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Nanomechanical resonators and sensors, operated in ambient conditions, often generate
low-Mach-number oscillating rarefied gas flows. Cercignani [C. Cercignani, J. Stat. Phys. 1,
297 (1969)] proposed a variational principle for the linearized Boltzmann equation, which
can be used to derive approximate analytical solutions of steady (time-independent) flows.
Here we extend and generalize this principle to unsteady oscillatory rarefied flows and thus
accommodate resonating nanomechanical devices. This includes a mathematical approach
that facilitates its general use and allows for systematic improvements in accuracy. This
formulation is demonstrated for two canonical flow problems: oscillatory Couette flow and
Stokes’ second problem. Approximate analytical formulas giving the bulk velocity and shear
stress, valid for arbitrary oscillation frequency, are obtained for Couette flow. For Stokes’
second problem, a simple system of ordinary differential equations is derived which may
be solved to obtain the desired flow fields. Using this framework, a simple and accurate
formula is provided for the shear stress at the oscillating boundary, again for arbitrary
frequency, which may prove useful in application. These solutions are easily implemented
on any symbolic or numerical package, such as Mathematica or MATLAB, facilitating the
characterization of flows produced by nanomechanical devices and providing insight into
the underlying flow physics.

DOI: 10.1103/PhysRevFluids.3.053401

I. INTRODUCTION

Continued improvement in nanofabrication techniques has led to a proliferation of new devices
which operate at the nanoscale. Applications include molecular-scale mass measurement [1–3],
imaging with atomic resolution [4,5], microscale and nanoscale measurement of fluid properties
[6–8], and ultrasensitive environmental sensing [9–11]. When operated in ambient laboratory
conditions, i.e., air at 1 atm, the interaction of these devices with the surrounding gas must
be considered when assessing their performance. This ensures both proper device design and
interpretation of measurements. While gas flows generated by macroscopic devices can be modeled
using the Navier-Stokes equations, flows at nanometer scales may violate the underlying continuum
assumption. We characterize the microscopic length scale dependence of the flow using the Knudsen
number

Kn ≡ λ

l
,

where l is the device size and λ is the mean free path of the gas. A second dimensionless group
naturally arises due to time dependence of the flow

θ ≡ ω

ν
,
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where ω is a characteristic angular oscillation frequency of the flow and ν is the most probable
collision frequency of the gas. The Navier-Stokes equations are formally valid in the binary limit
Kn → 0 and θ → 0. Under standard laboratory conditions, nanoscale devices will typically violate
the first of these conditions, while devices operated at low pressure, or with particularly high-resonant
frequencies, may violate the second. Therefore, these flows must be solved using an approach that
accounts for the fundamentally rarefied (noncontinuum) nature of the gas; this is afforded by the
Boltzmann equation [12].

In addition to the Kn and θ parameters described above, gas flows may also be characterized by
a Mach number

Ma ≡ U∗
cp

, (1)

where U∗ is a characteristic mean flow speed and cp is the most probable molecular speed; this is
proportional to the speed of sound in the gas. Flows generated by nanoscale devices typically exhibit
Ma � 1 and as such may be modeled using the linearized Boltzmann equation.

The linearized Boltzmann equation is analytically intractable in all but the simplest cases.
Additionally, its high dimensionality and the presence of discontinuities make numerical analysis
unusually difficult. For this reason, variational techniques are sometimes used to obtain relatively
simple analytical approximations for quantities of interest. Examples of this approach include the
shear stress in Couette flow [13], the mass flow rate in plane [13] and cylindrical [14] Poiseuille
flow, the drag on a sphere [15], the heat flux between concentric spheres [16], the model dependence
of velocity [17] and temperature [18] slip coefficients, and the transport [19] and sound dispersion
coefficients [20] of binary gas mixtures. In each of these examples, a variational principle is derived
for a formulation of the Boltzmann equation tailored specifically to the problem in question. In
Ref. [21] Cercignani built on this approach by deriving a general variational principle for the steady
linearized Boltzmann equation. This principle has since been applied to problems such as plane
Poiseuille flow with arbitrary boundary conditions [22,23], combined Couette-Poiseuille flow [24],
and with higher-order velocity slip coefficients [25,26].

In this article we extend Cercignani’s variational principle [21] to flows that exhibit oscillatory
(time-dependent) behavior. This is achieved by generalizing the principle from one that focuses on
real-valued functions to complex-valued functions which solve the linearized Boltzmann equation
in the frequency domain. Cercignani’s variational principle is briefly summarized in the next section
and its generalization to frequency-domain solutions is given in Sec. III.

When applying Cercignani’s variational method [21] (for steady flows), a trial function is selected
that approximates the true functional form of the solution in both the spatial and particle velocity
domains. This function includes arbitrary constants that are determined by applying the variational
principle, yielding a simple approximation of the flow. Although there is an error associated with
this solution, it may be shown that some specific physical quantities display a quadratic dependence
on this error. Improved accuracy for these quantities is therefore obtained, relative to the overall
accuracy of the solution; this is discussed further in Sec. II A.

Using the above approach, some prior knowledge of the flow is necessary to select an appropriate
trial function. Although this may be straightforward for steady flows, it is often difficult for oscillatory
flows that generally exhibit a more complex spatial dependence. To overcome this limitation, we
present a systematic method of solution in Sec. IV, in which the distribution function’s form is
specified only in particle velocity space, with no prior knowledge of the flow’s spatial dependence
being required. This defines a spectral method similar1 to that described in Ref. [28], where a

1In the case where θ = 0, numerical results suggest that the two methods are identical, although we have
not proven this. For arbitrary θ , the method given in Sec. 7.3 of Ref. [27], which is similar to that given in in
Ref. [28], yields numerically identical results, although once again we have not proven that the methods are
equivalent.
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Galerkin approach is used to solve the steady linearized Boltzmann equation. Note that where
previous applications of the variational principle (mentioned above) have focused on a quantity
of interest which can be found with quadratic error, here we are using the principle to derive a
general method which simplifies the selection of a trial function.

This method is demonstrated in Sec. V A for the Bhatnagar-Gross-Krook (BGK) kinetic model,
though it can be used for any collision operator. First, the unsteady variational principle is used to
derive analytical solutions for oscillatory Couette flow. The validity of these formulas is explored
by comparison to slip solutions (in the near-continuum regime) and full numerical solution to the
Boltzmann equation. This is followed in Sec. V B by an illustration of the variational method’s ability
to transform the Boltzmann equation into a simpler system of differential equations that depends on
spatial variables only, for Stokes’ second problem. Such a transformation facilitates solution through
use of standard solution methods for systems of first-order ordinary differential equations. Finally,
an analytic solution of these equations is used to derive a simple and accurate formula for the shear
stress on the oscillating surface.

II. CERCIGNANI’S VARIATIONAL METHOD

The method presented here for unsteady rarefied flows is founded on the variational principle of
Cercignani [21], which is also discussed in Refs. [29,30]. We therefore begin by summarizing some
key results of this previous theory.

A. General theory

To begin, the (general) equation

L[h] = s (2)

is specified, where L is some linear operator, s is a source term, and h is the unknown real-valued
function to be determined. Next the existence of a linear scalar product 〈 ,〉 is assumed such that

〈L[p],q〉 = 〈p,L[q]〉, (3)

where p and q are functions in the space operated on by 〈 ,〉; h is included in this space. Finally, we
define the functional

J (h) = 〈h,L[h]〉 − 2〈s,h〉. (4)

Taking a solution of Eq. (2), h, and adding an error term ϑ gives

ĥ = h + ϑ, (5)

which upon insertion into Eq. (4) yields

J (ĥ) = 〈h + ϑ,L[h + ϑ]〉 − 2〈s,h + ϑ〉 = J (h) + 〈ϑ,L[ϑ]〉. (6)

This gives rise to two useful properties. (i) The solution to Eq. (2), where ϑ = 0, may now be
characterized as an extremum of Eq. (6), i.e., a stationary point of J (ĥ). (ii) The value of J (ĥ) varies
quadratically with the error in the trial function (5). When J (ĥ) can be related to a physical quantity,
this may therefore be determined with error O(ϑ2). Note that although both properties (i) and (ii)
are used in Refs. [13–26], only property (i) holds for the extended variational principle discussed in
Sec. III. Application of this general theory to the steady linearized Boltzmann equation is discussed
next.

B. Application to the steady linearized Boltzmann equation

The Boltzmann equation describes the evolution of the number density distribution function of gas
particles f (c∗,x∗), where c∗ is particle velocity and x∗ is spatial position. For brevity, henceforth we
abbreviate “number density distribution function” to “distribution function.” An asterisk indicates
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an unscaled variable throughout. For low-Mach-number flows associated with nanoscale devices,
this function may be expressed as a small perturbation h from some global equilibrium state

f (c∗,x∗) = f̄ eq(c∗)[1 + h(c∗,x∗)], (7)

where the global equilibrium f̄ eq is that of the gas at rest, given by the Maxwell-Boltzmann
distribution

f̄ eq(c∗) = n0

(2πRT0)3/2
exp

(
− c2

∗
2RT0

)
, (8)

where c2
∗ = c∗ · c∗, R is the specific gas constant, and n0 and T0 are the equilibrium number density

and temperature, respectively. Bulk properties of the gas flow follow similarly, giving (for example),

n(x∗) = n0[1 + σ (x∗)], T (x∗) = T0[1 + κ(x∗)], (9)

where σ and κ are the local number density and temperature perturbations, respectively. These
representations enable linearization of the Boltzmann equation for small Ma.

