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Results are reported on direct numerical simulations of transition from two-
dimensional to three-dimensional states due to secondary instability in the wake of a
circular cylinder. These calculations quantify the nonlinear response of the system to
three-dimensional perturbations near threshold for the two separate linear instabilities
of the wake: mode A and mode B. The objectives are to classify the nonlinear form
of the bifurcation to mode A and mode B and to identify the conditions under which
the wake evolves to periodic, quasi-periodic, or chaotic states with respect to changes
in spanwise dimension and Reynolds number. The onset of mode A is shown to occur
through a subcritical bifurcation that causes a reduction in the primary oscillation
frequency of the wake at saturation. In contrast, the onset of mode B occurs through
a supercritical bifurcation with no frequency shift near threshold. Simulations of the
three-dimensional wake for fixed Reynolds number and increasing spanwise dimen-
sion show that large systems evolve to a state of spatiotemporal chaos, and suggest
that three-dimensionality in the wake leads to irregular states and fast transition to
turbulence at Reynolds numbers just beyond the onset of the secondary instability. A
key feature of these ‘turbulent’ states is the competition between self-excited, three-
dimensional instability modes (global modes) in the mode A wavenumber band. These
instability modes produce irregular spatiotemporal patterns and large-scale ‘spot-like’
disturbances in the wake during the breakdown of the regular mode A pattern. Simu-
lations at higher Reynolds number show that long-wavelength interactions modulate
fluctuating forces and cause variations in phase along the span of the cylinder that
reduce the fluctuating amplitude of lift and drag. Results of both two-dimensional
and three-dimensional simulations are presented for a range of Reynolds number
from about 10 up to 1000.

1. Introduction
A fascinating feature of non-equilibrium fluid systems is the formation and de-

struction of spatial patterns. Pattern formation can be viewed as the signature of an
underlying instability and often gives the initial clues to understanding the dynamics
behind a complex system. Cross & Hohenberg (1992) give a comprehensive review
of pattern formation in hydrodynamics, nonlinear optics, chemical and biological
systems. To a large degree the dynamics of these diverse physical systems can be de-
scribed using similar concepts: linear instabilities, nonlinear saturation, mechanisms
for pattern selection, and so forth. Elements of pattern formation are used in the
present study as a framework for examining the sequence of global instabilities that
develop in the wake of an infinitely long circular cylinder as it makes the transition
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from simple to chaotic dynamics with increasing Reynolds number. We can relate
the linear instabilities of the ideal system to specific flow patterns observed in the
wake and show that competition between these instability modes explains much of
the complex behaviour observed in experiment. In many ways this scenario does not
depend on details of the system geometry and should represent the development of
complex dynamics in a number of similar free shear flows. Much of the focus in the
present work will be on pattern destruction and the process that leads to irregular
dynamics and ‘turbulence’ in the wake.

The two-dimensional vortex street in the wake of a circular cylinder is one of the
most famous examples of pattern formation in fluids. It is known to result from a
global Hopf bifurcation of the steady flow (Jackson 1987; Mathis, Provansal & Boyer
1987; Zebib 1987). This bifurcation (the primary instability) occurs when the region
of absolute instability in the near wake of the cylinder becomes sufficiently large.
The basic pattern of two-dimensional vortex shedding dominates our conceptual view
of the wake behind most bluff bodies. In the case of a circular cylinder, remnants
of two-dimensional vortex shedding persist to extremely high Reynolds number and
can still be observed when the wake is fully turbulent. Obviously the flow becomes
more complex with increasing Reynolds number and the ideal two-dimensional vortex
shedding pattern is disrupted by transition in the free shear layers in the near wake
and eventually by turbulent transition in the boundary layer on the surface of the
cylinder. However, the onset of ‘turbulence’ in the wake is an intrinsically three-
dimensional phenomenon that begins at a low Reynolds number with the absolute
instability of the two-dimensional flow with respect to spanwise perturbations (the
secondary instability).

Recent experiments have revealed a rich variety of pattern formation associated
with the secondary instability of the Kármán vortex street and subsequent transition
to turbulence. Roshko (1954) first identified the transition range for flow past a
circular cylinder as the range of Reynolds number where velocity fluctuations become
irregular. Early flow visualization studies by Hama (1957) and Gerrard (1978) linked
those fluctuations with the development of ‘waviness’ in the spanwise vortices and
Gerrard’s ubiquitous ‘fingers of dye.’ However, it was Williamson (1988) who showed
with great clarity the intricate structure of the three-dimensional cylinder wake in the
transition range. The basic patterns consist of two types of three-dimensional vortex
shedding that occur in a particular sequence as the Reynolds number is increased.
Following the nomenclature introduced by Williamson (1988), we shall refer to these
instabilities as mode A and mode B vortex shedding. Each flow pattern is centred
around a different spanwise wavelength and is observed with different degrees of
regularity. Quantitative visualization studies of the near wake by Mansy et al . (1994),
Wu et al . (1996) and Brede, Eckelmann & Rockwell (1996) established the variation
of wavelength with Reynolds number and even provided some direct experimental
measurements of the three-dimensional vorticity field. At the same time, Meiberg
& Lasheras (1988) showed that similar three-dimensional shedding modes develop
naturally from perturbations in the plane wake behind a splitter plate, so there is
good evidence that these phenomena represent instabilities in a broad family of free
shear flows.

The origin of these patterns in the wake of an infinitely long cylinder may be
understood by examining the linear instabilities of the ideal two-dimensional flow
(Noack & Eckelmann 1994; Barkley & Henderson 1996). Like the onset of vortex
shedding, the relevant instabilities are global and absolute, and tied to the instability
of three-dimensional global modes in the wake. Huerre & Monkewitz (1990) discuss
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Figure 1. Curves of neutral stability for the two-dimensional Kármán vortex street with respect to
spanwise perturbations. Linearly unstable modes exist everywhere inside the shaded regions. The
upper region corresponds to a family of long-wavelength instabilities with critical values Re2 ' 190,
λ2 ' 3.96d; the lower region corresponds to a family of short-wavelength instabilities with critical
values Re′2 ' 260, λ′2 ' 0.822d. Each point (•) on this plot represents a three-dimensional mode
considered in §3.

these relatively new and somewhat controversial stability concepts in the context
of spatially developing flows. The linear stability problem determines the structure
and spatiotemporal symmetry of the global modes and the critical Reynolds number
where they first become unstable to small perturbations. Once perturbed these modes
are self-excited and cause transition to a three-dimensional state. The symmetry
of the three-dimensional wake after transition is determined by the spatiotemporal
symmetry of the destabilizing global mode. Barkley & Henderson (1996) showed that
the three-dimensional flow patterns observed in experiment are due to two separate
linear instabilities, and that each instability leads to a distinct symmetry-breaking
bifurcation from the ideal two-dimensional flow.

Figure 1 shows the neutral-stability curves for the wake, identifying the regions
of instability that produce modes A and B. Parameters characterizing the wake
instability are the Reynolds number Re and the spanwise perturbation wavelength
λ (in units of cylinder diameter d) or wavenumber β = 2π/λ. For mode A the
critical values are Re2 ' 190 and λ2 ' 3.96d, while for mode B they are Re′2 ' 260
and λ′2 ' 0.822d. There is now excellent agreement between computations based on
the the linear theory and experimental measurements of the critical wavelength and
Reynolds number (Barkley & Henderson 1996; Williamson 1996a–c). There is also
good experimental validation of the symmetry of the destabilizing modes predicted
by the linear theory (Barkley & Henderson 1996; Brede et al . 1996; Williamson
1996b). Simulations of the three-dimensional flow by Zhang et al . (1995), Thompson,
Hourigan & Sheridan (1996), and Henderson & Barkley (1996) have reproduced
the essential features observed in experiment and there is little doubt regarding the
qualitative structure of the three-dimensional wake in the transition range.

What is not well understood is the scenario by which the wake develops irregular
dynamics when the Reynolds number is increased beyond the secondary instability
threshold. In order to look at possible scenarios leading to ‘turbulence’ in the cylinder
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wake, we will put aside for the moment the ideal problem of flow past an infinitely long
cylinder in an unbounded domain and consider only systems with a finite spanwise
dimension L. In computation L represents the distance over which the velocity field
is perfectly periodic (the size of the largest disturbances in the infinite system). In
experiment Lmay be thought of as roughly analogous to the aspect ratio of the system,
but end effects introduce a fundamental and important difference. We also make an
important conceptual assumption: that the dynamics may be described purely in terms
of the global modes of the wake. This reduces the complexity of the three-dimensional
wake to a one-dimensional system, the only important dimension represented by the
character of the flow in the spanwise direction. Changes in the system dynamics
can be characterized with respect to two numbers: the control parameter Re (the
Reynolds number), and the system size L (the spanwise dimension). Experiments and
computations show that for certain values of these parameters the flow has chaotic
states, that is irregular behaviour that persists to long times even under constant
external conditions. This is a manifestation of instability in a deterministic system
and not of external noise. Chaotic behaviour is associated with systems that possess
a large number of degrees of freedom which are excited as we go to the large-system
limit Re → ∞, L → ∞. There are different possibilities depending on how we take
these limits.

In the idealized problem one should study the transition from regular to chaotic
dynamics by taking L = ∞ and looking at the sequence of bifurcations that occur with
increasing control parameter Re. This is effectively impossible for computation unless
we linearize about certain intermediate states. It is impossible in experiment although
L can in principle be taken sufficiently large that finite-size and end effects are small.†
In a more realistic scenario we can reach chaotic states in two ways, starting from
a system with a sufficiently complicated set of linear instabilities. The simplest is
to fix the control parameter Re and let L → ∞. In many situations this leads to
spatiotemporal chaos characterized by the interaction of a moderate number of modes
in a dissipative system. Alternatively, we can fix the system size L and let Re → ∞.
This is the regime of strong turbulence achieved by removing all dissipation from
the system. To talk about the ‘route to turbulence’ in the wake we must distinguish
between these two limits.

The present study focuses not so much on the limiting values of these parameters
as on how they affect the transition to irregular states observed in experiment. Direct
numerical simulation (DNS) is used to study three-dimensional flows that arise from
perturbations to the two-dimensional wake in two ways: either for fixed L and small
variations in control parameter Re, or for fixed control parameter Re and increasing
system size L. In the latter case we follow the rationale given in §2.2, increasing the
original system size in powers of 2 in order to demonstrate changes in the dynamics
due to the presence of more global modes, i.e. as we approach the continuous
spectrum of the infinite problem. This particular sequence guarantees nested solution
spaces where the dynamics of smaller systems are embedded within those of larger
ones. Resolution is increased in proportion to L to ensure that the largest discrete
wavenumbers always lie in the dissipative part of the spectrum.

The neutral-stability diagram shown in figure 1 provides the necessary framework

† Finite-size effects are due to discretization of the continuous spectrum because of finite L,
whereas end effects are due to the constant forcing of low-wavenumber modes by fluctuations at the
ends of a finite-span cylinder. Generally speaking, computations are restricted by finite-size effects
and experiments are polluted by end effects.
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for reducing a study of the entire (Re, L)-parameter space to a small number of
focused questions. There are three important cases to understand in relation to
transition. First is the nonlinear response of the system to perturbations near the
critical point for mode A at Re2 (§3.3). In addition to providing the basic nonlinear
form of the bifurcation, this also provides some qualitative information about all
modes in the A-band. Likewise, the second important case is the nonlinear response
of the system to perturbations near the critical point for mode B at Re′2 (§3.4). The
dynamics are special near these critical points since nonlinearity locks the flow into
a single symmetry-related mode. Finally, we look at how the wake responds away
from these critical points when a variety of three-dimensional modes are excited
(§§3.5 and 3.6). In spite of the seeming complexity of the three-dimensional flow
during transition, these calculations show that the dynamics are controlled by a small
number of self-excited global modes in the wake. In each case the growth of these
modes can be related to the formation of specific flow patterns during transition.
We shall also see that nonlinearity leads directly to irregular states throughout the
transition range, rather than through a sequence of further bifurcations. In a more
qualitative sense, the simulations show the effect of large-scale structure in the wake
on fluctuating forces and flow patterns at higher Reynolds number.

2. Computational methods
2.1. Formulation

We consider the motion of a viscous fluid past an infinitely long circular cylinder
placed perpendicular to a uniform free stream. The fluid is assumed to have constant
density ρ and constant dynamic viscosity µ. The idealized incompressible flow depends
on three dimensional parameters: the cylinder diameter d, the free-stream speed
u∞, and the kinematic viscosity of the fluid ν = µ/ρ. The only non-dimensional
combination of these parameters is defined as the Reynolds number, Re ≡ u∞d/ν,
and this serves as the control parameter for the system. The problem may be described
in dimensionless variables with u∞ and d serving as the reference scales for velocity
and distance. The state of the fluid at any time t as it moves past the cylinder is
determined by the velocity field u(x, y, z, t) and the pressure field p(x, y, z, t). These
fields are described in a coordinate system where x is aligned with the freestream
direction, y is normal to the free stream, and z is along the span of the cylinder.

Our main objective is to determine the nature of the flow dynamics as a function
of Re. The evolution of the flow is described by the incompressible Navier–Stokes
equations, written in non-dimensional form as

∂u

∂t
= −N (u)− 1

ρ
∇p+

1

Re
∇2u in Ω, (2.1a)

∇ · u = 0 in Ω. (2.1b)

N (u) represents the nonlinear advection term:

N (u) ≡ (u · ∇)u. (2.1c)

The computational domain Ω represents a region of three-dimensional space sur-
rounding the cylinder that contains what is deemed to be the ‘important’ part of the
flow.

