Published August 1, 1991 | Version public
Journal Article Open

Finite-amplitude bifurcations in plane Poiseuille flow: two-dimensional Hopf bifurcation

Abstract

We examine the stability to superharmonic disturbances of finite-amplitude two-dimensional travelling waves of permanent form in plane Poiseuille flow. The stability characteristics of these flows depend on whether the flux or pressure gradient are held constant. For both conditions we find several Hopf bifurcations on the upper branch of the solution surface of these two-dimensional waves. We calculate the periodic orbits which emanate from these bifurcations and find that there exist no solutions of this type at Reynolds numbers lower than the critical value for existence of two-dimensional waves ([approximate]2900). We confirm the results of Jiménez (1987) who first detected a stable branch of these solutions by integrating the two-dimensional equations of motion numerically.

Additional Information

Copyright © 1991 Cambridge University Press. Reprinted with permission. (Received 13 March 1990 and in revised form 21 January 1991) We wish to acknowledge helpful discussions with Philip Saffman and Dwight Barkley. This work was supported by the Department of Energy, Office of Energy Sciences (DE-AS03-76ER-72012), Applied Mathematical Sciences (KC-07-01-01).

Files

SOIjfm91.pdf

Files (1.5 MB)

Name Size Download all
md5:263c20c7c403130004425d447708f9ec
1.5 MB Preview Download

Additional details

Identifiers

Eprint ID
10213
Resolver ID
CaltechAUTHORS:SOIjfm91

Dates

Created
2008-04-16
Created from EPrint's datestamp field
Updated
2021-11-08
Created from EPrint's last_modified field

Caltech Custom Metadata

Caltech groups
GALCIT