We scale the particle velocity by the most probable particle speed, i.e., c∗ = c
√

2RT0, and all
spatial coordinates by a geometric length scale, i.e., x∗ = xl; variables without an asterisk denote
the scaled coordinates. The steady linearized Boltzmann equation is then given by

Knc · ∂h

∂x
= L[h] + s, x ∈ �, c ∈ R3, (10)

where L is a linearized collision operator, s is a source term, and � represents the spatial domain
(which may vary from one to three dimensions). The (scaled) linearized BGK [12,31] operator is

L[h(c,x)] = heq(c,x) − h(c,x), (11)

where heq is the local equilibrium perturbation

heq(c,x) = σ + 2c · u + (
c2 − 3

2

)
κ, (12)

and

σ (x) = 1

π3/2

∫
R3

h(c1,x)e−c2
1 dc1, u(x) = 1

π3/2

∫
R3

c1h(c1,x)e−c2
1 dc1,

κ(x) = 2

3π3/2

∫
R3

(
c2

1 − 3

2

)
h(c1,x)e−c2

1 dc1 (13)

give the scaled local density, velocity, and temperature perturbations, respectively. The BGK operator
is used here for simplicity; however, the methods outlined in this article may be applied to any
linearized collision operator.

The boundary conditions associated with Eq. (10) are given by the general form

h+(c,x) = B[h−(c,x)] + sb(c,x), x ∈ ∂�, (14)

where h+ and h− are the distribution function perturbations for outbound (c · n > 0) and inbound
(c · n < 0) particle velocities to the boundary, respectively; n is the unit normal vector to the boundary
pointing into the gas. The operator B transforms functions defined for c · n < 0 to functions defined
over c · n > 0. The term sb is a boundary source term with no dependence on the inbound function.
We note that this general boundary condition introduces a discontinuity in particle velocity space
between h+ and h−.

We employ the diffuse boundary condition for a solid boundary, which in its linearized form is

h+(c,x) = {
σb + 2c · ub + (

c2 − 3
2

)
κb

}
, x ∈ ∂�, (15)
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where ub and κb are the velocity and the temperature perturbations of the boundary. The boundary
density perturbation σb is obtained by enforcing mass conservation at the wall [12],

σb = ub · n
√

π − 1

2
κb − 2

π

∫
c1·n<0

h−(c1)e−c2
1 c1 · n dc1. (16)

While the diffuse boundary condition is chosen for simplicity, more general boundary conditions
such as those of Maxwell [32] or Cercignani and Lampis [33] can also be used. Open boundaries,
where no solid wall is present, are modeled as an interface with a gas at equilibrium. In such cases, σb,
ub, and κb are the local density perturbation, velocity, and temperature perturbation of this (external)
gas, respectively.

Equation (10) is then expressed in the operator form

D[h] − L[h] = s, (17)

where D represents the advection term on the left-hand side of Eq. (10). The operation used in Eq. (3)
is defined as the scalar product

〈p,q〉 =
∫

�

∫
R3

p(c,x)q(−c,x)e−c2
dc dx, (18)

where p and q are taken to be real-valued functions. Both the collision operator L and advection
operator D possess the symmetry of Eq. (3) when the operation defined in Eq. (18) is used, i.e.,

〈L[p],q〉 = 〈p,L[q]〉, 〈D[p],q〉 = 〈p,D[q]〉. (19)

The reader is directed to Refs. [21,29,30] for proof and further discussion of Eq. (19).
Given a trial solution ĥ that satisfies the boundary condition (14), the solution to Eq. (10) is then

specified by the stationary point of

J (ĥ) = 〈ĥ,D[ĥ] − L[ĥ]〉 − 2〈ĥ,s〉. (20)

Equation (20) is the required result that enables calculation of approximate solutions to the linearized
Boltzmann equation for steady flows.

III. GENERALIZATION OF THE VARIATIONAL METHOD TO THE FREQUENCY-DOMAIN
BOLTZMANN EQUATION

The unsteady linearized Boltzmann equation is

∂h

∂t
+ Knc · ∂h

∂x
= L[h] + s, x ∈ �, c ∈ R3, (21)

where the time variable is scaled by the most probable particle collision time, i.e., t = t∗ν. Due to
linearity, the distribution function perturbation h takes the time dependence

h(c∗,x∗,t∗|ω) = h̃(c∗,x∗|ω)e−iωt∗ , (22)

where ω is the angular frequency of the flow, i is the imaginary unit, and h̃ is the spatial and particle
velocity dependence of the (complex-valued) distribution function; the tilde will be used henceforth
to denote this component. Inserting Eq. (22) into Eq. (21) yields the frequency-domain Boltzmann
equation

−iθ h̃ + Knc · ∂h̃

∂x
= L[h̃] + s̃. (23)

The frequency-domain BGK operator follows directly from Eq. (13),

L[h̃] = h̃eq(c,x) − h̃(c,x), (24)
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where

h̃eq(c,x) = σ̃ + 2c · ũ + (
c2 − 3

2

)
κ̃, (25)

with

σ̃ (x) = 1

π3/2

∫
R3

h̃(c1)e−c2
1 dc1, ũ(x) = 1

π3/2

∫
R3

c1h̃(c1)e−c2
1 dc1,

κ̃(x) = 2

3π3/2

∫
R3

(
c2

1 − 3

2

)
h̃(c1)e−c2

1 dc1. (26)

Note that the frequency-domain Boltzmann equation (23) is the equation governing a single Fourier
component of a flow of arbitrary time dependence. If a flow is driven with sinusoidal time dependence
θ , the equation yields the solution at large t , i.e., after any startup effects have dissipated. Flows of
arbitrary time dependence can in principle be reconstructed from solutions for multiple θ values; an
example of this approach is given in Ref. [34].

In the operator notation of Eq. (17), Eq. (23) becomes

−iθ h̃ + D[h̃] − L[h̃] = s̃. (27)

The form of the boundary condition in Eq. (14) is unchanged, with h simply replaced by h̃.
Next we separate the real and imaginary parts of Eq. (27),

D[h̃Re] − L[h̃Re] = −θh̃Im + s̃Re, (28a)

D[h̃Im] − L[h̃Im] = θh̃Re + s̃Im. (28b)

The functional specified by Eq. (20) is then obtained separately for the real and imaginary equations,
giving

J̃Re(ĥ) = 〈ĥRe,D[ĥRe] − L[ĥRe]〉 + 2〈ĥRe,θ ĥIm + s̃Re〉, (29a)

J̃Im(ĥ) = 〈ĥIm,D[ĥIm] − L[ĥIm]〉 − 2〈ĥIm,θ ĥRe − s̃Im〉, (29b)

where ĥ is a complex-valued trial function that exactly satisfies the boundary conditions. Note that
in the functional for the real part of the trial function (29a), the imaginary part of the trial function
appears as a source term. Similarly, in Eq. (29b), the real part of the trial function appears as a source
term. Following the approach of Sec. II A, Eqs. (29) may be expressed

J̃Re(ĥ) = J̃Re(h̃) + 2θ〈ϑ̃Im,h̃Re〉 + 2θ〈ϑ̃Re,ϑ̃Im〉 + 〈ϑ̃Re,L[ϑ̃Re]〉, (30a)

J̃Im(ĥ) = J̃Im(h̃) − 2θ〈ϑ̃Re,h̃Im〉 − 2θ〈ϑ̃Im,ϑ̃Re〉 + 〈ϑ̃Im,L[ϑ̃Im]〉, (30b)

where ϑ̃Re and ϑ̃Im are the errors in the real and imaginary components of the solution, respectively.
As in Sec. II A, the stationary point in Eqs. (30) occurs when the error terms equal zero. Interestingly,
the error in each functional is no longer quadratic; J̃Re(ĥ) varies linearly with ϑ̃Im and J̃Im(ĥ) varies
linearly with ϑ̃Re. Next we present a methodology for locating the stationary point in Eqs. (29),
systematically implementing this variational principle for general oscillatory flows.

IV. METHODS OF SOLUTION

In Sec. IV A we first outline a systematic solution method that requires the functional form of the
trial function ĥ to be specified only in particle velocity space and which requires no prior knowledge
of the flow field. This is followed in Sec. IV B by an approach that facilitates solutions for highly
nonequilibrium flows. These techniques are used in Sec. V to derive simple approximate solutions
for two canonical problems.
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FIG. 1. Illustration of an example trial function where discontinuities in particle velocity space vary as a
function of the spatial coordinates. For arbitrary position x, particle velocities emanating from boundary A

pass through shaded region II, particle velocities emanating from boundary B pass through region I, particle
velocities emanating from boundary C pass through region IV, and particle velocities emanating from boundary
D pass through region III. The heavy dashed lines represent discontinuities in particle velocity space. The light
dashed lines trace the particle velocities from each corner of the domain to the arbitrary spatial position x.