The first step of the discretization is to reduce the problem on infinity to a problem
on a domain of finite spanwise dimension L. In other words, we consider only those



70 R. D. Henderson

flows u(x, t) that satisfy the periodicity requirement

u(x, y, z, t) = u(x, y, z + L, t).

This is an important restriction on the solution space for moderate L and some
implications are discussed below. The three-dimensional spatially periodic field u can
be projected exactly onto a set of two-dimensional Fourier modes ûq as

ûq(x, y, t) = L−1

∫ L

0

u(x, y, z, t)e−i(2π/L)qz dz.

Likewise, the spanwise modes ûq give the expansion of the velocity field in a Fourier
series:

u(x, y, z, t) =

∞∑
q=−∞

ûq(x, y, t)e
i(2π/L)qz.

Substituting the Fourier expansion of the velocity field into the Navier–Stokes equa-
tions, we obtain a coupled set of equations for the Fourier modes. To simplify
the notation, we define the scaled wavenumber βq ≡ (2π/L)q and the q-dependent
operators

∇̃ ≡ (∂x, ∂y, iβq), ∇̃2 ≡ (∂2
x, ∂

2
y,−β2

q ).

The evolution equation for the Fourier modes can then be written as

∂ûq
∂t

= −N q(u)−
1

ρ
∇̃p̂q +

1

Re
∇̃2
ûq in Ω, (2.2a)

∇̃ · ûq = 0 in Ω. (2.2b)

The nonlinear advection term provides the coupling between all modes. We can
denote this term by

N q(u) = L−1

∫ L

0

N (u)e−i(2π/L)qz dz. (2.2c)

Dissipation becomes important at wavenumbers βD ∼ Re1/2; at wavenumbers β > βD
the equations are dominated by viscosity. These high-wavenumber modes contribute
little to the dynamics of the flow at large scales because their energy is rapidly
dissipated by viscosity. For an adequate description of the dynamics in a system
with a given spanwise dimension L we only need a finite set of M Fourier modes to
cover the range of scales from β = 0 (the mean flow) to βD = (2π/L)M ∼ Re1/2, or

M = O(LRe1/2). We take as our final representation of the velocity field the truncated
expansion

u(x, y, z, t) =

M∑
q=−M

ûq(x, y, t)e
i(2π/L)qz.

Equations (2.1) and (2.2) are simply alternative ways to describe the flow. Com-
putationally it is more convenient to follow the evolution of the two-dimensional
Fourier modes ûq(x, y, t) than the full three-dimensional field u(x, t). Because u is
real, the Fourier modes satisfy the symmetry û−q = −û∗q . Therefore, only half of the
spectrum (q > 0) is needed. In addition to convenience, the Fourier representation of
the velocity field has other intrinsic advantages. It provides a direct way of linking
particular modes of the system with specific three-dimensional spatial patterns. Linear
stability theory can predict which modes will have the strongest interaction with the
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two-dimensional flow to produce these patterns. The time-averaged amplitude of the
Fourier modes gives a direct indication of how well-resolved the calculations are. And
finally, the time-dependent amplitude of the Fourier modes provides a convenient way
of explaining the transfer of energy to different scales in the three-dimensional wake.

2.2. Subspaces and the approach to infinity

Although our goal is to study the flow past an infinitely long cylinder, this is
clearly not possible in a simulation of the full Navier–Stokes equations. Periodic
boundary conditions are often used in computational fluid dynamics to approximate
the flow on an infinite domain, but this is a false assumption. Periodic boundary
conditions do not reproduce the same dynamics unless the dimension of the system
in the periodic direction is large enough to provide a good representation of the
continuous spectrum of the infinite problem. Keep in mind that the only admissible
wavelengths are those which are consistent with the boundary conditions: λq = L/q.
Even ‘random noise’ introduced in a computation with periodic boundary conditions
can only excite a discrete set of modes with these wavelengths. Choosing L too
small can exclude important instability modes altogether or it can simply exclude
the modal interaction that leads to complex behaviour in large systems. Here we
suggest a rationale for exploring the dynamics of the infinite problem by examining
the dynamics in a particular sequence of successively larger systems with carefully
chosen initial conditions.

We begin by considering the effect of periodic boundary conditions on the space
of possible solutions. For a given periodic length L, the velocity field u lies within a
subspace spanned by the Fourier modes ûq . We can write this as follows:

u(x, y, z, t) ∈ SL = span
{
ûq(x, y, t)e

i(2π/L)qz, q = 0,±1, . . .
}
. (2.3)

The Navier–Stokes equations preserve this subspace, meaning that the state which
evolves from an initial condition in SL will always remain there – the flow itself
cannot generate larger scales. Because of the Fourier expansion of the velocity field,
a sequence of larger subspaces can be nested in the sense that

SL ⊂ S2nL ⊂ S∞. (2.4)

This means that every mode ûq in SL is also a mode of S2nL, so that as we increase
L in powers of 2 we are adding new degrees of freedom while retaining all degrees
of freedom of the smaller systems. As long as we follow this sequence, the final state
in each small system lies within an exact (stable or unstable) subspace of all larger
systems. This is the most precise way to study the approach to the dynamics of the
infinite problem.

Fluctuations at the ends of a finite-span cylinder in experiments set the scale
of the largest disturbances and provide a sustained excitation at low wavenumbers.
Nonlinearity guarantees that all modes will be excited to some degree. The situation is
quite different in computation. In the light of (2.3) we may adopt the computational
point of view that a spanwise-periodic perturbation at wavelength λ defines the
effective spanwise dimension (L ≡ λ) because there is no mechanism within the
Navier–Stokes equations to generate larger scales. The initial conditions are the
critical factor rather than the imposed periodic boundary conditions. From (2.4) we
can see that the same initial condition will evolve to the same final state in the infinite
system because the flow u(x, t) always remains within the finite-dimensional subspace
SL. The resulting spatially periodic flow may be a valid solution to the Navier–
Stokes equations in an ‘infinite’ domain, but it is physically irrelevant unless we can
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mesh K Li Lo d/2Li

M1 148 to 170 8 24 0.0625
M2 166 to 175 16 32 0.03125
M3 182 to 201 32 48 0.015625

Table 1. Domain size parameters for the small, medium, and large computational domains shown
in figure 2. The factor d/2Li is the blockage (fraction of the cross-sectional area 2LiL obstructed by
the cylinder area dL).

also show it is stable in the presence of longer wavelength disturbances, i.e. in each
larger subspace. The present study will show that, for fixed Reynolds number, ‘small’
systems (L ≈ 1d) give rise to time-periodic behaviour while ‘large’ systems (L ≈ 10d)
evolve to a state of spatiotemporal chaos. Because the dynamics are controlled by
the interaction of a small number of instability modes, computations with moderate
L are sufficient for deducing what happens in the limit L→∞.

2.3. Implementation

The fully discrete solution relies on the representation of the Fourier modes, ûq(x, y, t)
and p̂q(x, y, t), by a non-conforming spectral element method. The formulation for
non-conforming elements was introduced by Bernardi et al . (1992) as an extension
to the original spectral element method developed by Patera (1984). In the spectral
element method the computational domain is partitioned into K non-overlapping
elements, and within each element both the solution and geometry are represented
by a high-order polynomial basis. In two or more dimensions this basis can be
constructed as a product of one-dimensional polynomials. The current implementa-
tion uses curvilinear quadrilateral elements and relies exclusively on Gauss–Lobatto
Legendre polynomials to represent the discrete solution. Any two-dimensional field
is described by KN2 numbers, where N is the number of basis coefficients in each
direction. Since the complex vector field ûq(x, y, t) has six scalar components (three
real and three imaginary), it requires 6 × KN2 numbers. The full three-dimensional
vector field u(x, t) is expanded over 2M + 1 such modes, but because of the symme-
try of these modes the discrete representation only requires a total of 6 ×MKN2

coefficients. Likewise, the pressure field p(x, t) is described by 2×MKN2 coefficients.
The number ndof ' 2×MKN2 is equivalent to the number of grid points in physical
space needed to represent all degrees of freedom in a three-dimensional scalar field.
In the present set of calculations, ndof ≈ 106 grid points.

Figure 2 shows the basic computational domains used for simulations of the
wake over the entire range of Reynolds number and table 1 shows the domain
size parameters. The formulation described above can be used for two-dimensional
simulations by solving only for the zeroth Fourier mode. Simulations of the three-
dimensional flow use the same computational domain for all Fourier modes. Although
the Fourier modes could alternatively be discretized by introducing a finite difference
grid or a collection of finite elements, the non-conforming method used here allows
for local mesh refinement while preserving the block structure of the calculations.
The computational domains shown in figure 2 represent only the base mesh and
calculations at various Reynolds numbers incorporate some refinement of the near
wake. The use of a non-conforming mesh to simulate the flow at lower Reynolds
number is helpful but not critical. Beyond the details of the polynomial basis and the
treatment of non-conforming elements in the mesh, the method follows a standard
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M1

M2

M3

L

Li Lo

Figure 2. Computational domains used in the present study. Each domain is a subset of the
largest. The parameters Lo and Li determine the cross-sectional size, and L determines the spanwise
dimension. Each computational domain is divided into K elements, and within each element the
solution and geometry are represented by N2 polynomial coefficients. The three-dimensional flow is
decomposed into M Fourier modes in the periodic spanwise direction.

Galerkin finite element procedure to discretize equation (2.2). Further details of this
particular approach for non-conforming elements are described by Henderson &
Karniadakis (1995).

Boundary conditions are required for the velocity and pressure fields on all exterior
boundaries of Ω, including the surface of the cylinder. For convenience these are
specified in physical rather than Fourier space. At the surface of the cylinder the fluid
velocity satisfies the no-slip condition: u(x, t) = (0, 0, 0). Far away from the cylinder
and outside the wake, it matches the free-stream velocity: u(x, t) = (1, 0, 0). Across the
outflow plane downstream the approximate boundary condition for the velocity field
is ∂x u(x, t) = (0, 0, 0). At this same location the pressure is set to a constant value
of zero. Along all other boundaries the pressure satisfies the high-order Neumann
boundary condition given by Karniadakis, Israeli & Orszag (1991). This condition,
which is derived by requiring the pressure field to satisfy the normal component of the
momentum equation along the boundary, helps control divergence errors introduced
by the splitting scheme described below.

The location of external boundaries affects quantities derived from the simulations
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such as shedding frequency and drag. The detailed convergence study presented
by Barkley & Henderson (1996) was used as the principal guide in selecting an
appropriate size and resolution. The smallest domain, M1, is somewhat larger than
domains used in similar calculations of the three-dimensional flow over this range of
Reynolds number (Karniadakis & Triantafyllou 1992; Zhang et al . 1995; Thompson
et al . 1996). Even this domain produces an acceptable quantitative simulation of the
flow. In order to reduce the blockage effect on M1 the constant-velocity boundary
conditions were replaced with a condition of periodicity for both velocity and pressure
along the upper and lower boundaries of the wake region, i.e. u(x, y − Li, z, t) =
u(x, y + Li, z, t) for x > 0. Results for all three domains agree to better than 2%. The
effect of spanwise dimension L is examined directly in §3.

The set of modal equations are integrated forward in time using the three-step
splitting scheme described by Karniadakis et al . (1991). This time-stepping algorithm
replaces equation (2.2) by a sequence of steps where the nonlinear terms are computed
explicitly while the pressure and diffusion terms are treated implicitly. Each implicit
step requires the solution of an elliptic boundary-value problem as described below.
The algorithm is essentially a projection method with a consistent pressure boundary
condition that yields (in practice) second-order time accuracy. The explicit treatment
of the nonlinear terms dictates the maximum allowable time step through a CFL-type
condition, (∆t/∆x)|u|max 6 const. ≈ 0.72. In all of the calculations |u|max = O(1),
the minimum grid size is ∆x ≈ 0.007, and the corresponding maximum time step is
∆t ≈ 0.005.

Discretizing the implicit part of the time integration produces a set of linear systems
for the discrete pressure and velocity fields that must be solved at each time step.
Since both the real and imaginary parts of the complex pressure field satisfy the same
algebraic system of equations, there are only M systems to form (2M to solve). The
three components of the velocity vector also satisfy the same system of equations,
giving M additional systems to form (6M to solve). Each system is described by a
real-valued matrix that is symmetric and positive-definite with a rank of O(KN2).
Each matrix is reduced by factoring into Schur-complement form to eliminate rows
and columns associated with element interiors. This reduced system for the boundary
points has a rank of O(KN) and can be solved directly from the LU factorization
of the Schur-complement matrix. Once the boundary solution is known, the solution
on the interior of each element can be updated by solving K smaller systems of
rank O(N2). The Schur-complement factorization is crucial for the direct solution of
the large matrix systems associated with spectral element methods. Factorization is
performed once at the beginning of the calculation, and time stepping only requires
back-substitution using the stored matrices. The procedure is identical for each of the
Fourier modes and equivalent to solving 2M independent two-dimensional problems
with real data.

The repetition of calculations for each of the Fourier modes suggests a natural
strategy for distributing the computational work over a collection of parallel pro-
cessors: data for each mode is assigned to a different computer. Time integration is
carried out for each mode in parallel with an exchange of data at the beginning of
the time step to evaluate the nonlinear term. This term is computed pseudo-spectrally
on a grid of points in physical space through use of the fast Fourier transform (FFT).
The nonlinear calculation was not dealiased and although there is some pollution of
high-wavenumber modes this is not a problem at moderate Reynolds number. During
the FFT data are exchanged (the Fourier components) among all processors in the
algorithmic equivalent of a parallel matrix transpose. This communications kernel is
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common to most parallel implementations of spectral methods (see e.g. Karniadakis
& Orszag 1993). Evaluating the nonlinear term accounts for roughly one-quarter of
the computational work. The remaining work goes toward solving the linear systems
in the pressure and diffusion steps. These calculations require no interaction between
modes and they proceed in parallel with the work perfectly balanced across the
collection of parallel processors.

