n → eV + iη), (B1)

where

Ji(i�n) = T
∑

m

|FL(x = 0, ωm)|2A
∫

d p [GR(ωm + �n, p)

× GR(−ωm + �n,−p)] (B2)

= T
∑

m

π2�2
L

ω2
m + �2

L

N2
L (0)NR(0)A

∫
dξp

×
[

iωm + i�n + ξp

(iωm + i�n)2 − E2
p

][
−iωm + i�n + ξp

(−iωm + i�n)2 − E2
p

]
.

(B3)

Here A is the junction area. The sum over m is done
in the standard way by extending iωm to the complex
z and converting

∫
dξ to

∫
dE E/

√
E2 − �2 where

E =
√

ξ 2 + �2. There are 6 poles zi in Eq. (B2). The sum over
n leads to a sum over the product of the residues of these poles
and nF (zi ) where nF is the Fermi function. For eV > 0 the
important poles are at z3 = i�n − E and z2 = −z3. The Fermi
function becomes nF (z3) = nF (i�n − E ) = nF (−E ). The
last step is crucial. Had we not replaced eV by i�n, we would
have gotten nF (eV − E ) which is the wrong distribution and
will give a thermal smearing for eV near the gap �.

After this step we can set i�n → eV − iη. A pole
appears at E = eV + iη. Taking the imaginary part of
Ji(i�n → eV + iη) gives a delta function δ(2eV − 2E ). This
is the expression of energy conservation: the tunneling of a
Cooper pair gains an energy 2eV which are used to excite two
quasiparticles each at energy E . This is because momentum
is conserved on average after averaging over the random tun-
neling amplitudes and a pair of quasiparticles with opposite
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momenta p and −p and equal energy E are created. For
eV > � this opens up a new threshold for conduction. The
contribution of this diagram is given by

IMAR
planar,i = e

π3

2
|t0|4N2

L (0)NR(0)A
eV√

(eV )2 − �2

× [nF (−eV ) − nF (eV )]. (B4)

Inclusion of the other diagrams only changes the numerical
prefactor. The important thing to note is that the current ap-
pears as an inverse square root divergence above the threshold.
This just reflects the density of states of finding the quasi-
particle and is very different from the step singularity in the
well-known STM case. As we shall see below, this is because
in that case a pair of quasiparticles at energy Ep and Ep′ are ex-
cited and a convolution over two quasiparticle density of states
appear. Also note that the thermal factor nF (−eV ) − nF (eV )
comes from the poles at z3 and z2. This factor equals unity up
to corrections of order e−�/T which is negligible. Therefore
there is no thermal smearing of the square root divergence
near threshold.

It is useful to express the results in terms of the conduc-
tance 1/RN of the tunnel junction, which, in the diffusive case,
is given by

1

RN
= 4π

e2

h̄
|t0|2NL(0)NR(0)A, (B5)

and consider the ratio of the MAR current to the normal-state
current at eV = 2�, IN = 2�

eRN
. We also set NR(0) = m

2π
=

k2
F

4πEF
where kF and EF are the Fermi momentum and Fermi

energy of the R SC. We find

IMAR
planar

IN
∝ g

Ak2
F

EF

�

eV√
(eV )2 − �2

. (B6)

We can interpret AkF as the number of tunneling channels
and Teff = g

Ak2
F

as the tunneling probability per channel. Teff

describes the intrinsic transparency of a planar junction.
We can repeat the calculation for the smooth planar junc-

tion where momentum parallel to the interface is conserved.
A representative diagram is shown in Fig. 4(b). Now there
is only a single momentum sum and the results when ex-
pressed in terms of the conductance are essentially the same
as Eq. (B6).

2. MAR: STM junction

We have also reproduced the result for the STM case.
A representative diagram is shown in Fig. 4(c). Now there
are two momentum sums over p and p′, resulting in two
energy integrals. Taking the imaginary part results in a delta
function δ(E + E ′ = 2eV ). This expresses the fact that the
energy gained by tunneling a pair is used to excite a pair of
quasiparticles with momenta p and p′ and energy E and E ′.
Summing over all diagrams and taking �L = �R = �, we
find for eV > �

IMAR
STM = 2eπ3|t̃ |4N2

L (0)N2
R (0)�2

∫ 2eV −�

�

× dE
nF (−E ) − nF (E )√

E2 − �2
√

(2eV − E )2 − �2
, (B7)

leading to a step function at eV = �. This agrees with and
extends Ref. [14] to finite temperature, demonstrating that
the finite-temperature correction is exponentially small in
�/T . Its ratio to the corresponding normal current IN is
given by

IMAR
STM

IN
= π

16
gθ (eV − �). (B8)

Note that unlike the planar case, the factor NR(0) in the de-
nominator, which led to the Fermi energy EF appearing in the
numerator of Eq. (B6), does not arise.

We emphasize that there is no thermal smearing of the
MAR peak until a temperature comparable to the energy gap
� is reached. On the other hand, thermal noise gives rise to
voltage fluctuations as discussed in the main text. The MAR
structure can also be viewed as linear response to the order
parameter in the R SC except that quasiparticles are excited
instead of a collective mode. Therefore the voltage fluctuation
will broaden the MAR structure in the same way as the col-
lective mode is broadened. Thus the minimum broadening is
given by 
0. In practice, in planar junctions there are other
sources of broadening such as local inhomogeneity. The latter
is particularly important for many strongly correlated SCs
such as cuprates and iron-based SCs.
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