A. Direct solution using basis functions

1. Defining the trial function

To define the trial function ĥ, we note that the boundary condition in Eq. (14) introduces a
discontinuity into the distribution function h̃. For each boundary in the spatial domain, with outward
normal vector n, this discontinuity occurs in particle velocity space where c · n = 0. This happens
because the boundary condition is only applied to particle velocities where c · n > 0, i.e., to particles
leaving the surface. In the free molecular limit, each discontinuity propagates into the spatial domain
along characteristics emanating from the edges of its originating boundary. These characteristics are
defined by the direction of particle motion, i.e.,

x(ξ ) = ξ
c
|c| + x0, x0 ∈ ∂�, (31)

where each characteristic is parametrized by ξ . Consequently, we separate the trial function ĥ into
segments of particle velocity space representing characteristics emerging from a given boundary.
For a flow with P boundaries, there are P segments, each represented by the function ĥp(c,x). A
simple example of this approach that involves straight boundary segments is illustrated in Fig. 1;
boundaries of arbitrary shape are equally applicable and are discussed in the Appendix. Importantly,
the functions ĥp(c,x) are zero outside of the region of particle velocity space that they represent.
This produces discontinuities in the trial function ĥ following characteristics from the edges of each
boundary, as required for free molecular flow. Each segment of the trial function, i.e., ĥp(c,x), is then
expanded as a linear combination of N specified (real-valued) basis functions in particle velocity
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space an(c) such that

ĥp(c,x) =
N∑

n=1

an(c)mp
n(x). (32)

The value of the spatial functions m
p
n(x), for the relevant region of particle velocity space, is

determined by the variational procedure detailed below.
For nonfree molecular flows, the discontinuities originating at the boundaries are removed by

particle collisions as they propagate into the spatial domain; however, sharp jumps in particle velocity
space remain. For highly rarefied flows, where few particle collisions occur, these jumps persist away
from the boundaries, whereas for near continuum flows, there are many particle collisions and these
jumps are restricted close to the boundaries. Setting the trial function to be discontinuous at the
location of these jumps allows the functions ĥp(c,x) [Eq. (32)] to be specified with relatively low
order. This method offers superior accuracy compared to using a single expansion to represent the
whole of particle velocity space, an approach which would generally require a trial function of much
higher order to capture the jumps.

By way of illustration, consider the example given in Fig. 1, a two-dimensional region bounded
by x = 0 (boundary A), y = 0 (boundary B), x = 1 (boundary C), and y = 1 (boundary D). We
apply the diffuse boundary condition given in Eq. (15), with boundaries A and D being stationary,
boundary B oscillating in the x direction with scaled amplitude U , and boundary C oscillating in the
z direction with scaled amplitude 2U . To simplify this example, mass conservation is neglected by
artificially setting σb = 0;2 this condition also naturally occurs for the cases studied in later sections,
but does not hold generally. This gives

h̃+
A(x = 0) = 0, h̃+

B (y = 0) = 2Ucx, h̃+
C (x = 1) = 4Ucz, h̃+

D(y = 1) = 0 (33)

for boundaries A, B, C, and D, respectively. The trial function is broken into P = 4 regions
representing the characteristics emanating from each of the four boundaries,

ĥ(cx,cy,x,y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ĥI(cx,cy,x,y), (cx,cy) ∈ I

ĥII(cx,cy,x,y), (cx,cy) ∈ II

ĥIII(cx,cy,x,y), (cx,cy) ∈ III

ĥIV(cx,cy,x,y), (cx,cy) ∈ IV.

(34)

Here segment I corresponds to particle velocities emanating from boundary B, segment II to velocities
emanating from boundary A, segment III to velocities from boundary D, and segment IV to velocities
from boundary C. This division is illustrated by the shaded regions in Fig. 1, for an arbitrary point
in the spatial domain. We note that the location of these divisions in particle velocity space varies as
a function of the spatial coordinates.

Considering the basis functions an(c) to be polynomials, each segment of the trial function, as
per Eq. (32), is given by

ĥp(cx,cz,x,y) = cxm
p
1(x,y) + czm

p
2(x,y) + cxczm

p
3(x,y), (35)

2This unphysical boundary condition simplifies analysis by ignoring the perturbed particles incoming to the
wall, i.e., mass conservation is not enforced.
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FIG. 2. Illustration of the example trial function for a simple one-dimensional flow. Here particles emanating
from boundary B pass through region I, whereas region II is for particles emanating from boundary A. Unlike
Fig. 1, the division of particle velocity space occurs at cy = 0 regardless of the spatial location. This is because
characteristics emanating from each plate become parallel to the plate as x → ±∞, regardless of the value
of y.

where we have used N = 3 basis functions. Combining Eqs. (34) and (35) yields a discontinuous
(piecewise) trial function defined in four segments of particle velocity space,

ĥ(cx,cz,x,y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cxm
I
1(x,y) + cym

I
2(x,y) + cxcym

I
3(x,y), (cx,cy) ∈ I

cxm
II
1(x,y) + cym

II
2(x,y) + cxcym

II
3(x,y), (cx,cy) ∈ II

cxm
III
1 (x,y) + cym

III
2 (x,y) + cxcym

III
3 (x,y), (cx,cy) ∈ III

cxm
IV
1 (x,y) + cym

IV
2 (x,y) + cxcym

IV
3 (x,y), (cx,cy) ∈ IV.

(36)

At each boundary, the conditions in Eq. (33) are applied by specifying the value of the m
p
n functions

which belong to the regions of particle velocity space where c · n > 0, i.e., the functions defined for
particle velocities emanating from that boundary. For boundary A this gives

mII
1(0,y) = 0, mII

2(0,y) = 0, mII
3(0,y) = 0,

whereas boundary B yields

mI
1(x,0) = 2U, mI

2(x,0) = 0, mI
3(x,0) = 0,

while boundary C gives

mIV
1 (1,y) = 0, mIV

2 (1,y) = 4U, mIV
3 (1,y) = 0,

and for boundary D we have

mIII
1 (x,1) = 0, mIII

2 (x,1) = 0, mIII
3 (x,1) = 0.

A second example is given in Fig. 2, where the domain for a one-dimensional flow is shown. Here
characteristics emanating from boundary A towards boundary B are contained in particle velocity
space segment II, i.e., cy < 0. Segment I represents characteristics originating at boundary B, i.e.,
cy > 0. Unlike the higher-dimensional example in Fig. 1, the resulting discontinuity in particle
velocity space (at cy = 0) is obviously independent of the spatial location. This greatly simplifies
analysis in the following sections, compared to the more general case in Fig. 1. As mentioned
previously, the focus of this article is to obtain simple solutions for one-dimensional flows. Because
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these flows feature domains similar to that shown in Fig. 2, we proceed by assuming a trial function
where the divisions in particle velocity space are independent of the spatial coordinates.

2. Applying the variational principle

Inserting the trial function into Eq. (29) and integrating over particle velocity space gives

J̃Re(ĥ) =
∫

�

MRe
(
m

p
Re,n(x),mp

Im,n(x)
)
dx, (37a)

J̃Im(ĥ) =
∫

�

MIm
(
m

p
Re,n(x),mp

Im,n(x)
)
dx, (37b)

where the resulting integrands MRe and MIm now depend exclusively on the spatial variables; explicit
expressions for M are not provided here, but examples are given in the next section. The stationary
point of J̃ is given by the simultaneous Euler-Lagrange equations

∂MRe

∂m
p
Re,n

− ∂

∂x
∂MRe

∂m
p
x,Re,n

= 0,
∂MIm

∂m
p
Im,n

− ∂

∂x
∂MIm

∂m
p
x,Im,n

= 0 (38)

for 1 � n � N and 1 � p � P , giving 2NP real-valued equations. Here

∂

∂x
∂M

∂m
p
x,n

= ∂

∂x

∂M

∂m
p
x,n

+ ∂

∂y

∂M

∂m
p
y,n

+ ∂

∂z

∂M

∂m
p
z,n

and m
p
x,n, m

p
y,n, and m

p
z,n indicate the derivatives of the functions m

p
n with respect to each of the

spatial coordinates. Recall that in the real functional (29a) the imaginary part of the trial function is
treated as a source term. Similarly, in the imaginary functional (29b) the real part of the trial function
is considered a source term. The functional derivative of MRe is therefore taken only with respect to
the functions m

p
Re,n and m

p
x,Re,n and the derivative of MIm is taken using only the functions m

p
Im,n and

m
p
x,Im,n.
An alternative derivation of Eq. (38) is given by inserting the complex-valued trial function ĥ

directly into the functional originally defined for the steady case [Eq. (4)]. In this case the linear
operator is given by

L[ĥ] = D[ĥ] − L[ĥ] − iθ ĥ, (39)

yielding

J̃ (ĥ) = 〈ĥ,D[ĥ] − L[ĥ] − iθ ĥ〉 + 2〈ĥ,s〉. (40)

This gives NP complex-valued Euler-Lagrange equations

∂M

∂m
p
n

− ∂

∂x
∂M

∂m
p
x,n

= 0, 1 � n � N, 1 � p � P, (41)

where M is now the integrand of the functional in Eq. (40), i.e.,

J̃ (ĥ) =
∫

�

M
(
mp

n(x)
)
dx.