The strategy outlined above was implemented on two dedicated parallel computers:
the Intel Paragon and the Cray T3D. Both of these machines offer relatively fast
compute nodes and a custom communications network with low latency and high
bandwidth. The data exchange needed to evaluate the nonlinear term was performed
via explicit message passing. The code communicates through a limited set of drivers
so that porting to new message passing systems is relatively easy, i.e. only new
communication drivers need to be written. For example, after developing the code on
the Paragon, porting it to the T3D only took a few hours. The largest calculations
performed as part of the current study involve 8×MKN2 ≈ 6 to 7 million unknowns
per time step and 2 to 3 gigabytes worth of run-time data (field data and stored
matrices). Distributed over 64 processors, these calculations take approximately 5 s
per time step on either machine. Simulations at this resolution would have been
impractical without access to large-scale parallel computing systems.

3. Results
3.1. Overview

The present study encompasses a wide range in Reynolds number from Re ≈ 10
(steady two-dimensional flow) to Re = 1000 (turbulent three-dimensional flow). We
begin with an overview of changes in the flow dynamics with increasing Reynolds
number, concentrating on the response of wake oscillation frequency (shedding fre-
quency) and mean drag coefficient. Both are unique functions of Reynolds number
along the two-dimensional branch of solutions. From an ensemble of experimental
measurements, their values at low Reynolds number are currently known to within
an accuracy of about 5%, although the experimental shedding frequency curve in the
two-dimensional range is now believed to be accurate to better than 1% (Williamson
1996a). Both shedding frequency and drag show distinct changes at the various bi-
furcation points of the wake and can be used as a guide to interpreting changes in
the wake structure and dynamics as a function of Reynolds number.

In non-dimensional form the shedding frequency is referred to as the Strouhal
number. It is defined as St ≡ f d/u∞, where f is the peak oscillation frequency of
the wake. Shedding frequency measurements in the laboratory are typically made
using hot-wire signals from the unsteady velocity field near the edge of the separating
shear layer. However, because vortex shedding is associated with a global instability,
any signal derived from measurements of the flow carries the signature of the vortex
shedding frequency. Shedding frequencies presented here are generally determined
from the zero-crossing points of the unsteady lift signal. Shedding frequency can be
monitored as a direct indication that the unsteady flow is converging to a limit cycle.

The Strouhal–Reynolds number relationship is shown in figure 3. At low Reynolds
number the flow is steady (St = 0) and symmetric about the centreline of the wake.
At Re1 ' 47 the steady flow becomes unstable and bifurcates to a two-dimensional,
time-periodic flow. The shedding frequency of the two-dimensional flow increases
smoothly with Reynolds number along the curve shown in figure 3. Note that each
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Figure 3. Variation of wake oscillation frequency (Strouhal number) with Reynolds number for
the flow past a circular cylinder, from experimental measurements and computer simulations: ◦,
Williamson (1989); •, Hammache & Gharib (1991); +, three-dimensional simulations from the
present study; the solid line is a curve fit to two-dimensional simulation data for Re up to 1000.
Dashed lines mark the critical Reynolds number for various wake instabilities. The shaded area
indicates a subcritical range described in §3.3 where the wake is unstable to finite-amplitude
perturbations.

point along the two-dimensional curve represents a perfectly time-periodic flow and
there is no evidence of further two-dimensional instabilities for Reynolds numbers up
to Re ≈ 1000. At Re2 ' 190 the two-dimensional wake becomes absolutely unstable
to long-wavelength spanwise perturbations and bifurcates to a three-dimensional flow
(mode A). As the wake passes through the bifurcation point at Re2, experiments
indicate that there are two important changes in the shedding frequency: (i) there is
a sharp drop in magnitude, and (ii) above Re2 the flow is no longer time-periodic but
oscillates within a broad band of frequencies. Experimental frequency measurements
shown in figure 3 which are not along the two-dimensional branch represent the
dominant peak in those broad-band spectra. There is a direct relationship between
the drop in frequency and the onset of mode A; we return to this point in §3.3. The
other feature of the frequency curve relevant to the present study is the change in
slope at Re′2 ' 260 which coincides with the linear instability of mode B. Although
mode B is observed in experiments at Reynolds number as low as Re ≈ 200, there is
clearly a measurable change in shedding frequency at Re′2. Note that three-dimensional
calculations follow the experimental trend for Re > Re2.

Figure 4 shows the drag curve for flow past a circular cylinder for Reynolds
numbers up to 1000. In the computations the spanwise-averaged fluid force F (t) is
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Figure 4. Drag coefficient as a function of Reynolds number for the flow past a circular cylin-
der, from experimental measurements and computer simulations: (◦,•), Wieselsberger (1921); +,
three-dimensional simulations from the present study; the solid line is a curve fit to two-dimensional
simulation data for Re up to 1000.

computed by integrating the shear stress and pressure over the surface of the cylinder.
The x-component of F is the drag, the y-component is the lift. The force is normalized
by the free-stream dynamic pressure and the projected area of the body to produce
force coefficients. The drag coefficient is defined as CD(t) ≡ Fx(t)/ 1

2
ρu2
∞dL. The mean

drag CD is simply the time-averaged value of CD(t). Because CD is determined from
an average over the surface of the cylinder, it is much less sensitive to changes in the
character of the wake at low Reynolds number than single-point measurements like
the shedding frequency. The ‘textbook’ version of the drag curve is generally plotted
on a log-log scale where the only discernible feature is the drag crisis at Re = O(105).
The flat response of CD to changes in Reynolds number is compounded by the fact
that experimental drag measurements are extremely difficult to make at low Reynolds
number, and subtle details of the drag curve are lost in the experimental scatter. The
decrease in magnitude of CD in the steady regime can be fitted to a power-law curve
and also makes a sharp but continuous transition at Re1. Henderson (1995) gives the
form and coefficients for the steady and unsteady drag curves. At the onset of vortex
shedding about 1/3 of the total drag force is due to skin friction from the boundary
layer and 2/3 is due to pressure drag. With increasing Reynolds number the skin-
friction component continues to drop off while the pressure drag steadily increases. At
higher Reynolds number the drag is due almost entirely to the variation in pressure
around the surface of the cylinder. From Re1 to Re2 the drop in skin friction and
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increase in pressure drag almost cancel so that the CD–Re curve is relatively flat in
this range. Experiments do not indicate a substantial change in the drag curve at Re2

but there is a sharp drop away from the two-dimensional curve beginning at Re′2.
Qualitatively, the drag and shedding frequency curves show similar behaviour but the
changes in CD are more subtle. Three-dimensional calculations also show a decrease
in drag for Re > Re2, but there are not enough experimental measurements for a
detailed comparison.

3.2. Nonlinear dynamics and ‘global modes’ of the wake

Everything that follows is based on the concept that spatially developing flows support
self-excited global modes. Common examples of such flows include wakes, jets, and
shear layers. In the case of flow past a circular cylinder we can represent the three-
dimensional flow near the secondary instability threshold as a combination of two
global modes. These modes represent the saturated primary instability (φ0) and a
secondary instability mode (φ1):

u(x, t) = U(t)φ0(x, t) + A(t)φ1(x, t). (3.1)

φ0 and φ1 are assumed to be time-periodic functions with unit norm; U(t) and
A(t) give their time-dependent amplitudes. In the linear approximation φ1 is simply
the leading eigenfunction of a temporal (Floquet) stability problem with given real
wavenumber β and growth rate σ(β).† The local modes of the system would be the
eigenfunctions of the one-dimensional Floquet stability problem associated with the
time-periodic base flow at a given streamwise location. All local modes with a given
β are contained in the global mode for that β.

Our first goal is to understand the effect of small perturbations to the two-
dimensional flow. By definition the primary instability φ0 is at a finite-amplitude
equilibrium state U(t) = U0. For |A| � |U0| the amplitude of the secondary instability
is given by A(t) ∝ exp σt, and φ1 takes the form

φ1(x, t) = φ̂1(x, y, t)e
iβz + φ̂∗1(x, y, t)e

−iβz.

Now assume that the system responds such that σ(β) < 0 for Re < Rec and σ(β) = 0
for Re = Rec, β = βc. We define the reduced control parameter ε ≡ (Re−Rec)/Rec to
characterize small variations from the critical value Rec. For parameter values ε < 0
the flow is linearly stable, whereas for ε = 0 there is a pattern-forming instability that
sets in at finite wavenumber β = βc. For ε > 0 the infinite system has a continuous band
of wavenumbers β− < βc < β+ for which the flow is unstable. Small perturbations
near the critical point (Rec, βc) will result in a three-dimensional flow pattern that
grows everywhere in space with a structure determined by φ1. Although we cannot
write down an explicit form for φ1, we can identify the patterns formed due to its
presence in the flow. Linear theory is enough to predict the critical Reynolds number
(Rec) and pattern wavelength (λc = 2π/βc), but nonlinear effects must be included if
we want to understand the dynamics of the flow beyond the mere onset of the linear
instability.

A low-dimensional dynamical systems approach is a natural way to analyse globally
unstable flows. Close to a critical point we can reduce the dynamics of the three-
dimensional wake to those of a discrete-time dynamical system. We take an approach

† In general σ will be complex, but Barkley & Henderson (1996) show that the most unstable
modes of the wake all have real σ. Here we interpret the complex frequency σ as a real (temporal)
growth rate.
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similar to the one above, fixing the perturbation wavelength λ = λc and writing the
growth rate as σ = σ(ε). Next we discretize time by only examining the state of the
system at discrete times tn representing one pass through the shedding cycle. The
global modes are time-periodic, φi(x, tn+1) = φi(x, tn), so the dynamics are described
largely by the discrete-time evolution of their amplitudes, Un ≡ U(tn) and An ≡ A(tn).
Our goal is to model the Navier–Stokes equations with a simple nonlinear equation
for these amplitudes.

As the instability grows the linear superposition (3.1) no longer holds. For |ε| �
1 and |An| � |U0| the flow can be represented as an expansion about the two-
dimensional state in powers of the amplitude An. The form of that expansion may be
deduced directly from the nonlinear form of the Navier–Stokes equations. Changes
in the amplitude of φ0 as it transfers energy to φ1 are given by

Un = U0 −
∞∑
j=1

α0jA
2j
n . (3.2)

Near the linear instability the evolution of An will be given by An+1 = µ1An, where
µ1 = exp σTn is the discrete-time linear growth rate and Tn is the length of period
number n. Nonlinearity eventually arrests the exponential growth and the long-time
evolution of An is given by

An+1 =

(
µ1 −

∞∑
j=1

α1jA
2j
n

)
An. (3.3)

Note that each of the constants µ1 and αij is some function of ε. Near the critical
point the variation of the linear growth rate is approximately µ1 = 1 + µ′1ε, where
µ′1 ≡ dµ1/dε. In this same regime the αij will be assumed constant since their variations
are O(ε2) or smaller. For a given initial state (U0, A0), the amplitude equations
describe the behaviour of transients (Un, An) and identify the finite-amplitude states
(U∞, A∞) which the flow evolves to at long times. Experiments or simulations of the
full Navier–Stokes equations are needed to determine the values of the nonlinear
coefficients.

Nonlinear classification of the bifurcation (U0, 0) → (U∞, A∞) depends on the sign
of α11, also called the Landau constant. Positive α11 corresponds to a supercritical or
soft bifurcation. In this case the transition is continuous and the flow is stable below
the critical point (ε < 0). Negative α11 signifies a subcritical or hard bifurcation. In
this case the transition is discontinuous and hysteretic because the flow is unstable
to finite-amplitude perturbations below the critical point (ε 6 0). To a large degree
the distinction depends on the value of the critical wavenumber βc relative to the
dissipation range βD for the system. This classification can be made precisely by
studying the evolution of small perturbations with careful experiments or high-
resolution computer simulations of the full nonlinear system.

In each of the calculations presented here we take initial conditions of the form (3.1).
The mode φ0 is computed by integrating the two-dimensional Navier–Stokes equations
in a given domain until the flow converges to a limit cycle with amplitude U0. For
a given wavelength λ, the mode φ1 is set to the leading eigenmode of the temporal
stability problem. The initial amplitude of φ1 is chosen so that |A0| ≈ 0.005|U0|, i.e. less
than a 1% perturbation to the base flow. The evolution of the resulting (unstable) flow
is then computed by integrating the full three-dimensional Navier–Stokes equations
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in a periodic domain capable of representing the initial perturbation and M of its
higher harmonics. The wavelength of the initial perturbation determines the spanwise
dimension of the system, L = λ.

In the discrete nonlinear system the three-dimensional structure of the global modes
is represented by a Fourier series expansion. Since φ0 ∝ û0 and φ1 ∝ û1, the amplitude
of a global mode at later times can be evaluated directly from the amplitude of its
fundamental Fourier mode:

|Un|2 =
4

πd2u2
∞

∫
Ω

|û0(x, y, tn)|2 dΩ, (3.4a)

|An|2 =
4

πd2u2
∞

∫
Ω

|û1(x, y, tn)|2 dΩ. (3.4b)

Although the full representation of φ1(x, t) involves higher harmonics for t > t0,
nonlinearity locks these modes to the fundamental û1. Such modes are said to be
passive or slaved. In a pure bifurcation the fundamental mode carries the largest
component of the instability and is sufficient for tracking the amplitude. Note that
the definition of amplitude in (3.4) depends on the computational domain Ω, and
therefore the nonlinear coefficients αij also depend on Ω. However, our primary
concern is with the sign (positive or negative) of α11, and this is independent of how
the norm is defined.