Taking the real and imaginary parts of Eq. (41) gives Eq. (38). Although this derivation is simpler,
the existence of the required stationary point is more clearly illustrated using the approach given by
Eqs. (29) and (37).

Solving Eq. (38) or (41) gives a solution to the frequency-domain Boltzmann equation; steady
flows are easily modeled using this approach with θ = 0. Increasing N systematically refines these
solutions. For small values of N , simple equations are obtained which can yield good approximations
to full numerical solutions of the Boltzmann equation (see Sec. V).
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B. Decomposition using the gain-free solution

Oscillatory flows near solid walls are characterized by regions of strong departure from
equilibrium, which spread further into the spatial domain as the flow becomes more rarefied. To
accommodate this effect, we present a solution method for the variational principle that naturally
handles the intrinsic collisionless flows immediately near solid boundaries.

In the collisionless binary limit Kn → ∞ and θ → ∞, the Boltzmann equation becomes

Knc · ∂h̃

∂x
= iθ h̃. (42)

The form of Eq. (42) is essentially unchanged by the inclusion of the loss term −h from the BGK
operator [35,36],

Knc · ∂h̃

∂x
= (iθ − 1)h̃. (43)

This equation differs from the frequency-domain Boltzmann equation only by the absence of the
gain term h̃eq in the collision operator [see Eqs. (23) and (24)]. We therefore designate Eq. (43)
the gain-free Boltzmann equation. This equation may be solved along characteristics specified by
Eq. (31), giving

h̃gf = h̃+(x0) exp

(
iθ − 1

Kn|c| ξ

)
, (44)

with the subscript gf indicating gain-free. Equation (44) becomes increasingly oscillatory as |c| → 0.
This can be difficult to handle numerically, and its explicit inclusion here improves approximation
using the variational method.

To incorporate this gain-free solution into the overall solution of the Boltzmann equation, we
insert a solution of the form [35,36]

h̃ = h̃1 + h̃gf (45)

into the frequency-domain Boltzmann equation (23), giving

Knc · ∂h̃1

∂x
= (iθ − 1)h̃1 + h̃

eq
1 + h̃

eq
gf , (46)

where h̃
eq
gf arises from the gain term in the collision operator and is derived by inserting h̃ = h̃gf

into Eq. (26) and subsequently Eq. (25). Equation (46) may be solved for h̃1 using the variational
approach described in Sec. IV A, with h̃

eq
gf treated as a source term, i.e., s̃ = h̃

eq
gf . The performance

of this approach relative to that of the direct method in Sec. IV A (which does not make use of the
gain-free solution) is explored in the next section.

V. RESULTS AND DISCUSSION

We now apply the methods described in Sec. IV to two one-dimensional flows: oscillatory Couette
flow and Stokes’ second problem. First, oscillatory Couette flow is used to illustrate the relative accu-
racies of the two methods (presented in Secs. IV A and IV B), for which approximate formulas valid
for arbitrary Kn and θ are derived. We also compare solutions obtained using the approach in Sec. IV A
to those obtained using the Navier-Stokes equation in conjunction with a slip boundary condition.
Second, the approaches of Secs. IV B and IV A are used to derive a simple system of equations
approximating Stokes’ second problem. The first of these is easily solved using standard numerical
techniques, while the second yields an analytic solution that may prove valuable in application.

A. Oscillatory Couette flow

The flow geometry is bounded by two infinite parallel walls at y = 0 and y = 1 (see Fig. 3). The
upper wall oscillates in the x direction with scaled velocity amplitude U , where U∗ = U

√
2RT0,
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FIG. 3. Schematic of the oscillatory Couette flow geometry showing the coordinate system and geometry.

and scaled angular frequency θ , while the lower wall is stationary. The domain is unbounded in the
x and z directions. The solid walls are assumed to be diffusely reflecting, the boundary conditions
of which then follow from Eq. (15), with

ĥ+(cx,cy,y) =
{

2Ucx, y = 1, cy < 0

0, y = 0, cy > 0.
(47)

The solution methods in Sec. IV are now used to solve this flow problem.

1. Direct solution using polynomial basis functions

We first consider the direct approach of Sec. IV A that uses polynomials for the basis functions
an(c) in Eq. (32). As per the example in Fig. 2, the trial function is first separated into two distinct
parts corresponding to particle velocities in the upward (cy > 0) and downward (cy < 0) directions,

ĥ(cx,cy,y) =
{
ĥI(cx,cy,y), cy > 0

ĥII(cx,cy,y), cy < 0,
(48)

where the velocity space dependence of the resulting two functions is expanded using polynomials
in cy to give

ĥI(cx,cy,y) = cx

N∑
n=1

mI
n(y)cn−1

y , (49a)

ĥII(cx,cy,y) = cx

N∑
n=1

mII
n(y)cn−1

y . (49b)

For consistency, each component in Eq. (49) uses the same polynomial degree N . The linear
dependence in Eq. (49) on cx follows directly from the linearized Boltzmann equation (23) for
this flow. The components of ĥ emanating from y = 0 and y = 1 contain the (as yet unspecified)
functions mI

n(y) and mII
n(y).

To solve for ĥ, we locate the stationary point of the functional specified in Eq. (37), with respect
to the 2N functions mI

n and mII
n. Using the definition of Eq. (48), the functional is

J̃ =
∫

�

M(ĥI,ĥII)dx, (50)

where the integrand M is

M(ĥI,ĥII) =
∫

cy<0
ĥII(c)

{
− Kncy

∂

∂y
ĥI(−c) − LI[ĥ(−c)] − iθ ĥI(−c)

}
e−c2

dc

+
∫

cy>0
ĥI(c)

{
− Kncy

∂

∂y
ĥII(−c) − LII[ĥ(−c)] − iθ ĥII(−c)

}
e−c2

dc. (51)
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Note that the integrals in Eq. (51) are performed over the entire R3 particle velocity space where
the indicated condition on cy applies. Because polynomial basis functions and the BGK collision
operator are used, these integrals are performed analytically; use of more complicated collision
operators, such as that for hard spheres, would normally require numerical computation. Recall that
the operation used to generate Eq. (51) entails reversal of the velocity coordinate [see Eq. (18)],
giving

ĥ(−c) =
{
ĥII(−c), cy > 0

ĥI(−c), cy < 0.
(52)

The BGK collision terms then become

LI[ĥ(−c)] = −2cxũx − ĥI(−c), LII[ĥ(−c)] = −2cxũx − ĥII(−c), (53)

where

ũx = 1

π3/2

∫
cy,1>0

cy,1ĥ
I(c1)e−c2

1 dc1 + 1

π3/2

∫
cy,1<0

cy,1ĥ
II(c1)e−c2

1 dc1. (54)

Finally, M [Eq. (51)] is inserted into Eq. (41) to obtain the required system of ordinary differential
equations (Euler-Lagrange equations) for the mI

n and mII
n functions comprising ĥ. In terms of the trial

function (48), the diffuse boundary conditions for Couette flow (47) are given by

ĥII(y = 1) = 2Ucx, ĥI(y = 0) = 0. (55)

This implies mII
1(1) = 2U and mII

n(1) = 0 for n > 1 and mI
n(0) = 0 for all n. This system may be

solved using standard matrix methods, giving the solution as a sum of exponential functions.

2. Decomposition using the gain-free solution and polynomial basis functions

Here we apply the decomposition described in Sec. IV B. For Couette flow, the gain-free solution
in Eq. (44) becomes

h̃gf(cx,cy,y) =
{

2Ucx exp
( − iθ−1

Kncy
(1 − y)

)
, cy < 0

0, cy > 0.
(56)

This expression is combined with a polynomial trial function, giving

ĥ = ĥ1 + h̃gf, (57)

where ĥ1 is of the same polynomial form specified in Eqs. (48) and (49). To proceed, we largely
repeat the procedure of the preceding section, with the pure polynomial trial function [Eqs. (48) and
(49)] replaced by the decomposed trial function in Eq. (57). We amend Eq. (51) to include the source
term specified in Eq. (46), resulting from the inclusion of h̃gf in the trial function. This yields

M(ĥII,ĥI) =
∫

cy<0
ĥII

1(c)

{
− Kncy

∂

∂y
ĥI

1(−c) − LI[ĥ1(−c)] − iθ ĥI
1(−c) + 2h̃

eq
gf (−c)

}
e−c2

dc

+
∫

cy>0
ĥI

1(c)

{
− Kncy

∂

∂y
ĥII

1(−c) − LII[ĥ1(−c)] − iθ ĥII
1(−c) + 2h̃

eq
gf (−c)

}
e−c2

dc.

(58)

As discussed above, the source term is derived by inserting h̃ = h̃gf into Eq. (26), followed by
Eq. (25). For Couette flow this gives

h̃
eq
gf (−c) = −2cxũgf,x, (59)
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where

ũgf,x = 1

π3/2

∫
cy,1<0

cy,1h̃gf(c1)e−c2
1 dc1. (60)

This is the bulk velocity due to the gain-free solution, which may be expressed using the Meijer G

function [37]

ũgf,x = U
(y−1)(iθ+1)

4πKn G
0,3
3,0

(
−1/2,0,0

∣∣∣∣− (1 − y)2(i + θ )2

4Kn2

)
. (61)

As in Sec. V A 1, the integrand M is inserted into Eq. (41) to obtain the Euler-Lagrange equations,
the solution of which gives mI

n and mII
n. These functions specify ĥ1 via Eq. (32). Note that the Couette

flow boundary conditions in Eq. (47) have been applied to the gain-free solution (56). We therefore
solve for mI

n and mII
n using homogeneous boundary conditions.

In Fig. 4 we compare results obtained by implementing trial functions that use (i) the simple
polynomial expansion in Eq. (49) (derived in the preceding section) and (ii) the gain-free solution
(57). Convergence in shear stress, as a function of the degrees of freedom in particle velocity space,
is shown for four example flows. The numerical results of Ref. [38] are used as a benchmark; see the
figure caption for further detail. As expected, including the gain-free solution in the trial function
strongly enhances accuracy for the two most rarefied cases [Figs. 4(a) and 4(b)], with the difference
decreasing as the near continuum limit is approached [Fig. 4(d)].

Finally, Fig. 5 shows flow profiles resulting from trial functions that incorporate the simple
polynomials given by Eq. (49) and the gain-free solution (57). Once again these are compared
to the results given in Ref. [38]. In each of the highly rarefied examples, instabilities arise when
a simple polynomial trial function is used, whereas the trial function incorporating the gain-free
solution accurately captures the entire flow field.

3. Approximate analytical solutions

Applying the variational approach to one-dimensional problems can produce equations that are
analytically tractable when N is sufficiently small. Here we apply the methods in Secs. V A 1 and
V A 2 to derive simple expressions approximating the solution for oscillatory Couette flow.

a. Direct solution using polynomial basis functions. We begin with a trial function consisting of
a simple polynomial expansion, as in Sec. V A 1. Setting N = 1 yields

h̃(cx,cy,y) = cxU ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 sinh
(√

πy
ζ

Kn

)
2ζ cosh

(√
π

ζ

Kn

)
+(1+2iθ) sinh

(√
π

ζ

Kn

) , cy < 0

4ζ cosh
(√

πy
ζ

Kn

)
+2(1+2iθ) sinh

(√
πy

ζ

Kn

)
2ζ cosh

(√
π

ζ

Kn

)
+(1+2iθ) sinh(

√
π

ζ

Kn )
, cy > 0,

(62)

where ζ = √
θ (i − θ ), whose real and imaginary parts are both positive. The scaled bulk velocity

follows from Eq. (54),

ũx = U
ζ cosh

(√
πy

ζ

Kn

) + (1 + iθ ) sinh
(√

πy
ζ

Kn

)
2ζ cosh

(√
π

ζ

Kn

) + (1 + 2iθ ) sinh
(√

π
ζ

Kn

) . (63)

The shear stress τx is obtained using

τ̃x = 1

π3/2

∫
cy,1>0

cx,1cy,1ĥ
I(c1)e−c2

1 dc1 + 1

π3/2

∫
cy,1<0

cxcy,1ĥ
II(c1)e−c2

1 dc1, (64)

resulting in

τ̃x = U
ζ cosh

(√
πy

ζ

Kn

) + iθ sinh
(√

πy
ζ

Kn

)
2
√

πζ cosh
(√

π
ζ

Kn

) + (1 + 2iθ )
√

π sinh
(√

π
ζ

Kn

) . (65)
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FIG. 4. Oscillatory Couette flow: convergence comparison of the two different trial functions. The solid
red lines are for a simple polynomial expansion in particle velocity space [Eq. (49)], where the degrees of
freedom listed are specified by 2N . The dashed blue lines are for trial functions of the form in Eq. (57), which
incorporates a polynomial expansion with 2N degrees of freedom plus the gain-free solution. The error shown
corresponds to that of the shear stress’s magnitude, averaged over the entire spatial domain. It is calculated
using the high-accuracy solutions of Ref. [38] as benchmarks.

In Fig. 6(a) the bulk velocity field given by Eq. (63) is shown for a range of flow parameters and
compared to exact results taken from Ref. [38]. The approximation performs reasonably well for
low values of Kn and θ , but becomes inaccurate as rarefaction increases. In Table I(a) the error in
shear stress on the oscillating boundary is shown. Once again the results of Ref. [38] are used as a
benchmark. The approximation performs well for large Kn and θ , with accuracy decreasing as the
continuum limit is approached.

The observation that the shear stress at the oscillating boundary is accurate for highly rarefied flows
is unsurprising because the free molecular solution at that position depends only on the boundary
condition itself. This is evident by solving the free molecular Boltzmann equation (42), giving

h̃fm(cx,cy,y) =
{

2Ucx exp
(− iα

cy
(1 − y)

)
, cy < 0

0, cy > 0,
(66)
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FIG. 5. Oscillatory Couette flow. Bulk velocity profiles for are shown for two highly rarefied flows: (a) and
(b) the simple polynomial trial function (49) (dashed lines) and (c) and (d) the trial function incorporating the
gain-free solution (57) (solid lines). Open circles denote the high-accuracy numerical solutions of Ref. [38].
In each case, variational solutions using 16 degrees of freedom from Fig. 4 are shown. Instabilities are clearly
visible when using a simple polynomial trial function, whereas the trial function incorporating the gain-free
solution accurately matches the true solution. [The effect of these instabilities is similar to instabilities seen
in other direct numerical solutions of the frequency-domain Boltzmann equation for strongly nonequilibrium
(highly rarefied) flows, e.g., see Ref. [39]. In the continuum limit, such oscillations in Eq. (44) are obviously
reduced and the function decays exponentially from the boundary. Inclusion of the discontinuous and strongly
oscillatory gain-free solution, which arises naturally in highly rarefied flows, can enhance the convergence of
solution methods for the Boltzmann equation [36].]

where α ≡ θ/Kn is the free molecular parameter. Note that Eq. (66) is derived using the method of
characteristics, as described in Sec. IV B. By setting y = 1, we observe that the solution is specified
entirely by the boundary conditions (55). Because the variational procedure described above is
constructed to satisfy the boundary conditions, it exactly captures this case; this is the reason for
the high accuracy in shear stress displayed for large Kn and θ [see Table I(a)]. This effect is also
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FIG. 6. Oscillatory Couette flow: bulk velocity profiles for a range of Kn and θ values. (a) Solid lines
show the approximate analytical solutions obtained using the variational method of Sec. IV, with an N = 1
polynomial trial function, i.e., Eq. (63). (b) Solid lines show Eq. (71), which uses the heuristic replacement rule.
(c) Solid lines show the approximate solutions where the trial function incorporates the gain-free solution (75).
Open circles denote high-accuracy numerical solutions of Ref. [38].
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TABLE I. Oscillatory Couette flow. The percentage error in the absolute shear stress on the oscillating
boundary is shown. The column headings give the error when the shear stress is calculated using an approximate
analytical formula that makes use of an N = 1 polynomial basis. (a) Equation (65) is used. (b) Equation (72),
which employs the heuristic replacement rule, is used. (c) Error when shear stress is calculated using the formula
which incorporates the gain-free solution (76). Errors are calculated for all values of Kn and θ for which accurate
benchmark solutions are available in Ref. [38].

θ

Kn 0.1 1 10 100

(a) Polynomial trial function with unmodified parameters
0.1 13 2.3 0.031
1 20 0.97 0.30 0.020
10 0.79 1.4 1.0 0.16

(b) Polynomial trial function with modified parameters
0.1 3.3 1.5 0.024
1 5.1 4.7 0.43 0.024
10 2.2 1.5 0.8 0.093

(c) Gain-free plus polynomial trial function
0.1 3.3 1.4 0.024
1 1.1 0.031 0.0029 0.00096
10 0.017 0.46 0.27 0.00066

apparent in the bottom two plots in Fig. 6(a). Although the overall accuracy is poor, the bulk velocity
is matched very well at the oscillating boundary y = 1.

The poor accuracy in shear stress observed at low Knudsen number (seen in the Kn = 0.1 and
θ = 0.1 case) occurs as, approaching the continuum limit, viscous effects arise from the n = 2 term
in the polynomial expansion given by Eq. (49). In other words, an N = 2 expansion will yield a
much better approximation of the shear stress; this is evident in the results of Sec. V B. Interestingly,
excellent near-continuum results may be obtained, for Couette flow, using an N = 1 expansion
combined with the rescaling of the flow parameters described in the next section.

b. Direct solution using polynomial basis functions, with modified flow parameters. Here we
demonstrate an ad hoc approach which produces improved formulas in the case of oscillatory Couette
flow. To analyze the above results in the continuum limit we introduce the Stokes parameter β ≡
θ/Kn2 [40]. The continuum limit is formally recovered by taking Kn → 0 and θ → 0 along this
path. For the bulk velocity solution given by Eq. (63), we find

ũx = U
sinh(

√
πiβy)

sinh(
√

πiβ)
. (67)

This differs from the true solution [38], which is found by solving the Stokes equations directly,

ũS,x = U
sinh(

√
2iβy)

sinh(
√

2iβ)
, (68)

where the subscript S refers to the Stokes solution. Similarly, taking the continuum limit in the shear
stress formula given by Eq. (65) yields

τ̃x = UKn

√
iβ

π

cosh(
√

πiβy)

sinh(
√

πiβ)
, (69)
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which once again differs from the true solution

τ̃S,x = U Kn

√
iβ

2

cosh(
√

2iβy)

sinh(
√

2iβ)
. (70)

The error in Eqs. (67) and (69) arises because they are derived using the N = 1 polynomial expansion,
containing only the single term cy . The N = 2 trial function, containing cxcy , is required to capture
the correct result in the continuum limit (68) and (70). In this latter case, it is possible (in principle)
to derive a formula since the matrix eigenvalues and vectors may be found analytically. However,
this is difficult for Couette flow due to the presence of two solid walls; this approach is more practical
for Stokes’ second problem, which is discussed in Sec. V B.