3.3. Bifurcation to mode A: Re ' 190, L = 3.96d

Nonlinear calculations for the precise onset of the secondary instability were first
reported by Henderson & Barkley (1996). Some of those results are included here
for completeness. Figure 5 shows the growth and nonlinear saturation of a small
perturbation to the wake at Re = 195, λ = λ2 = 3.96d. The evolution of the three-
dimensional flow was computed on the small domain M1 using M = 16 modes. After
O(100) shedding periods the instability saturates. Near the point of saturation the
instability grows faster than the exponential growth described by An+1 = µ1An, where
µ1 ' 1.041 is the growth rate from linear stability calculations. Initially the correction
to the linear growth rate is given by µ1 − α11A

2
n. Using the procedure described

by Henderson & Barkley (1996), the coefficient of this term may be estimated
directly from the computational data as α11 ' −0.116. Negative α11 indicates that the
instability is subcritical.

Because the bifurcation to mode A is subcritical, the first two terms in (3.3) are
insufficient for determining the limiting amplitude. Assuming α12 > 0, the lowest-order
amplitude equation for the bifurcation to mode A becomes

An+1 = (µ1 − α11A
2
n − α12A

4
n)An. (3.5a)

Substituting µ1 = 1 + µ′1ε, the equilibrium solutions to this equation for small ε are

|A|2 =
|α11|
2α12

±
(
α2

11

4α2
12

+
µ′1ε

α12

)1/2

. (3.5b)

These amplitudes are shown as a bifurcation diagram in the inset to figure 5. Solid
lines in the bifurcation diagram indicate stable states and dashed lines indicate
unstable states. This diagram is necessarily schematic because the data do not permit
a reliable estimate of the coefficient α12. However, its value is clearly positive and
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Figure 5. Nonlinear growth of a three-dimensional perturbation to the wake near the secondary
instability threshold at Re2 ' 190, λ2 = 3.96d: •, values of the amplitude An evaluated from simula-
tions of the full Navier–Stokes equations at Re = 195; curves show predictions from equation (3.5)
truncated at first and third order with µ1 = 1.041 and α11 = −0.116. The inset shows a bifurcation
diagram along with simulation results at nearby parameter values.

approximately equal to α12 ≈ 0.122. Additional calculations were performed at nearby
parameter values (see figure 1) to validate the predictions of finite-amplitude states
and the subcritical nature of the instability. At Re = 190 the flow was also found
to be subcritical with α11 ' −0.116. Below the critical point at Re = 185 the flow
was found to be bi-stable: initial conditions corresponding to A0 = 0.1 decayed back
to zero, while initial conditions corresponding to A0 = 0.915 evolved to a saturated
three-dimensional state with A∞ = 0.897. At Re = 180 the flow was found to be stable
to finite-amplitude perturbations, providing a lower bound on the turning point and
confirming that the bifurcation diagram in figure 5 is approximately correct. There
is clearly good agreement between the predictions of finite-amplitude states from
equation (3.5) and full nonlinear calculations for Reynolds numbers near the critical
point.

In addition to the finite-amplitude states that evolve from the linear instability,
it is also interesting to look at how this bifurcation affects the global oscillation
frequency of the wake. Although values of tn are not evenly spaced in time, the
phase of the oscillation corresponding to zero lift provides a reference for defining
the shedding period: CL(tn) ≡ 0. The distance between points tn changes smoothly
during the transition to the new limit cycle and there is a well-defined instantaneous
shedding period, Tn ≡ tn+1 − tn. We define the instantaneous shedding frequency as
fn ≡ T−1

n . Simulations near the critical point suggest the following hypothesis: the
global oscillation frequency is determined by the the primary instability mode φ0,
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Figure 6. Nonlinear frequency shift due to a perturbation at Re = 195, λ = λ2 = 3.96d (same time
series as figure 5): ◦, shift in global oscillation frequency (scale on the left); •, shift in amplitude
of the primary instability mode (scale on the right); the solid line is computed from equation (3.6)
with parameter values γ01 = 0.01005, γ02 = 0.00740, and γ03 = −0.00517. The data verify that the
global oscillation frequency follows the amplitude of the primary instability and explains the drop
to the lower curve in figure 3.

and the oscillation of φ1 remains locked to this mode.† Since changes in φ0 are
largely characterized by changes in its amplitude, we can write fn = F(Un). Near the
secondary instability threshold F(Un) can be expanded in a Taylor series about its
two-dimensional value, f0 = F(U0):

fn = F(Un) ≈ F(U0) +
dF

dU
(Un −U0)

= f0 − const.× α01A
2
n

= f0 − γ01A
2
n.

Higher-order corrections will involve an expansion in even powers of An, and the
frequency shift can be written in the same form as equation (3.2):

fn = f0 −
∞∑
j=1

γ0jA
2j
n . (3.6)

Like the coefficients α0j , the values of γ0j are ε-dependent with variations of O(ε2) or
smaller; they will also be assumed constant for |ε| � 1.

The computed shift in global oscillation frequency fn due to the growth and
saturation of the mode A instability is shown in figure 6, with data which correspond
to the same time series presented in figure 5. The change in amplitude of the
primary instability mode Un is overlayed with the frequency data, showing that the
two are indeed of the same form. Equation (3.6) truncated at j = 3 with the given
parameter values reproduces the computed frequency shift almost exactly. This change
in frequency during the bifurcation from the two-dimensional state to mode A vortex
shedding accounts for the drop to the lower curve in figure 3. Because the bifurcation
to mode A is subcritical, there is a discontinuous jump to the three-dimensional state
with a correspondingly large change in the amplitude of the primary and secondary

† One can also think of φ1 as a three-dimensional structure that wraps around the
two-dimensional structure of φ0. It does not introduce a new time scale, but it can shift the
time scale of the primary instability.
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instability modes. Since fn − f0 ∝ A2
n, this jump is reflected by a large drop in the

global oscillation frequency of the wake.
Perhaps the most interesting characterization of the state that exists after transition

is in terms of the three-dimensional structure of the flow. Figure 7 shows a visualization
of the fully saturated mode A state that evolves at Re = 195, just beyond the secondary
instability threshold. Figure 7(a) shows isosurfaces of the three-dimensional vorticity
field, ξ ≡ ∇×u. The spatiotemporal symmetry of mode A (Barkley & Henderson 1996,
equation (3.3)) produces a staggered array of streamwise vortices that alternate in sign
from period to period at a given spanwise location. Pattern formation in the system
is shown using normalized grey-scale images of the streamwise and normal velocity
components along the midplane of the wake. At saturation mode A produces a
significant distortion of the Kármán vortex shedding pattern that gradually decreases
in amplitude with distance downstream from the cylinder. In the discrete-time system
this is a stationary spatial pattern centred around the critical mode wavelength
λ = λ2 = 3.96d. The saturated state is perfectly time-periodic and the image shown is
repeated exactly from period to period. The pattern does not ‘wander’ along the span
or exhibit any other type of irregular behaviour. This spatially periodic flow pattern
represents an idealization of mode A observed in experiments near the secondary
instability threshold (see e.g. Williamson 1988, 1991).

3.4. Bifurcation to mode B: Re ' 260, L = 0.822d

Next we consider perturbations to the wake near the short-wavelength instability
threshold at Re = 265, λ = λ′2 = 0.822d. The procedure is exactly the same, and
the evolution of the flow was also computed using M = 16 modes. Mode A does
not appear owing to the restricted size of the domain. Figure 8 (see p. 86) shows
the results from this calculation. Starting from a small perturbation, the instability
saturates after O(50) shedding periods. The linear growth rate of the perturbation is
µ1 ' 1.16. However, in this case the amplitude drops below the exponential growth
curve near saturation. The estimated value of the Landau constant for this bifurcation
is α11 ' 3.92. Large positive α11 indicates that the instability is strongly supercritical.

Only two terms are needed to determine the limiting amplitude of a supercritical
instability. The lowest-order amplitude equation for the bifurcation to mode B is
therefore

Bn+1 = (µ1 − α11B
2
n)Bn. (3.7a)

For ε < 0 the flow always decays back to a two-dimensional state (B = 0), while for
ε > 0 there are finite-amplitude states given by

|B|2 = µ′1ε/α11. (3.7b)

These amplitudes are shown as a bifurcation diagram in the inset to figure 8. The
supercritical nature of the bifurcation to mode B was verified by performing sim-
ulations at nearby parameter values near the tip of the mode B instability region
(see figure 1). Simulations at Re = 260 (just above the critical point at Re′2 = 259)
and Re = 270 both evolved to three-dimensional states that lie near the predicted
limiting amplitude. Calculations below the critical point at Re = 255 decayed back
to a two-dimensional state. Small perturbations at λ = λ′2 and smaller are stable for
Re < Re′2.

One would not expect a large change in global oscillation frequency near the onset
of mode B for the following reason. A supercritical bifurcation represents a continuous
transition from the two-dimensional state. Any coupling to the primary instability
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Figure 7. (a). For caption see facing page.

(a)

êx= +0.5 (red), –0.5 (blue);   |êz |=1 (silver)

Figure 9. (a). For caption see facing page.

mode is weak near onset because the bifurcating mode saturates at low amplitude
|B|2 ∼ ε. For 0 < ε � 1 both the global oscillation frequency and amplitude of
the primary instability mode remain constant to O(ε) during the transition from the
two-dimensional state to mode B. Although there will be a measurable change for
sufficiently large ε > 0, the computations do not indicate any significant change in



Pattern formation in wake transition 85

(b)

u(x, y = 0, z, t) v(x, y = 0, z, t)

Figure 7. Visualization of mode A after transition at Re = 195: (a) isosurfaces of the
three-dimensional vorticity field; (b) spatial pattern formation in the velocity field, centred around
a spanwise wavelength of λ = λ2 = 3.96d. The image plane corresponds to x/d = (0, 24) and
z/d = (0, 15.84), with a somewhat shorter downstream extent in image (a).

(b)

u(x, y = 0, z, t) v(x, y = 0, z, t)

Figure 9. Visualization of mode B after transition at Re = 265: (a) isosurfaces of the
three-dimensional vorticity field; (b) spatial pattern formation in the velocity field, centred around
a spanwise wavelength of λ = λ′2 = 0.822d. This flow pattern cannot be observed directly in
experiments because it is unstable to longer-wavelength modes in the A-band. The image plane
corresponds to x/d = (0, 24) and z/d = (0, 13.12), with a somewhat shorter downstream extent in
image (a).

shedding frequency for Re ≈ Re′2 when the three-dimensional flow is restricted to
pure mode B.

Figure 9(a) shows the three-dimensional structure of the flow that evolves at
Re = 265 as mode B develops in the wake. The spatiotemporal symmetry of mode B
(Barkley & Henderson 1996, equation (3.4)) produces an inline array of streamwise
vortices that have the same sign from period to period at a given spanwise location.
This can also be interpreted as the symmetry of mode A plus a shift of the three-
dimensional structure by half a wavelength after a time T/2. Figure 9(b) shows
spatial pattern formation in the velocity field. To emphasize the relationship between
the long- and short-wavelength instabilities, this and subsequent flow visualization
in figures 11 and 13 are shown to the same scale. The nonlinear saturated state
produces only a slight distortion of the basic two-dimensional flow with an amplitude
that decays rapidly with distance downstream of the cylinder. At moderate distances
downstream there is no evidence of the mode B instability and the wake returns to a
two-dimensional state. As in the case of mode A, the saturated flow is time-periodic
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Figure 8. Nonlinear growth of a three-dimensional perturbation to the wake near the secondary
instability threshold at Re′2 ' 260, λ′2 = 0.822d: •, values of the amplitude Bn evaluated from simula-
tions of the full Navier–Stokes equations at Re = 265; curves show predictions from equation (3.7)
truncated at first and third order with µ1 = 1.16 and α11 = 3.92. The inset shows a bifurcation
diagram along with simulation results at nearby parameter values.

and the spatial pattern is stationary. Although the flow pattern shown in figure 9 has
some qualitative similarities with mode B observed in experiment, this ‘pure’ state
cannot be observed directly in the laboratory because the wake is absolutely unstable
to mode A in this range of Reynolds number. We explore this issue in detail in the
following section.

3.5. Spatiotemporal chaos: Re ' 260, L→∞
We now turn our attention away from the critical points to look at the dynamics of
the wake in a sequence of systems with fixed control parameter Re and increasing
spanwise dimension L. The sequence is computed at Re = 265 where both A-
and B-type instabilities are self-excited (see figure 1). Note that the most-amplified
mode A wavelength is not constant but decreases with Reynolds number (Barkley
& Henderson 1996). At Re = 265 the ratio of the critical mode B wavelength to the
fastest growing mode A instability falls close to a power of 2 (λ ' 3.288d = 4× λ′2)).
Since this is not true at other values of the Reynolds number, Re = 265 is a unique
choice for computing the sequence 2nL because the discrete spectrum includes the
largest eigenvalue in both the mode A and mode B instability regions. The results of
the previous section constitute the first element of this sequence, i.e. the development
of the flow in a system where the spanwise dimension is equal to the critical mode B
wavelength, L = λ′2 = 0.822d. Subsequent calculations are performed at four times
and sixteen times this length scale.