Interestingly, the solutions in Eqs. (67) and (69) match Eqs. (68) and (70) if we replace the
Stokes parameter using β → (2/π )β or equivalently Kn → (π/2)Kn and θ → (π/2)θ . Applying
this change to Eqs. (63) and (65) yields

ũx = U

√
πζ̂ cosh

(
y

ζ̂

Kn

) + (2 + iπθ ) sinh
(
y

ζ̂

Kn

)
2
√

πζ̂ cosh
(

ζ̂

Kn

) + 2(1 + iπθ ) sinh
(

ζ̂

Kn

) , (71)

τ̃x = U
ζ̂ cosh

(
y

ζ̂

Kn

) + i
√

πθ sinh
(
y

ζ̂

Kn

)
2
√

πζ̂ cosh
(

ζ̂

Kn

) + 2(1 + iπθ )
√

π sinh
(

ζ̂

Kn

) , (72)

where ζ̂ = √
θ (2i − πθ ). Using these heuristically modified parameters gives the correct bulk

velocity and shear stress in the continuum limit and greatly improves accuracy for low Kn and
θ . Interestingly, only a modest reduction in accuracy is seen for intermediate values of Kn and θ , and
almost no difference to Eqs. (67) and (69) is observed for highly rarefied flows. This is illustrated in
Fig. 6(b), where a range of bulk velocity profiles, given by Eq. (71), are again compared to the exact
solutions. The observed invariance in the large Kn and θ results, under this heuristic modification,
follows from the fact that the free molecular parameter is unchanged. In Table I(b) the error in the
shear stress at the oscillating boundary, given by Eq. (72), is shown. The heuristically modified
formulas, which match the continuum limit, display a marked improvement in accuracy.

c. Decomposition using the gain-free solution and polynomial basis functions. Incorporating the
gain-free solution, as in Sec. V A 2, and setting N = 1 gives

h̃1(cx,cy,y) = cx

{
h̃II

1, cy < 0

h̃I
1, cy > 0,

(73)

where

h̃I
1 = U

2ζ

{
A+(0,y)

[
2ζ cosh

(√
πζ

Kn
y

)
− (1 + 2iθ ) sinh

(√
πζ

Kn
y

)]

+
(

A+ (0,1)
sinh

(√
πζ

Kn

)
2ζ cosh

(√
πζ

Kn

) + (1 + 2iθ ) sinh
(√

πζ

Kn

) − A− (y,1)

)
sinh

(√
πζ

Kn
y

)}
,

h̃II
1 = U

2ζ

{(
A+ (0,1)

sinh
(√

πζ

Kn

)
2ζ cosh

(√
πζ

Kn

) + (1 + 2iθ ) sinh
(√

πζ

Kn

) − A− (y,1)

)

×
[

2ζ cosh

(√
πζ

Kn
y

)
− (1 + 2iθ ) sinh

(√
πζ

Kn
y

)]
+ A+(0,y) sinh

(√
πζ

Kn
y

)}
, (74)

with

A± (a,b) = 2
√

π

Knζ

∫ b

a

ũgf,x(y1)

{
±ζ cosh

(√
πζ

Kn
y1

)
+ (1 + iθ ) sinh

(√
πζ

Kn
y1

)}
dy1.
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The bulk velocity incorporating the gain-free solution is given by

ũx = ũgf,x + h̃I
1

4
+ h̃II

1

4
, (75)

where ũgf,x is given in Eq. (61), and the shear stress is

τ̃x = τ̃gf,x + h̃I

4
√

π
− h̃II

4
√

π
, (76)

where

τ̃gf,x = −U
(y − 1)2(θ − i)

8πKn
G

0,3
3,0

(
−1,−1/2,0

∣∣∣∣− (1 − y)2(θ − i)2

4Kn2

)
. (77)

Figure 6(c) shows the approximate velocity fields given by Eq. (75), for a range of Knudsen
numbers and scaled oscillation frequencies; Ref. [38] is again used for comparison. For moderate
to highly rarefied flows Kn > 0.1 and θ > 0.1, the approximation that incorporates the gain-
free solution is more accurate than the approximation given by Eq. (63), shown in Fig. 6(a).
Unsurprisingly, the difference in accuracy is enhanced with increasing rarefaction.

In Table I(c) the error in the shear stress at the oscillating boundary is given. We see that Eq. (76)
provides an excellent estimate of the shear stress across a wide range of Knudsen numbers and
oscillation frequencies. Again, this approximation exhibits smaller error compared to the simple
polynomial solution (65) in the region Kn > 0.1 and θ > 0.1.

It is difficult to formally take the continuum limit for Eqs. (75) and (76); however, numerical
analysis indicates that the relative error in both expressions rapidly increases as Kn → 0 and θ → 0,
suggesting that these approximations should only be applied when Kn � 0.1 and θ � 0.1. This
contrasts with Eqs. (71) and (72), which are exact in the continuum limit.

4. Comparison to steady (near-continuum) slip solution

Polynomial solutions of the type studied in Sec. V A 1 are most accurate for slightly rarefied flows
(near continuum). They may therefore be compared to Navier-Stokes solutions obtained using slip
boundary conditions, which are also derived for slightly rarefied flows. For simplicity, we restrict
our analysis to the steady case (θ = 0); however, these observations apply equally to the oscillatory
flows of the previous sections.

Continuum equations may be obtained from the Boltzmann equation via a Hilbert expansion in the
asymptotic limit of low Knudsen number. This process is detailed in Refs. [12,41] (and Ref. [42] for
unsteady flows). At leading order, the Stokes equations for creeping flow are obtained, with O(Kn)
corrections occurring at the solid boundaries; these are the first-order slip boundary conditions. For
steady Couette flow, the Stokes equations reduce to

∂2ux

∂y2
= 0. (78)

We henceforth omit the subscript x and employ the notation u0 to describe the (leading-order)
continuum solution to Eq. (78). The O(Kn) correction obtained using the slip boundary condition
is designated u1 and thus the complete slip solution is us = u0 + Knu1 + O(Kn2). The required
boundary conditions at each solid wall are formally

us(0) = σ Kn
∂u0

∂y

∣∣∣∣
y=0

, us(1) = U − σ Kn
∂u0

∂y

∣∣∣∣
y=1

, (79)

where σ is the first-order slip coefficient. This is derived for steady flow in Ref. [41] and for oscillatory
flow in Ref. [42]. In each case fully diffuse boundary conditions are assumed, for which σ = 1.0162.
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In practice, the following formulas are often used (they are correct to identical order in Kn):

us(0) = σKn
∂us

∂y

∣∣∣∣
y=0

, us(1) = U − σKn
∂us

∂y

∣∣∣∣
y=1

. (80)

This yields a solution which matches the one obtained using the boundary conditions in Eq. (79), to
O(Kn). The solution to Eqs. (78) and (80) is

us(y) = y + σ Kn

1 + 2σ Kn
, (81)

which may be expanded

us(y) = u0(y) + Knu1(y) + O(Kn2), (82)

where u0(y) = y and u1(y) = σy. Equation (82) is the solution obtained when the formal boundary
conditions in Eq. (79) are used.

We now apply the simple polynomial approach of Sec. V A 1, with θ = 0, using trial functions
of the form in Eqs. (48) and (49). The resulting system of equations is

∂

∂y
ĥ = 1

Kn
Aĥ, (83)

where

ĥ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṽ1(y)
...

ṽN (y)

b̃1(y)
...

b̃N (y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(84)

and A is defined separately for each value of N used below. As mentioned previously, this system
may be solved using standard matrix methods. For steady flows a fully analytical solution is possible
up to N = 3; however, in practice, this is difficult for N > 2. We note that, as per Eq. (83), the
dependence on Knudsen number may be factored out of the matrix A, allowing the eigenvalues to
be determined numerically for all Kn. This greatly simplifies analysis for N > 2, although solutions
become more complex as N increases.

For N = 1 the matrix A is

A =
√

π

2

[−1 1
−1 1

]
. (85)

The solution to Eq. (83) gives

u(y) = y + σ1Kn

1 + 2σ1Kn
, (86)

where σ1 = 1/
√

π . This is the leading-order solution in the particle velocity coordinate cy . It is of
identical form to Eq. (81), but with a slip coefficient σ1 = 1/

√
π = 0.5642 rather than σ = 1.0162.

The subscript 1 is used to denote the value arising from the N = 1 solution, and similarly for larger
values of N .

For N = 2 the matrix A is

A = 1√
π (4 − π )

⎡
⎢⎢⎢⎣

−π (−3 + π )
√

π π −√
π

(−2 + π )
√

π 2 − π (2 − π )
√

π −2 + π

−π −√
π π (−3 + π )

√
π

(2 − π )
√

π 2 − π (−2 + π )
√

π −2 + π

⎤
⎥⎥⎥⎦ (87)
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FIG. 7. Steady Couette flow: bulk velocity profile near the moving plate for Kn = 0.1 (and θ = 0). The slip
solution correct to O(Kn) is the solid straight line, while the N = 1 and N = 2 variational solutions are the
dotted and dashed curves, respectively. The open circles are the exact solution obtained using the Monte Carlo
method of Refs. [43,44]. As expected, the slip solution (solid line) matches the flow away from the wall, but
does not account for the Knudsen layer near the wall. Conversely, the N = 1 solution (dotted curve) accurately
approximates the true boundary condition but is poor away from the wall. The N = 2 solution (dashed curve)
provides a good approximation over the entire flow domain.

and the solution to Eq. (83) gives

u(y) = exp
(

η

Kn

)
Kn(π − 4) + β−Kn

{
exp

( (2−y)η
Kn

) − exp
( (1+y)η

Kn

)}
4 exp

(
η

Kn

)
Kn(π − 4) + exp

( 2η

Kn

)
(2α−Kn − γ−) + 2α+Kn + γ+

+ β+Kn
{

exp
(

η

Kn

) − exp
(

yη

Kn

)} − exp
( 2η

Kn

){
yγ− − α−Kn

} + {yγ+ + α+Kn}
4 exp

(
η

Kn

)
Kn(π − 4) + exp

( 2η

Kn

)
(2α−Kn − γ−) + 2α+Kn + γ+

, (88)

where

α± = 4 + π ± 3
√

2π, β± = ±2 +
√

2π, γ± = 2
√

2 ± 4
√

π +
√

2π, η =
√

2(π − 2)

(π − 4)
.

Taking the limit Kn → 0 in Eq. (88) again yields a solution with the form of Eq. (81). In this case,
the slip coefficient is σ2 = α+/γ+ = 1.0209. A very good approximation to the true slip coefficient
(σ = 1.0162) and the O(Kn) solution is therefore obtained using a low-order approximation in
particle velocity space.

For N = 3 the eigenvalues for A in this case are found numerically, as described above. The
matrix A and function u(y) are too complex to reproduce here; however, using a procedure similar to
that for N = 2 gives a solution of identical form to Eq. (81), with a slip coefficient of σ3 = 1.0171.

Figure 7 compares flow fields obtained from the complete N = 1 [Eq. (86)] and N = 2 [Eq. (88)]
solutions, that due to the slip solution in Eq. (81), and a direct solution of the Boltzmann equation
using the Monte Carlo method of Refs. [43,44]. While closely matching the slip result in the body of
the flow, the N = 2 solution provides a better approximation to the true velocity field in the Knudsen
layer.

B. Stokes’ second problem

In this section we demonstrate two approaches that yield approximate solutions for Stokes’ second
problem. Each of these approaches makes use of an N = 2 trial function and therefore provides the
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FIG. 8. Schematic of Stokes’ second problem showing the coordinate system.

correct solution in the continuum limit. First, we derive a simple system of ordinary differential
equations that incorporates the gain-free solution discussed in Sec. IV B. This system is easily
solved using standard numerical techniques. Second, we find an analytical solution using a simple
polynomial trial function in the same manner as in Sec. V A 3 a. In the case of Stokes’ second
problem, this is possible for N = 2. As the resulting solution is impracticably large, we provide a
formula which further approximates the shear stress at the surface of the oscillating plate (see the
Supplemental Material in [45]).

The spatial domain is bounded at y = 0 by a wall oscillating longitudinally along the x axis with
amplitude U and angular frequency θ . The domain is unbounded in the x, z, and positive y directions
(see Fig. 8). The wall at y = 0 is diffusely reflecting, with the boundary condition following from
Eq. (15) and given by

h̃+(0) = 2Ucx, cy > 0. (89)

The gas far from the wall (y → ∞) is in the global (quiescent) equilibrium state, which is
implemented numerically by applying the open boundary condition at y = Yb,

h̃+(Yb) = 0, cy < 0, (90)

where Yb is increased systematically until it has no appreciable effect on the solution.
Because this flow lacks any geometric scale, the length scale is chosen to be the most probable

distance traveled by a gas particle in a single oscillation period, i.e., l = √
2RT0/ω. Applying this

new length scale to Eq. (23) gives

−iθ h̃ + θc · ∂h̃

∂x
= L[h̃], (91)

where the source term s is zero for Stokes’ second problem. The lack of a geometric length scale
causes the degree of rarefaction to be governed exclusively by the scaled oscillation frequency, with
the flow becoming more rarefied for larger θ .

1. Simple equations obtained using the gain-free methodology

In Ref. [46], Eq. (91) is solved using both finite-difference and integro-moment [47] methods,
with the shear stress at the oscillating boundary calculated for a range of θ values.3 Here we employ
the variational method of Sec. IV B, which incorporates the gain-free solution, to derive a simple
system of ordinary differential equations. These equations are easily solved to obtain approximate
solutions for arbitrary θ .

As before, we begin with the gain-free equation

θc · ∂h̃

∂x
= (iθ − 1)h̃, (92)

3The reader is cautioned that in Ref. [46] the definition of θ is the reciprocal of that used in this article, i.e.,
θ = ν/ω.
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which yields the solution

h̃gf(cx,cy,y) =
{

0, cy < 0

2Ucx exp
(

iθ−1
θcy

y
)
, cy > 0,

(93)

where we have applied the boundary condition in Eq. (89). From Eq. (45) we then obtain

θc · ∂h̃1

∂x
= (iθ h̃1 − 1) + h̃

eq
1 + h̃

eq
gf . (94)

Following the same procedure as Sec. V A 2, the functional in Eq. (41) becomes

M =
∫

cy<0
ĥII

1(c)

{
− θcy

∂

∂y
ĥI

1(−c) − LI[ĥ1(−c)] − iθ ĥI
1(−c) + 2h̃

eq
gf (−c)

}
e−c2

dc

+
∫

cy>0
ĥI

1(c)

{
− θcy

∂

∂y
ĥII

1(−c) − LII[ĥ1(−c)] − iθ ĥII
1(−c) + 2h̃

eq
gf (−c)

}
e−c2

dc, (95)

where

h̃
eq
gf (−c) = −2cxũgf,x (96)

and

ũgf,x = U
y(1 − iθ )

4πθ
G

0,3
3,0

(
−1/2,0,0

∣∣∣∣−y2(i + θ )2

4θ2

)
. (97)

In Sec. V A 3, ĥI and ĥII are each specified using a single term to obtain analytically tractable
equations. Here we instead use

ĥI = cxm
I
1(y) + cxcym

I
2(y), ĥII = cxm

II
1(y) + cxcym

II
2(y). (98)

Combining Eqs. (41), (95), and (98) then gives the required system

∂

∂y
ĥ = 1

(π − 4)θ
Aĥ + ũgf,x(y)

(π − 4)θ
d, (99)

where

ĥ =

⎡
⎢⎢⎢⎣

mI
1(y)

mI
2(y)

mII
1(y)

mII
2(y)

⎤
⎥⎥⎥⎦, d =

⎡
⎢⎢⎢⎣

−4
√

π

4(π − 2)

4
√

π

4(π − 2)

⎤
⎥⎥⎥⎦, (100)

and

A =

⎡
⎢⎢⎢⎣

√
π (1 − 2iθ ) 3 − 4iθ + iπ (i + θ ) −√

π 1

(π − 2)(2iθ − 1) π−2√
π

π − 2 2−π√
π√

π 1
√

π (2iθ − 1) 3 − 4iθ + iπ (i + θ )

π − 2 π−2√
π

(2iθ − 1)(π − 2) 2−π√
π

⎤
⎥⎥⎥⎦.

(101)

These equations are easily solved4 to obtain an approximate solution to Eq. (91) for arbitrary θ .
As discussed in Sec. V A 2, homogeneous boundary conditions are to be used in solving Eq. (99),

4We note that the system of equations (99) is essentially transport equations for the individual spectral
components of the solution. Where any numerical method with a directional flux of information is used, it
should be applied in the direction ‘upwind’ from the boundary condition for each individual equation.
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TABLE II. Stokes’ second problem. The percentage error in the magnitude and phase of the shear stress
on the oscillating solid wall is shown for three different variational solutions: (a) obtained by numerically
solving Eq. (99); (b) results from analytically solving the same system as in (a) but setting ũgf,x(y) = 0, i.e.,
the polynomial method (this solution is provided in the Mathematica file in [45]); and (c) analytical formula
(103) derived by approximating the solution used in (b). Although the italicized percentage errors are large, the
absolute error is much less than 0.1, because the phase approaches zero for large θ . Errors are calculated using,
as benchmarks, high-accuracy results from the approach of Sec. V A 1 for θ � 1 and Sec. IV A for θ > 1. These
high-accuracy results agree with those of Ref. [46], except for θ = 0.02, where discrepancies of 1.9% in the
magnitude and 0.2% in the phase are observed.