In analysing the complex flows that develop in these ‘large’ systems we will try to
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synthesize the previous results for bifurcations to pure states, but the approach will
be slightly different. For moderate L there is a finite number of global modes that
participate in the dynamics. These modes are determined by the discrete wavenumbers
that fall into a region of instability in figure 1. An amplitude equation describing
the evolution of a single bifurcating mode near threshold does not directly apply.
To interpret the process of nonlinear growth and saturation in a qualitative way we
will rely on flow visualization. In order to quantify how the three-dimensional flow
develops we can follow the amount of kinetic energy Eq(t) carried by each Fourier
mode during transition. The instantaneous kinetic energy at a given wavenumber
may be computed approximately as

Eq(t) =
1

2
ρ

∫
Ω

|ûq|2 dΩ. (3.8a)

The time-averaged kinetic energy over some interval (t0, t0 + T ) is given by

〈Eq〉 =
1

T

∫ t0+T

t0

Eq(t) dt. (3.8b)

We refer to the variation of 〈Eq〉 with q as the spanwise energy spectrum. The spectrum
is normalized so that 〈E0〉 = 1. Like the global mode amplitude defined in (3.4), the
numerical values of Eq(t) also depend on the region Ω where the integrals in (3.8) are
evaluated. There is a direct link between the energy spectrum and flow visualization:
a ‘spike’ in the spanwise energy spectrum corresponds to a spatial structure with
a well-defined spanwise wavelength. This provides an analogy to the link between
global mode amplitude and pattern formation near the critical points.

3.5.1. Quasi-periodic behaviour, L = 3.288d

The first case we consider is a system with spanwise dimension four times larger
than the critical mode B wavelength, L = 4 × 0.822d = 3.288d. The evolution of
this flow was also computed using M = 16 modes since the highest wavenumbers
still lie within the viscous-dominated regime. The fundamental û1 with wavelength
λ = 3.288d corresponds to the most-amplified mode of the wake at Re = 265; the
wavelength of the harmonic û4 lies just inside the tip of the mode B instability
region; all other wavelengths correspond to linearly stable modes. Since there are
two self-excited instabilities in this system, we expect the dynamics to represent the
interaction of three global modes: φ0 ∝ û0, φ1 ∝ û1 (mode A), and φ2 ∝ û4 (mode B).
Note that the full three-dimensional representation of φ1 and φ2 involves a sum over
different subsets of the Fourier modes ûq , some of which carry shared components
of the global modes. Although the fundamental mode for φ2 is a fourth harmonic of
φ1, the two global modes are decoupled due to the distinct spatiotemporal symmetry
of modes A and B.

We start by looking at the shift in global oscillation frequency during the transition
to the three-dimensional state, shown in figure 10. Initially there is a large drop in
frequency due to the growth and saturation of the mode A instability, followed by a
fast transition to a different state where the flow oscillates over a relatively narrow
band of seven frequencies. Unlike the bifurcations to pure mode A or pure mode B,
the asymptotic state is quasi-periodic with an oscillation period much longer than
that of the two-dimensional flow. In this quasi-periodic state the average shedding
frequency rises above the saturated mode A value and at times returns almost exactly
to the two-dimensional value f0. There are small variations in the flow during each
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Figure 10. Shift in oscillation frequency during transition at Re = 265 for calculations on the
domain L = 3.288d. The asymptotic state is quasi-periodic and the wake oscillates within a group
of seven frequencies.

of the intermediate shedding cycles, but no attempt was made to characterize the
variations precisely.

These changes in oscillation frequency are linked to the spatial development of
the flow. Figure 11 illustrates the structure of the wake as a series of patterns
formed during transition. The entire sequence from initial perturbation to complete
saturation takes O(50) shedding cycles. During this time the flow passes through two
states. The first coherent pattern emerges just as φ1 (mode A) saturates. This is the
same pattern associated with the critical mode at Re2 ' 190. All modes within the
mode A instability region produce this same basic pattern. As the amplitude of φ2

(mode B) grows the flow evolves to a second state identified by the appearance of the
short-wavelength mode B pattern in the near wake, superimposed over the larger-
scale mode A pattern. Mode B appears later in time because it has a much smaller
growth rate. The state that exists at long times is a mix of both instability modes with
an amplitude that depends on distance downstream of the cylinder. Notice that the
highly distorted mode A pattern in figure 11(a) becomes smoothed-out following the
appearance of mode B in the near wake. The decrease in the amplitude of mode A
coincides with the rise of the global oscillation frequency in figure 10. This is the
link between figures 10 and 11: the growth of mode B causes a large reduction in
the amplitude of mode A, driving the system back towards a more ‘two-dimensional’
state. We shall return to this point in §4.

3.5.2. Chaotic behaviour, L = 13.152d

Next we look at the development of the flow in a system where the spanwise
dimension is sixteen times longer than the critical mode B wavelength, L = 16 ×
0.822d = 13.152d. The evolution of the flow was computed using a total of M = 64
modes on the same computational domain. The initial perturbation to û1 at the
fundamental spanwise wavelength lies well outside the mode A instability region;
the wavelengths of the first four harmonics û2−5 lie within the mode A instability
region; the wavelength of the harmonic û16 lies just inside the tip of the mode B
instability region (see figure 1). Note that the discrete-time linear growth rate of
the first five modes is such that µ1 < 1 and µ2 < µ3 ≈ µ5 < µ4 (all greater
than 1 and hence unstable). The system admits three incommensurate wavelengths
λi = ( 1

3
, 1

4
, 1

5
) × L in the mode A instability region, plus one subharmonic of the
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Figure 11. Visualization of the three-dimensional flow that evolves from an initial perturbation at
Re = 265, λ = 3.288d: (a) saturation of the most-amplified instability to give the mode A pattern;
(b) the amplitude of mode A decreases as the mode B instability develops in the near wake; (c) the
asymptotic state is a mix of both modes. The spanwise dimension L is only 1/4 of the image shown.

fastest-growing mode A instability. We expect the dynamics to be described by the
interaction of six global modes: the three modes of the previous section, plus three
additional modes representing subdominant mode A instabilities. As before we can
identify each global mode with its corresponding fundamental Fourier mode: φ0 ∝ û0,
φi ∝ ûi+1 for i = 1 . . . 4 (mode A), and φ5 ∝ û16 (mode B).

As in the previous section we first look at the change in global oscillation frequency,
shown in figure 12, as each of these instability modes develops in the wake. Initially
the frequency drops as the most-amplified mode A instability grows, reaching a
minimum value when the amplitude of this mode (φ3 ∝ û4) saturates. As before, the
frequency again rises rapidly when mode B settles into the near wake. However, at
long times the flow does not reach a periodic state. Instead it oscillates randomly
within a narrow band of frequencies whose peak value is only slightly lower than that
of the two-dimensional flow. For the remainder of this section we will concentrate on
the bracketed region in figure 12 where the system makes a transition from regular
to irregular dynamics.

The spatial development of the three-dimensional flow during this time is shown
in figure 13. Similar to the transitional flow in the smaller system L = 3.288d,
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Figure 12. Shift in oscillation frequency during transition at Re = 265 from calculations on the
large domain L = 13.152d. The asymptotic flow is chaotic and oscillates within a narrow band
of frequencies, slightly lower than that of the two-dimensional flow and centred around the level
marked mixed A–B. Labels (a–d) refer to the flow visualization in figure 13.

the wake again passes through several states before reaching full saturation after
O(100) shedding periods. The first coherent pattern to emerge is identical to the one
shown in figure 11(a) and corresponds to saturation of the most-amplified mode A
instability (φ3 ∝ û4). Again the wake does not saturate around this state because
subdominant modes continue to grow. The state following saturation of the leading
mode is characterized by the appearance of irregular large-scale structures in the
wake as shown in figure 13(b, c). These structures have remnants of mode A and are
qualitatively similar to the ‘vortex dislocations’ reported by Williamson (1992). They
are related to the growing amplitude of other self-excited mode A instabilities and
lead to a breakdown of the regular mode A pattern. The state that exists at long times
(figure 13(d)) does not exhibit any coherent large-scale structure. At long times the
amplitude of all modes in the A-band equalizes to within an order of magnitude and
the dynamics are chaotic. Mode B appears in the near wake in the same qualitative
way as seen in figure 11(c): a small-scale pattern superimposed over the larger-scale
structure of the wake.

The primary distinction between the structure of the flow in this calculation and the
results for smaller systems is the development of these large-scale ‘turbulent’ structures
due to the competition between multiple mode A instabilities. Figure 14 shows a close-
up of the vorticity field just as mode A begins to break up. In the near wake there
is a complex intertwining of the mode A and mode B instabilities. This figure also
reveals an isolated mode A vortex structure at the core of the ‘vortex dislocation’ in
figure 13(b). Otherwise, the instantaneous vorticity field is highly complex and difficult
to analyse directly. It should be intuitively clear from both figures 13 and 14 that
mode B dominates the near wake but quickly breaks up and is displaced by mode
A slightly downstream. Also, compare the highly irregular state shown here with the
pure mode B state shown in figure 9, keeping in mind that both flow fields correspond
to Re = 265. Although mode B may appear to dominate the near wake, the effect of
mode A disturbances clearly makes a fundamental difference to the character of the
flow at this Reynolds number.

The transition from regular to chaotic dynamics is quantified in figure 15. This
figure shows the instantaneous kinetic energy Eq(t) for roughly half of the spectrum
from the initial saturation of the leading mode A instability until the flow reaches
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Figure 13. Visualization of the three-dimensional flow that evolves from an initial perturbation
at Re = 265, λ = 13.152d: (a) saturation of the most-amplified instability around a wavelength
of λ = 3.288d to give the mode A pattern; (b,c) development of large-scale structure during the
breakdown of the mode A pattern; (d) asymptotic state with no discernible large-scale pattern. The
images represent the full spanwise dimension of the system.

its asymptotic state. A set of labels is shown just above the t-axis so that the flow
visualization in figures 13 and 14 can be compared directly with the spanwise energy
spectrum in figure 15. Each bold trace indicates the amplitude of one Fourier mode
identified as the fundamental mode for a self-excited global instability. The most
important feature of the time-dependent energy spectrum is the observation that
chaotic behaviour arises from the strong nonlinear interaction between the three
leading mode A instabilities, beginning at t− t0 ≈ 290.

We can clarify the interaction between secondary instability modes as follows.
Whenever the flow admits two global modes φp and φq with fundamental wavenum-
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Figure 14. Visualization of the three-dimensional vorticity field during transition at Re = 265, just
following the breakdown of mode A and subsequent transition to a mixed A–B state. Only ξz = +1
is plotted in order to reveal the streamwise vorticity in the near wake (ξx = ±0.65), since otherwise
it would be hidden by a sheet of negative spanwise vorticity shedding from the cylinder. Data for
this image is taken from figure 13(b).

bers βp and βq (not integer multiples), there is a redistribution of energy through the
nonlinear term in the Navier–Stokes equations:

N (φp + φq) = (φp · ∇)φp + (φq · ∇)φq + (φp · ∇)φq + (φq · ∇)φp. (3.9)

The first two terms on the right represent the self-interaction that links φp and φq
back to the primary instability (β = 0) and to higher harmonics of their fundamental
wavenumbers. This is the only type of nonlinear interaction in systems that admit
a single secondary instability mode (§§3.3 and 3.4). Coupling between secondary
instability modes is due to the last two terms on the right. These terms are responsible
for both the forward cascade of energy to smaller scales,

N (φ̂p + φ̂q)e
i(βp+βq) +N (φ̂∗p + φ̂∗q)e

−i(βp+βq), (3.10a)

and the inverse cascade of energy to larger scales,

N (φ̂p + φ̂∗q)e
i(βp−βq) +N (φ̂∗p + φ̂q)e

−i(βp−βq). (3.10b)

This interaction drives global modes other than φp and φq . If there were no coupling
between secondary instability modes we would expect the flow to saturate around the
fastest-growing linear instability, producing a bifurcation to a pure three-dimensional
state. Nonlinearity drives the amplitude of subdominant modes to a level far from
their equilibrium values and the flow never reaches a regular state. In figure 15 this is
led by the triad interaction between Fourier modes û3–û4–û5 which transfers energy
to both û1 and û2, causing the amplitude of higher-wavenumber modes to grow. The
asymptotic state may be interpreted as a competition between multiple oscillators
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Figure 15. Spatiotemporal chaos in the wake at Re = 265. Each trace corresponds to the energy of
a three-dimensional mode with a given spanwise wavenumber (approximately half of the spectrum
is shown). Bold traces correspond to the four modes that lie within the mode A instability region.
At t − t0 ≈ 290 the flow enters a strongly nonlinear regime where subdominant instability modes
grow rapidly. At t − t0 ≈ 320 large-scale turbulent structures appear in the wake, marking the
breakdown of the regular mode A pattern and subsequent transition to the chaotic state that exists
at long times. Labels (a–d) refer to the flow visualization in figure 13.

represented by the self-excited global modes φi(x, t), each trying to reach a different
equilibrium amplitude but driven off-peak by nonlinearity in the system.

The equilibrium amplitude that is reached by each mode in the fully coupled
nonlinear system is characterized by the time-averaged form of the spanwise energy
spectrum, shown in figure 16. The spanwise energy spectrum indicates the average
distribution of energy in the three-dimensional wake. Figure 16 shows results from all
calculations at Re = 265. For the (time-periodic) flows in small systems the averaging
is performed over the time scale for which the flow is periodic, while for the (non-
periodic) large system the averaging is performed over the time scale of figure 15.
Following the ideas of Hohenberg & Shraiman (1989) we distinguish two basic length
scales in the energy spectrum. The excitation length lE is the scale at which energy is
extracted from the primary instability and injected into the three-dimensional flow.
The dissipation length lD is the scale at which energy is dissipated by viscosity. In
figure 16 we identify lE primarily with the mode A instability because the energy level
in the mode B range is an order of magnitude lower. Based on the fact that mode B
is strongly supercritical, we can estimate lD as being somewhat smaller than the
critical mode B wavelength at Re = 265. At higher Reynolds number the excitation
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Figure 16. Long-time spanwise energy spectrum of the three-dimensional wake after transition at
Re = 265 for increasing system size: ◦, L = 0.822d; ×, L = 3.288d; •, L = 13.152d. Shaded regions
indicate the approximate wavenumber bands affected by the mode A and mode B instabilities. Also
indicated are the excitation scale lE due to mode A and the approximate dissipation scale lD due
to viscosity. The inset shows a portion of the data on a semilog scale to emphasize the connection
with the primary instability at β = 0.

scale should remain approximately constant while the dissipation scale decreases as
lD ∼ Re−1/2.

Low-wavenumber modes of the wake are linearly stable but essentially independent
of viscosity (non-dissipative), and it is interesting that energy does not seem to fall
off at low wavenumbers. While this result may seem odd at first, the reason is clear
when the same data are plotted on a semilog scale as in the inset to figure 16. The
energy spectrum is driven by the primary instability at β = 0, which in turn provides
a sustained excitation through the secondary instability to a band of wavenumbers
around β ∼ l−1

E . Energy is redistributed to all modes by nonlinearity until the flow
reaches a saturated state, but energy is only dissipated at wavenumbers larger than
β ∼ l−1

D . At long times there is a continuous distribution of energy at all scales in the
three-dimensional wake, one of the essential features of a ‘turbulent’ flow.

We look at one other summary of the various calculations for Re = 265 by
plotting the surface pressure distribution as a function of system size L. The surface
pressure coefficient is defined as Cp ≡ (p − p∞)/ 1

2
ρu2
∞, where p is the mean static

pressure on the surface of the cylinder. To convert from Cartesian to cylindrical
coordinates we take θ = tan−1 y/x so that θ = 0 is the base of the cylinder and
θ = π is the front stagnation point. Figure 17 compares the surface pressure from
a two-dimensional simulation with the results of three-dimensional calculations for
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Figure 17. Surface pressure distribution for flow past a circular cylinder at Re = 265. This sequence
illustrates the effect of fixing the control parameter Re and increasing the system size L, starting from
a simulation of the two-dimensional wake: curve B (L = 0.822d) only includes the short-wavelength
instability; curve A (L = 3.288d) includes the effect of a single long-wavelength instability mode;
curve A∗ (L = 13.152d) includes the effect of several long-wavelength modes and indicates that
Cp(θ) has reached a level that is independent of system size L.

Re = 265 and increasing system size L. Note that Cp depends only on the component
of pressure exerted by the mean flow (β = 0) since all other Fourier components
have zero contribution when averaged along the span of the cylinder. Small-scale
three-dimensionality alone (L = 0.822d) results in a relatively small reduction in the
magnitude of Cp on the low-pressure side. This is because of the weak interaction
between mode B and the primary instability near onset. The presence of mode A
(L = 3.288d) causes a much greater reduction in the magnitude of Cp. Calculations
for the largest domain (L = 13.152d) agree well with this curve and indicate that the
computed surface pressure distribution has reached a level that is independent of the
system size L.

Wake simulations at Re = 265 with L = 13.152d should represent all of the
important qualities of the flow observed in larger experimental systems, excluding
phenomena associated with end effects. In particular, larger systems at this Reynolds
number will also exhibit spatiotemporal chaos due to the same nonlinear mechanism
described above. Since this basic mechanism is in place for all Re > Re2, we expect
the calculations reported here for Re = 265 to represent the dynamics of the flow in
a qualitative way for lower Reynolds numbers as well. This was verified directly at
Re = 220 using a domain of spanwise dimension L = 14.78d and M = 64 modes. This
domain size was specifically chosen to include the most-amplified mode of the wake
at Re = 220 (λ ' 3.695d) and two subdominant mode A instabilities (see figure 1).
In this system the flow also evolves to a state of spatiotemporal chaos at long times.
Note that the chaotic states at Re = 220 and Re = 265 both involve a minimum of
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Figure 18. Shift in oscillation frequency during transition at Re = 220 for calculations on the
domain L = 14.78d. The asymptotic flow is chaotic, but at this Reynolds number the frequency
remains low after transition because the amplitude of mode A remains large (see figure 3). The
spatial development of the flow in time is similar to the sequence shown in figure 13.

three incommensurate wavelengths in the mode A instability region. The evolution of
the flow at Re = 220 is qualitatively similar to the wake structure shown in figure 13,
including the appearance of large-scale disturbances just prior to the breakdown of
the periodic mode A pattern. Figure 18 shows the shift in oscillation frequency and
the onset of spatiotemporal chaos following saturation of the linear instability. At
Re = 220 the (nonlinear) excitation of mode B is relatively weak so the amplitude
of mode A remains large. As a consequence the global oscillation frequency remains
low in the asymptotic state. This is consistent with experimental observations in this
range of Reynolds number and the computed frequency shift agrees well with the
measured dominant frequency at Re = 220 shown in figure 3.

It is difficult to verify that the dynamics are chaotic at lower Reynolds number from
direct numerical simulations of the full Navier–Stokes equations. Even the smallest
system L that includes a few wavelengths in the mode A instability region becomes
very large as the width of the A-band shrinks near Re2. For example, at Re = 190 (just
above the critical point at Re2 = 188.5) the smallest system that includes three modes
in the unstable mode A wavenumber band is L ≈ 75d, and M ≈ 300 modes would be
required to cover an appropriate range of scales. Intrinsically chaotic dynamics can
still be inferred from the broad-band frequency spectra observed in experiments; we
return to this point in §4.

3.6. Simulations of the ‘turbulent’ wake: Re = 1000

The final set of calculations represent the flow far from the onset of the secondary
instability, in the ‘fully turbulent’ regime at Re = 1000. The most comprehensive
calculations at this Reynolds number are performed on the large domain M3 with
a spanwise dimension of up to L ≈ 25d. The number of Fourier modes required to
reach the dissipation scale in this system can be estimated as βD = (2π/L)M ≈ Re1/2,
or M ≈ 128 modes. At this resolution the calculations resolve the beginning of the
dissipation range but not smaller scales, so the results must be considered somewhat
qualitative. For example, there is a discrepancy of 10–20% between these calculations
and experimental measurements of the mean drag coefficient and base pressure (see
figures 4 and 21). However, the phenomena we wish to illustrate are related to the
behaviour of the wake at large scales and these modes are fully resolved. As in the
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calculations at Re = 265, we follow a sequence of fixed control parameter Re and
increasing system size from L = 2πd ≈ 6.283d to L = 8πd ≈ 25.13d. The initial
condition for the first calculation is a perturbation to the two-dimensional flow at
Re = 1000. Subsequent calculations are performed by taking the asymptotic flow
on one domain and perturbing it at a lower wavenumber on a domain twice as
large in the spanwise direction. The results illustrate some interesting pattern forming
properties of the system at large Reynolds number and the effect that large-scale
three-dimensionality in the wake has on the fluctuating forces and mean surface
pressure distribution.

Figure 19 shows a visualization of the unsteady flow at Re = 1000 on the largest
domain L = 8πd. The sequence of images is spaced approximately two shedding
cycles apart. The most striking feature is the spontaneous appearance of large-scale
phase dislocations in the near wake. These are highly localized structures that differ
qualitatively from the large-scale structures associated with the breakdown of mode A
observed at lower Reynolds number. The dislocations appear intermittently in time
and at random locations along the span. Various types of ‘dislocations’ or ‘defects’
are a common feature in many pattern-forming systems. In most fluid systems where
dislocations have been studied experimentally, they are forced to occur by introducing
some controlled non-uniformity to avoid the inherent randomness in time and space
of naturally occurring dislocations.

Based on time traces of the spanwise energy spectrum (not shown), the phase
dislocations in figure 19 seem to be caused by the rapid accumulation of energy in the
low-wavenumber modes of the system. As the amplitude of these modes grows the
shedding becomes out of phase over a distance equal to one-half their wavelength. If
the amplitude becomes large enough, a dislocation occurs with a complex reconnection
of vortices on either side. After the passage of a dislocation the wake is left in a
‘winding state’ that still satisfies the periodic boundary conditions along the span.
Additional dislocations at later times destroy the winding state and return the wake
to a state of nearly parallel shedding. This cycle of events occurs repeatedly but on
a slow time scale with new dislocations forming after O(10) shedding periods. The
phenomenon is not understood at a fundamental level and is reported here only as an
observation for this particular simulation. It is also unknown whether the irregular
state depicted in figure 19 will continue indefinitely or settle down to a more regular
but still ‘turbulent’ state after a long time.

The winding states observed in figure 19 are qualitatively similar to winding states
reported by Leweke & Provansal (1995) for the periodic wake of a ring at Re = O(100).
Blackburn & Melbourne (1996) also show experimental evidence of winding states
and phase dislocations in the wake of straight circular cylinders at Reynolds number
as high as Re = O(105). Similar structures are observed in other types of free shear
flows as well. Browand & Troutt (1980, 1985) showed that ‘vortex defects’ appear
naturally during transition in the mixing layer at the boundary between cells of
different frequency, or between adjacent cells with the same frequency but a different
phase. Browand & Prost-Domasky (1990) studied these structures in a controlled
setting by acoustically forcing a shear layer at different frequencies along the span.
In the wake simulations reported here the cylinder is perfectly uniform and there is
no forcing. The only mechanism for generating dislocations is through the dynamics
of large-scale structures in the wake.

Large-scale three-dimensionality in the wake also has a pronounced effect on the
unsteady forces exerted on the cylinder. Figure 20 compares the fluctuating lift and
drag for systems with increasing spanwise dimension L. These quantities are averaged
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Figure 19. Visualization of the turbulent wake at Re = 1000. The sequence of images (a–h) shows
contours of the normal velocity v(x, y = 0, z, t) at times spaced approximately two shedding cycles
apart. The image plane corresponds to x/d = (0, 48) and z/d = (0, 25.13). The structures ‘wash out’
downstream because of the low resolution in that part the domain.

along the span of the cylinder. Each trace is characterized by its time-averaged value
(CL and CD) and the root-mean-square variation of the instantaneous value around
this average (C ′L and C ′D). The time-averaged lift coefficient is always zero. If the
two-dimensional results were included in figure 20, the corresponding traces of CL(t)
and CD(t) would both be perfectly time-periodic signals. Each three-dimensional
calculation shows a varying degree of ‘irregularity’ that depends on the spanwise
correlation of the flow. Because the signals are highly non-periodic it is difficult to
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Figure 20. Unsteady lift and drag coefficients for the ‘turbulent’ flow past a cylinder at Re = 1000.
The data illustrate the effect increasing domain size has on the fluctuating forces, up to the maximum
of L = 8πd. The t-axis is only for scale: short gaps between data sets are long transients in the
computations.

estimate the asymptotic values of the fluctuating forces without taking averages over
extremely long times, but the qualitative effect of increasing L is quite clear.

In the smallest domain (L = 2πd) the shedding is well-correlated along the span
and the amplitude of the fluctuating lift and drag is quite large. The amplitude of
the fluctuating component decreases with increasing L due to the loss of spanwise
correlation. On the largest domain (L = 8πd) the force signals appear to be modu-
lated, and there are times when the amplitude of the fluctuating lift falls almost to
zero. Times of minimum C ′L(t) in figure 20 correspond to the appearance of phase
dislocations in the wake. At these times the instantaneous force F (z, t) is misaligned
due to the phase difference and there is a certain amount of cancellation when the
force is averaged along the span. The time scale of the modulation is related to the
rise and fall of energy in the low-wavenumber modes of the system. The modulation
is not periodic like the beating that would occur with a simple nonlinear interaction
between two temporal frequencies, for example between the vortex shedding frequency
and the oscillation frequency of the separating shear layer. Instead the fluctuations
appear in bursts at irregular intervals, consistent with their origin as a feature of the
competition between low-wavenumber spatial modes in the wake.

Another interesting effect of large-scale structure in the wake can be seen in the
comparison between instantaneous and time-averaged surface pressure distributions,
shown in figure 21. This figure presents Cp(θ) at Re = 1000 obtained from both
experimental measurements and simulations of the three-dimensional flow. First note
that the pressure distribution along the base of the cylinder is quite flat at this
Reynolds number. This is also a direct result of weak spanwise correlation in a large
system due to intrinsic three-dimensionality. The reduction in spanwise correlation
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Figure 21. Surface pressure distribution for flow past a circular cylinder at Re = 1000: (sym-
bols), experimental measurements by Leyva, Henderson & Gharib (1996); the solid line is the
time-averaged pressure distribution from a three-dimensional simulation with L = 8πd; the dashed
line is the potential flow solution. The ‘shaded’ region indicates the instantaneous values of Cp(θ, z, t)
at 64 locations along the span.

results in a smoothing of the mean pressure distribution. A strongly correlated flow
would exhibit low-pressure peaks associated with the average position of vortex
formation. For example, the surface pressure distribution at Re = 265 shown in
figure 17 exhibits these peaks because the three-dimensional flow remains well-
correlated along the span. The ‘shaded’ region in figure 21 reveals further evidence of
large phase differences by showing the instantaneous cross-sectional surface pressure
coefficient Cp(θ, z, t) at 64 locations along the span. If the flow were well-correlated,
this region would collapse into a narrow band (for the perfectly correlated two-
dimensional flow it is a single line). Since the solid line indicates the mean value of
Cp(θ), and the shaded area extends equally far above and below the mean value in
the base region, we can infer that at this instant there is a complete variation in phase
along the span of the cylinder.