θ

Parameter 0.02 0.05 0.1 0.2 1 10 100

(a) Numerical solution to Eq. (99), including the gain-free term
Magnitude 0.17 0.13 0.039 0.18 0.27 0.0033 0.0025
Phase 0.081 0.26 0.47 0.69 0.91 1.3 1.5

(b) Analytic solution to Eq. (102), excluding the gain-free term
Magnitude 0.019 0.33 0.58 0.88 0.52 0.00070 0.013
Phase 0.34 0.62 0.78 0.59 3.1 4.1 4.3

(c) Approximation of the analytic solution (103)
Magnitude 0.019 0.33 0.59 0.89 0.034 1.9 0.35
Phase 0.34 0.62 0.79 0.58 2.8 186 154

because the condition for the moving wall [Eq. (89)] is applied to ũgf,x(y). In Table II the error
in shear stress at the oscillating boundary is shown for several values of θ . In Fig. 9 several bulk
velocity profiles are compared to those obtained using the frequency-domain Monte Carlo approach
of Refs. [34,48]; good agreement is obtained for a wide range of θ values.

2. Accurate formula for shear stress at the solid wall using the polynomial approach

Finally, we derive a simple and accurate formula for the shear stress at the solid wall in Stokes’
second problem, which may be of value in practice. Setting ũgf,x(y) = 0 in Eq. (99) yields the system
of equations arising from a simple polynomial trial function

∂

∂y
ĥ = 1

(π − 4)θ
Aĥ, (102)

where ĥ and A are given by Eqs. (100) and (101). The removal of ũgf,x greatly simplifies the
application of standard matrix techniques for Stokes’ second problem, making it practical to derive
an analytical solution. Note that, because we have discarded the gain-free term, the moving wall
boundary condition must now be applied to solve these equations. The resulting solution to Eq. (102)
is complicated and is provided in a Mathematica file in [45]. This solution is valuable because it may
be used as the basis for further approximation, giving simple formulas for quantities of interest. For
example, the shear stress at the oscillating surface can be well approximated by

τ̃y=0 = U

1 + (
θ
20

)2 S2/2(θ ) +
(

θ
20

)2

1 + (
θ
20

)2

U

2
√

π
, (103)

where

S2/2(θ ) = 0.5(1 − i)
√

θ − 3.819 61iθ − 5.486 84(1 + i)θ3/2 − 3.041 58θ2

1 + 4.840 52(1 − i)
√

θ − 19.4812iθ − 16.7356(1 + i)θ3/2 − 12.326θ2
. (104)
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FIG. 9. Stokes’ second problem. Bulk velocity profiles are shown as a function of θ values. Solid curves
show the frequency-domain Monte Carlo solutions obtained using the method of Refs. [34,48] and dashed curves
the variational approximation of Eq. (99), which gives good agreement with the true (Monte Carlo) solution.
Note that the oscillations visible in the θ = 10 case are inaccuracies which may be removed by increasing the
order of the trial function. They are not a numerical instability of the kind discussed in Sec. IV B and seen in
Figs. 5(a) and 5(b).

Equation (103) is derived using several simplifications to (i) make the problem tractable and
(ii) obtain a solution that is reasonably concise. First, the system of equations (102) is solved using
eigenvectors expanded in θ to third order about θ = 0. The resulting shear stress formula is somewhat
simpler than the full solution (shown in the Mathematica file in [45]), but is accurate only for θ < 1.
This formula is further simplified by taking the order [2/2] Padé approximation, again around θ = 0,
giving Eq. (104). This expression remains accurate in the region θ < 1; however, it does not give the
correct result as θ → ∞, due to approximation of the eigenvectors (above) in solving Eq. (102). This
is addressed in Eq. (103) by combining the Padé approximant with the θ → ∞ solution 1/2

√
π . The

combination has been chosen such that the crossover between the low- and high-θ solutions occurs
at θ = 20. This value is selected empirically, resulting in an error of less that 2.5% in the shear stress
magnitude for all values of θ (see Table II). For comparison, the error exhibited by the complete
analytic solution to Eq. (102) is also shown.

VI. CONCLUSION

We have extended Cercignani’s variational method, originally formulated for steady flows, to
oscillatory flows of the type generated by resonating nanomechanical devices. This was done by
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TABLE III. Summary of approximate oscillatory flow solutions derived in this study.

Expansion Formula Solution

Couette flow

N = 1 polynomial
expansion using heuristic
replacement rule

Bulk velocity (71) ũx = U
√

πζ̂ cosh(y ζ̂
Kn )+(2+iπθ) sinh(y ζ̂

Kn )

2
√

πζ̂ cosh( ζ̂
Kn )+2(1+iπθ) sinh( ζ̂

Kn )

Shear stress (72) τ̃x = U
ζ̂ cosh(y ζ̂

Kn )+i
√

πθ sinh(y ζ̂
Kn )

2
√

πζ̂ cosh( ζ̂
Kn )+2(1+iπθ)

√
π sinh( ζ̂

Kn )

where ζ̂ = √
θ (2i − πθ )

N = 1 polynomial
expansion including
gain-free term

Bulk velocity (75) ũx = ũgf,x + h̃I
1

4 + h̃II
1

4
where ũgf,x ,h̃

I
1, and h̃II

1 are specified in
Eqs. (61) and (74)

Shear stress (76) τ̃x = τ̃gf,x + h̃I
1

4
√

π
+ h̃II

1
4
√

π

where τ̃gf,x ,h̃
I
1, and h̃II

1 are specified in
Eqs. (77) and (74)

Stokes’ second problem

N = 2 polynomial
expansion, approximate
analytical solution

Shear stress at
oscillating surface

Eq. (103)

τ̃y=0 = U

1+( θ
20 )2 S2/2(θ ) + ( θ

20 )2

1+( θ
20 )2

U

2
√

π

where S2/2(θ ) is specified in Eq. (104)

N = 2 polynomial
expansion including
gain-free term

Bulk velocity
Eq. (54)

ũx = 1
π3/2

∫
cy,1>0 cy,1ĥ

I(c1)e−c2
1 dc1

+ 1
π3/2

∫
cy,1<0 cy,1ĥ

II(c1)e−c2
1 dc1

where ĥI and ĥII are the solution to Eq. (99)
Shear stress

Eq. (64)
τ̃x = 1

π3/2

∫
cy,1>0 cx,1cy,1ĥ

I(c1)e−c2
1 dc1

+ 1
π3/2

∫
cy,1<0 cxcy,1ĥ

II(c1)e−c2
1 dc1

where ĥI and ĥII are the solution to Eq. (99)

generalizing the method to encompass complex solutions of the frequency-domain Boltzmann
equation. A systematic method was outlined, allowing solutions to general problems with no prior
knowledge of the flow.

This method was applied to two one-dimensional flows: first, the derivation of analytical formulas
(62) and (73) for oscillatory Couette flow, and second, the derivation of simple systems of ordinary
differential equations (99) and a simple shear stress formula (103) for Stokes’ second problem.
These results are summarized in Table III. In each case a good approximation is obtained over a wide
range of Knudsen numbers and oscillation frequencies. While in this article we have focused on
one-dimensional flows, an analysis of a rectilinearly oscillating sphere will be left for future work.

The principal advantage of this variational approach is its ability to generate simple formulas for
unsteady rarefied flows that would otherwise require the use of advanced computational techniques.
This can be advantageous in practical application.
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FIG. 10. Illustration of an example trial function where curved boundaries are present. For arbitrary position
x, particle velocities emanating from boundary A pass through shaded region II, particle velocities emanating
from boundary B pass through region I, particle velocities emanating from boundary C pass through region IV,
and particle velocities emanating from boundary D pass through region III. The heavy dashed lines represent
discontinuities in particle velocity space. The light dashed lines trace the particle velocities from the locations
where discontinuities are induced by the boundaries x. Note that a discontinuity is induced by the horizon of
the convex boundary C; however, no change occurs due to the concavity introduced into boundary A when
compared to the straight boundary used in Fig. 1.

APPENDIX: TRIAL FUNCTION FOR ARBITRARY BOUNDARY SHAPES

In Sec. IV A we defined a trial function ĥ that is piecewise in particle velocity space. Figure 1
illustrates how each segment of this piecewise function, i.e., ĥp(c,x), corresponds to the characteristics
emanating from a given boundary. For simplicity, a spatial domain with straight boundaries was used
in Sec. IV A. In this Appendix we demonstrate the applicability of the approach to boundaries of
arbitrary shape.

In Fig. 10 the geometry of Fig. 1 is modified by changing boundaries A and C from straight lines
to concave and convex curves, respectively. In Fig. 1 lines may be drawn directly from any spatial
point inside the domain to the ends of boundary C, which extends from the top right to the bottom
right corner of the domain. At the spatial point illustrated in Fig. 10, it is still possible to draw a
straight line to the top end of boundary C; however, the bottom end is obscured due to the convex
shape. The particle velocities emanating from boundary C, shown by shaded region IV, therefore
range from the characteristic emanating from the top right corner to the characteristic which touches
the horizon of boundary C. This shadowing effect will occur in the vicinity of any convex boundary.
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