When plotted as in figure 21 the difference between the computations and exper-
imental measurements for the surface pressure coefficient does not seem that large.
In the simulated wake the value of Cp at θ = 0 (the base pressure) is actually about
10% more negative. This difference also accounts for the discrepancy in the com-
puted drag coefficient shown in figure 4. Although the shape of the curve is in good
agreement with experiments, including the flatness of the base pressure region, the
surface pressure coefficients obtained from the computation are uniformly lower than
the experimental measurements. This suggests that there is more dissipation within
the boundary layer and near wake in the laboratory flow than in the simulated flow,
which could arise from any number of sources: free-stream turbulence interacting
with the boundary layer, surface roughness, and so forth. It may also be due to a ne-
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glect of small-scale three-dimensionality in the computational model. So far attempts
to isolate the discrepancy and close the gap between computation and experiment at
this Reynolds number have been unsuccessful.

4. Discussion
At the present time there is still a vigorous debate over the precise physical

origin of the wake instability. Researchers have sought a more physical explanation
of the two-dimensional vortex shedding instability for almost a century now, so
imagine the difficulty of describing the more complicated three-dimensional instability
in simple physical terms! Instead we focus primarily on how instability modes in
the wake determine the overall structure of the three-dimensional flow and the
transition to ‘turbulence’ with increasing Reynolds number. The present study provides
important clarification of various properties of modes A and B and their interaction
in the transition range of Re ≈ 150 to 300. The calculations show good agreement
with experimental observations of natural transition in the wake and highlight the
role of the long-wavelength mode A instability in producing irregular dynamics at
Reynolds numbers just beyond the onset of the secondary instability. In general the
computations show that large-scale structure in the wake plays a vital role in the
overall dynamics, not only near the onset of the secondary instability but also at
higher Reynolds numbers as well.

4.1. Nonlinear aspects of modes A and B

We begin by summarizing the properties of modes A and B that have been determined
from stability calculations and direct numerical simulations, and how these properties
compare with experimental observations. First, it is important to note that each
instability is associated with a continuous wavenumber band, i.e. for Re > Re2 there
is not a single A mode, there is a branch of A modes. All modes along the A and
B branches are formally related by a distinct spatiotemporal symmetry. Barkley &
Henderson (1996) report the complete form of these symmetries, both of which have
been verified in experiments by Brede et al . (1996) and Williamson (1996b). The actual
form is not so important for the present discussion so much as the fact that they are
different. As a general rule, nonlinearity or some other pattern selection mechanism
selects a single wavenumber from the continuous band of symmetry-related modes
associated with the linear instability. Generally this mode would be observed in the
physical system as a spatially periodic pattern centred around the critical wavelength
λc = 2π/βc. Since this is not consistent with experimental observations of three-
dimensionality in the wake of long circular cylinders, we do not assume that for
Re > Re2 there is a sharply defined mode A or mode B. However, a pure bifurcation
is easily arranged in the computations by selecting precise initial conditions and this
is the case we consider first.

From linear and nonlinear stability calculations, mode A is found to appear as
a subcritical bifurcation from the two-dimensional flow near Re2 ' 190 with a
wavelength of λ2 = 3.96d at onset. Owing to the subcritical nature of mode A, the
wake is also unstable to finite-amplitude perturbations at lower Reynolds number and
there is a hysteresis in the transition between two-dimensional and three-dimensional
states. In the ideal system this hysteresis occurs only in a small neighbourhood
Re = (1 + ε)Re2 of the critical point with a lower bound of Re ≈ 180. Mode A is
strongly coupled to the two-dimensional wake over a large distance downstream of
the cylinder, producing a large-amplitude distortion of the Kármán vortices and a
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jump in forces acting on the cylinder. Bifurcation to pure mode A results in a three-
dimensional flow that is perfectly periodic in space and time, but with a significant
drop in shedding frequency due to the strong nonlinear coupling between the primary
and secondary instabilities.

Experimental measurements of the wavelength and transition Reynolds number for
mode A, including hysteresis near the critical point Re2, show good agreement with
linear and nonlinear stability calculations (Barkley & Henderson 1996; Williamson
1996a). Figure 3 shows there is also good agreement between the computed and
measured frequency drop near Re2. Although there are important differences between
the pure mode A state and experimental observations for Re > Re2 (see §4.3),
the excellent agreement in these global quantities indicates they are determined
primarily by the interaction between the primary instability and a single mode A
instability. In sharp contrast, all previous numerical studies report a soft onset of
three-dimensionality in the wake with a continuous variation of global quantities
like shedding frequency and drag (Karniadakis & Triantafyllou 1989; Tomboulides,
Triantafyllou & Karniadakis 1992; Noack & Eckelmann 1994; Zhang et al . 1995).
Previous discrepancies between simulation and experiment can be attributed to an
unfortunate combination of domain size and resolution effects.

The present study also clarifies an important misconception regarding the change
in shedding frequency at Re2. Both Zhang et al . (1995) and Williamson (1996a–c)
have speculated that this change only occurs in the presence of some other com-
plicating phenomenon, and that ‘pure mode A’ corresponds to a higher frequency
curve. In particular, speculation by Williamson (1996a–c) regarding two separate fre-
quency curves A and A∗ is largely incorrect. It is important to note that Williamson’s
statements were not based on direct measurements but on assumptions about the
correlation between hot-wire data and flow visualization in separate facilities. Non-
linear calculations for the onset of mode A presented in §3.3 clearly show that the
shift in oscillation frequency is due to the coupling between mode A and the primary
instability. The distinction between pure mode A and more complex flows is not the
drop in magnitude but whether the frequency spectrum is broad-band or contains
a single peak. The fact that frequency spectra measured by Williamson (1988) and
Leweke & Provansal (1995) are broad-band just above Re2 indicates there is not a
bifurcation to pure mode A in experiment that is stable at long times.

Calculations at higher Reynolds number show that mode B appears as a super-
critical bifurcation from the two-dimensional flow at Re′2 ' 260 with a wavelength of
λ′2 = 0.822d at onset. Unlike mode A, this instability occurs over a narrow range of
wavelengths and the transition is sharp and without hysteresis. Mode B is primarily a
near-wake instability that interacts weakly with the Kármán vortex street and decays
rapidly with distance downstream of the cylinder. Near the critical point there is no
direct change in oscillation frequency. In fact, because of the supercritical nature of
the instability, there is a continuous bifurcation from the two-dimensional branch to
pure mode B.

Previous numerical studies have not examined the precise onset of mode B as a
bifurcation from the two-dimensional wake, and the supercritical bifurcation cannot
be verified directly by experiment since this instability occurs in a range of Reynolds
number where the wake is already unstable to mode A. However, experiments do
indicate a sharp and non-hysteretic change at Re′2 ' 260 in measurable quantities
like shedding frequency, base pressure coefficient, and drag. Prasad & Williamson
(1996) and Williamson (1996b) speculate on a possible ‘resonance’ between the vortex
shedding frequency and a two-dimensional shear layer instability of the type observed
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at Re > 1000. However, the shear layer seems entirely stable to two-dimensional
perturbations at low Reynolds number and there is no evidence of any such resonance
in the present study. The changes in wake response at Re′2 ' 260 seem related solely
to the nonlinear stability of mode B and provide indirect experimental evidence that
mode B is supercritical.

One of the open questions is why mode B is observed at Re < Re′2. Numerous
experimental studies report periodic disturbances with a spanwise wavelength of
around one diameter for Reynolds number as low as Re ≈ 200. Similar structures are
reported in computational studies by Zhang et al . (1995) at Re = 220, Thompson et
al . (1996) at Re = 250, and in the present study at Re = 220. There are three important
facts to consider in this regard: (i) modes A and B are unrelated by symmetry and
only coupled indirectly through the changes they induce in the primary instability
mode; (ii) mode B only appears at Re < Re′2 in the presence of mode A; and (iii)
a small amount of mode B leads to a large reduction in the amplitude of mode A.
The present study provides preliminary validation for a theory and nonlinear model
proposed by D. Barkley (private communication, 1996) that combines each of these
facts. In short, the two modes interact only through the changes they induce in the
primary instability, and that interaction is such that mode A de-stabilizes mode B
while mode B re-stabilizes mode A. Flow visualization and frequency calculations
presented in §3.5 show these effects directly. A nonlinear coupling of this form would
explain why mode A is difficult to observe at higher Reynolds number and why the
shedding frequency returns close to its two-dimensional value near Re′2. Additional
calculations confirming this scenario and identifying the precise Reynolds number
where mode A (rather than the two-dimensional flow) first becomes unstable to
mode B are the subject of current work.

We close this section with a final question regarding the general nature of global
modes in the wake, namely: Do the global modes (eigenfunctions of the temporal
stability equations) provide the true three-dimensional structure of the flow after
transition? In general this depends on how ‘nonlinear’ the final state is. Because the
bifurcation to mode A is strongly subcritical, the nonlinear state after mode A saturates
is significantly different from the linear superposition of the leading eigenmode and
the two-dimensional flow. This can be seen by comparing figure 7 in the present
study with figure 9 of Barkley & Henderson (1996). The global mode only describes
the three-dimensional structure of the flow accurately when |A| � |U0|. On the
other hand, the bifurcation to mode B is supercritical and therefore saturates at low
amplitude before nonlinearity distorts the structure of the bifurcating global mode. In
both cases the global mode determines the wavelength and spatiotemporal symmetry
after transition, but strong nonlinearity will always distort the mode shape.

4.2. Origin of large-scale structure in the wake

Another interesting feature of transition in the wake is the observation of three-
dimensional structure with a spanwise scale much larger than the secondary insta-
bility wavelength. Williamson (1992) referred to such structures as spot-like ‘vortex
dislocations’ and indicated they could grow to a size of the order 10 to 20 primary
instability wavelengths downstream of the cylinder (a spanwise wavelength of the
order 50 to 100 diameters). They are the essential feature of the state he referred to
as A∗, meaning mode A plus ‘vortex dislocations’. The term dislocation in this context
is somewhat misleading since it usually refers to a highly localized disturbance in
an otherwise ideal pattern, whereas a ‘vortex dislocation’ is a decidedly non-local
phenomenon that fills a large region of space. For example, compare the ‘vortex
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dislocations’ in figure 13 and the ‘phase dislocations’ in figure 19. Presumably viscous
effects prevent the formation of true pattern dislocations at low Reynolds number.
Zhang et al . (1995) observed a related type of three-dimensional shedding near Re2

which they referred to as a ‘vortex adhesion’ mode. Because of the strong similarity
between these structures and the development of turbulent spots in boundary layer
transition (see Williamson 1992), they will be referred to here simply as ‘spot-like’
disturbances rather than dislocations.

There is probably a wide variety of interesting patterns that can be produced
by exciting various nonlinear responses in the wake. Williamson (1992) produced
‘vortex dislocations’ artificially with a small ring mounted on the surface of the
cylinder. This type of sharp local disturbance along the span is equivalent to a
near-wake perturbation of three-dimensional global modes across a broad band
of wavenumbers – the sharper the disturbance in physical space, the broader the
perturbation in wavenumber space. Zhang et al . (1995) produced ‘vortex adhesion’ in
their simulations of the wake by inserting a “strong localized spanwise inhomogeneity
in the initial conditions,” which is the same type of effect. In their calculations ‘vortex
adhesion’ did not arise naturally from small perturbations. Spot-like disturbances
in the present study always develop from small perturbations for sufficiently large
Re > Re2 and L > λ2, and they occur specifically during the rapid nonlinear growth
of subdominant mode A instabilities.

Although each study cited above (including the present one) visualizes somewhat
different quantities, there are certain characteristics that identify these as essentially
the same phenomena. Large-scale structures only appear in natural transition after
mode A, i.e. after the fastest-growing instability mode saturates. Like the global
instabilities that drive all three-dimensionality in the wake, these disturbances develop
simultaneously over large distances downstream of the cylinder. They are initiated
outside the near wake and slightly downstream of the cylinder where the local
amplitude of mode A is large. They have an overall Λ-shaped appearance that may
point either upstream or downstream (see figure 13), and the core of the disturbance is
aligned at a given spanwise location for a significant distance downstream. Figure 14
showed that a vortical structure indicative of mode A lies at the core of these
disturbances.

In the absence of external forcing (e.g. end effects, imperfections in the geometry)
or phenomena induced by the initial conditions, all large-scale structure must be
generated by the mode A instability. There is no evidence of other instabilities
that would energize and sustain such large-scale disturbances. In §3.5, spot-like
disturbances in the wake developed naturally during the breakdown of the ideal
spatially periodic mode A pattern due to the interaction with subdominant mode A
instabilities. This process does not depend on any non-uniformity in the surface of
the cylinder or the approaching free-stream flow, nor does it depend on end effects. It
only depends on the broad-band nature of the mode A instability and the lack of a
strong pattern selection mechanism to lock the system onto a single three-dimensional
global mode and suppress other subdominant but self-excited modes of the wake.
Williamson (1996b) interprets this phenomenon as “a local spanwise location where
the shedding frequency falls out-of-phase with the shedding to each of the two sides,”
i.e. a phase dislocation. The present study indicates these disturbances are part of the
intrinsic three-dimensional structure of the wake and not simply a local variation
in the phase of vortex shedding. Unlike experiment, spot-like disturbances in the
simulations represent a transient phenomenon that only occurs during the breakdown
of the spatially periodic flow and the evolution towards a long-time energy spectrum
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of the form shown in figure 16. Their persistence in experiment may be related to
end effects. However, it is clear that their initial appearance results from the growth
of subdominant instability modes and represents another important nonlinear aspect
of the mode A instability.

4.3. Irregular dynamics and fast transition to ‘turbulence’

We begin this section with a summary of the most important experimental obser-
vations related to transition in the wake of large-aspect-ratio systems. For a more
comprehensive discussion see the recent review by Williamson (1996c). The following
comments are based primarily on experimental results presented by Williamson (1988,
1991, 1992, 1996a–c), Mansy, Yang & Williams (1994), Leweke & Provansal (1995),
Zhang et al . (1995), Wu et al . (1996), and Brede et al . (1996). There is generally
good agreement that the transition from two-dimensional vortex shedding to a three-
dimensional state occurs at Re2 ' 190, and that the transition shows a hysteresis with
respect to Reynolds number. Velocity fluctuations in the wake exhibit broad-band
frequency spectra just beyond the onset of this instability and a significant drop
in shedding frequency from that of the two-dimensional flow. Williamson (1996a–c)
shows that broadening of the spectrum is not due to slow variations in shedding
phase or random fluctuations, but is directly associated with the appearance of ‘vor-
tex dislocations’ in the wake. Regular mode A vortex shedding is only observed as
a transient in the approximate range Re ≈ 180 to 200, and experimental wavelength
measurements show considerable scatter. At long times the flow is highly irregular,
reinforcing the fact that there does not appear to be a bifurcation to pure mode A
in experiment that is stable at long times. In contrast to this, measurements for the
wavelength of mode B fall into a narrow band with good agreement among various
experimental groups. Mode B is observed from Re ≈ 200 on, and as Re approaches
Re′2 ' 260 there is a reasonably well-defined wavelength in the near wake and a sharp
peak in the frequency spectrum. However, this peak is superimposed over a broad
band of frequencies in the background indicative of ‘turbulence’ in the wake farther
downstream.

In comparing computational and experimental results for transition it is first
important to make a more precise distinction between aspect ratio and spanwise
dimension. In computation, a moderate value of L corresponds to a system which is
restricted to a small number of discrete modes, even though the system is infinitely
large (spatially periodic). For example, the calculations presented in §3.3 represent
the interaction between the primary instability (β = 0) and the critical mode A
instability (β = 2π/λ2) in an infinite domain. Longer-wavelength modes are excluded
by restricting the dynamics to a subspace with spanwise dimension L = λ2. An aspect
ratio much larger than L = λ2 is needed in experiment so this interaction is not
polluted by end effects, and therefore experiments with small aspect ratio are in no
way similar to computations with moderate L. The lack of end effects in computation
makes it possible to classify the response of the flow to specific perturbations and
allows a more systematic study of phenomena associated with modes A and B.

Transition results from the present study are summarized in table 2. Unlike ex-
perimental systems, perturbations near either critical point converge to a three-
dimensional, time-periodic flow (a limit cycle). However, time-periodic flows are only
observed in systems with a small spanwise dimension (L = λ2 or L = λ′2) where
the dynamics represent a single global oscillator. Increasing spanwise dimension L
leads to spatiotemporal chaos driven by the competition between multiple self-excited
mode A instabilities. In these cases the spatial pattern associated with pure mode A
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Re L/d nA nB Observations

180 3.960 0 0 stable, decays back to 2D flow
185 3.960 0 0 bi-stable between 2D and 3D states
190 3.960 1 0 time-periodic mode A
195 3.960 1 0 time-periodic mode A
220 14.780 3 0 spatiotemporal chaos, mixed A-B
255 0.822 0 0 stable, decays back to 2D flow
260 0.822 0 1 time-periodic mode B
265 0.822 0 1 time-periodic mode B
265 3.288 1 1 quasi-periodic, mixed A-B
265 13.152 4 1 spatiotemporal chaos, mixed A-B
270 0.822 0 1 time-periodic mode B

Table 2. Summary of observed final states as a function of Re and L for calculations in the transition
range, Re = 150 to 300. Parameters nA and nB indicate the number of discrete wavenumbers in the
system that fall into a region of instability in figure 1. Note that chaotic flows are only observed for
nA > 3 over this range of Reynolds number.

occurs only as a transient, and turbulent structures like those observed in experiment
appear just prior to the breakdown of the spatially periodic mode A pattern and
subsequent transition to a chaotic state. Mode B is only observed in large systems as
a short-wavelength pattern superimposed over a background of large-scale irregular
motions. For example, compare the regularity of the near wake and the irregular
flow slightly downstream in figures 13 and 14. With increasing Reynolds number
the excitation due to mode A is spread across a wider band of wavenumbers and
any coherent mode A pattern disappears. Mode B can be clearly identified over a
wider range of Reynolds number because it is limited to a relatively narrow range of
wavelengths. However, the computed spanwise energy spectrum (figure 16) indicates
that mode A is the primary source of excitation in the three-dimensional wake.

We can now outline the properties of the system that would lead one to expect
chaotic behaviour and identify a simple mechanism for the onset of irregular dynamics
and fast transition to turbulence in the wake. Spatiotemporal chaos is a common
feature of systems where excitation occurs at a length scale much smaller than the
system size but larger than the dissipation scale (L � lE > lD). Mode A instability
in the wake fits this scenario well. The excitation scale lE ≈ λ2 is fixed by the finite-
wavenumber instability of mode A, which is in turn fixed by the length scale of the
primary instability (spacing of the Kármán vortices). The subcritical nature of the
bifurcation to mode A shows that lE > lD at onset. When L ≈ lE the dynamics are
regular or quasi-periodic (§§3.3, 3.4, and 3.5.1), but when L � lE the flow exhibits
spatiotemporal chaos (§§3.5.2 and 3.6). Calculations at Re = 265 established that
chaotic states first arise from the competition between multiple mode A instabilities.
For any Re > Re2 there is a minimum spanwise dimension L such that three or more
discrete modes lie within the mode A instability region. This can be estimated from
the width of the instability region in figure 1 and was used to determine appropriately
large spanwise dimensions at Re = 220 and Re = 265. The absolute (self-excited)
nature of the wake instability guarantees that each of these modes will grow, setting
up a competition between multiple oscillators represented by the global modes. The
dynamics in larger systems are necessarily chaotic because we can always choose
initial conditions that lie in the same (chaotic) subspace. We conclude that the wake
follows the Ruelle–Takens–Newhouse (RTN) route to turbulence for fixed Re > Re2
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and L → ∞. This a universal route to turbulence in dissipative systems that develop
three or more incommensurate frequencies (Ruelle & Takens 1971; Newhouse, Ruelle
& Takens 1978). As Reynolds number is increased beyond Re2 the flow gradually
enters the regime of strong turbulence due to the increasing separation in scale
between excitation due to the secondary instability (fixed length scale, lE ≈ λ2) and
dissipation due to viscosity (decreasing length scale, lD ∼ Re−1/2).

At least two other scenarios have been proposed for the ‘route to turbulence’
in the wake. The onset of chaotic dynamics agrees qualitatively with the onset of
spatiotemporal chaos due to the Benjamin–Feir instability in the complex Ginzberg–
Landau (GL) model. Leweke & Provansal (1994, 1995) proposed a certain variation of
parameters in this equation that correctly models the change in oscillation frequency
during transition and mimics the complex dynamics of the wake near the onset of
the secondary instability. However, the GL model does not have a finite-wavenumber
instability and therefore cannot quantitatively describe the secondary instability of
the wake due to mode A. An extension of the discrete model used in the present
study to the case of a coupled set of instability modes may lead to a more complete
model for wake transition, but this requires a fundamentally different approach from
studying instabilities in the GL model.

In simulations of the three-dimensional wake, Karniadakis & Triantafyllou (1992)
and Tomboulides et al . (1992) observed a period-doubling bifurcation at Re ≈ 300 and
proposed that the wake might follow a period-doubling route to turbulence. Period-
doubling occurred for fixed system size L ≈ 1.57d and increasing control parameter
Re → ∞. The small size of their system excluded the mode A instability altogether.
Mittal & Balachandar (1995b) also report a mechanism related to period-doubling in
the wake at Re = 500, but their calculations were for an equally small system of size
L ≈ 1d. A period-doubling cascade seems reasonable when the complex dynamics of
the large system are eliminated by such severe restrictions on the spanwise dimension
L. Recent experiments by Williams, Mansy & Abouel-Fotouh (1996) show evidence
of subharmonic fluctuations and a shifting of the three-dimensional structure of the
flow along the span of the cylinder at Re = 300, so there may be some elements of the
physical mechanism suggested by Tomboulides et al . (1992) related to the dynamics
of the near wake. However, in the light of the overwhelming experimental data in the
transition range and computational results presented here for large systems, it is clear
that the wake does not follow a period-doubling route to turbulence in any rigorous
sense.

We are still left with the following question: Does the irregular behaviour reported
here and observed in experiment represent deterministic chaos or stochastic chaos?
A precise answer to this question in terms of Lyapunov exponents or generalized
attractor dimensions can be extremely difficult to quantify for large systems. This
is an important characterization of the wake dynamics, but at the present time the
computational expense of this type of analysis is prohibitive. However, there is good
evidence that the simulations reported here exhibit deterministic chaos. First, we saw
that perturbations to a single instability mode produce a time-periodic (regular) state.
For fixed Reynolds number and equivalent numerical resolution, chaotic behaviour is
only observed when three or more incommensurate mode A instabilities are excited.
Since stochastic forcing in these calculations arises from machine errors (e.g. finite-
precision arithmetic), the evolution of the spanwise energy spectrum relative to the
level of machine errors is a critical comparison. Figure 22 shows this for the complete
calculation from small perturbation to spatiotemporal chaos at Re = 265 in the
system with L = 13.152d. Clearly the dynamics are regular when the amplitude
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û3 û5

û2
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Figure 22. Time-dependent energy spectrum for the complete calculation presented in figure 15.
Traces show the evolution of the linearly stable long-wavelength mode (û1), the four fundamental
instability modes (û2−5), and the highest harmonic retained in the calculation (û64). The latter
exhibits stochastic forcing due to machine errors at early times, but the irregular behaviour of the
system at long times is due solely to the nonlinear competition between self-excited modes of the
wake.

of each instability mode is small but growing exponentially (the linear and weakly
nonlinear regimes). Irregular behaviour arises from the strong nonlinear interaction
between these modes that only occurs at later times when they reach a sufficiently
large amplitude. In the asymptotic state there is a separation of twenty orders of
magnitude between the excitation level due to the wake instability and stochastic
forcing due to machine errors. This does not constitute proof of deterministic chaos,
but given the link with the RTN mechanism of competing modes, ‘deterministic
chaos’ is a reasonable conclusion.

4.4. Effect of large scales on fluctuating forces

Experimentally it is observed that the fluctuating lift and drag on bluff bodies at
higher Reynolds number is not strictly periodic but appears in bursts. The bursting
intervals are much longer than the primary shedding frequency. Similar behaviour
is reported for flow past circular cylinders by Szepessy & Bearman (1992) and for
bluff plates by Lisoski (1993). Szepessy & Bearman associate this behaviour with the
spanwise modulation of the vortex shedding phase. Both studies note that the time
scale of the modulation depends on the aspect ratio of the system, L/d. Therefore, it
has not been clear whether the modulation of forces is due somehow to end effects
or to intrinsic three-dimensionality in the flow.

In the present study the modulation of forces is found to originate in the intrinsic
large-scale structure of the wake. In previous computations, Mittal & Balachandar
(1995a) show that three-dimensionality on a small scale (λ ≈ 1d) modifies the Reynolds
stresses in the near wake, and this is the primary factor in reducing the mean drag.
The main effect of large scales (λ � 1d) seems to be the modulation of fluctuating
lift and drag through changes in the local phase of vortex shedding. Figure 20 shows
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that this modulation is absent in small systems where the flow is roughly correlated
along the span. As we increase the system size L, spanwise correlation is lost and the
flow exhibits large-amplitude variations in the phase of vortex shedding. Figure 19
shows this occurring in the extreme case of phase dislocations along the span of the
cylinder. The shedding frequency is constant within a ‘cell’ that may be in phase or
out of phase with respect to adjacent cells. Over long times the variation in phase
produces a relatively flat pressure distribution along the base of the cylinder, as shown
in figure 21. This is clearly not possible in a small spanwise-correlated system, and
may be taken as direct evidence that the large-scale structure of the wake is important
at higher Reynolds number.

4.5. Concluding remarks

The flow past a circular cylinder exhibits spatiotemporal chaos at Reynolds numbers
just beyond the onset of the secondary instability. Irregular dynamics and fast tran-
sition to ‘turbulent’ flow are due primarily to the broad-band nature of the mode A
instability in the wake and the competition between self-excited global modes that
arise from this instability. This was shown directly from computations at Re = 220
and 265, and is consistent with measured frequency spectra and experimental flow
visualization at lower Reynolds numbers. Regular flow patterns associated with both
mode A and mode B occur either as transients or when the flow dynamics are severely
restricted by imposing spanwise periodicity. The focus on spatial energy spectra and
large-scale flow patterns in the present study clarifies the relative importance of these
instabilities at higher Reynolds number, and indicate that at Re > Re2 mode A is the
dominant source of energy transfer from the primary instability mode (the Kármán
vortex street) to the turbulent, three-dimensional flow. Future computational studies
that address turbulence in the wake by either direct or large-eddy simulation should
include scales of at least lE ≈ λ2, preferably an order of magnitude larger. Mode B
develops as a second, separate instability process that primarily affects the near wake.
Since these modes have different symmetries and occur on different length scales,
there is not a direct transition or transfer of energy from one mode to the other.
Nonlinear interaction between self-excited modes in the A-band is responsible for
the appearance of large-scale structures in the wake during the breakdown of the
periodic three-dimensional state. Simulations at higher Reynolds number show that
the flow can develop localized phase dislocations and that large-scale structure in the
wake is responsible for modulating the amplitude of fluctuating lift and drag. There
is no direct evidence in the present study of separate three-dimensional instabilities or
phenomena that cannot be explained in terms of the mode A and mode B instabilities.

Questions regarding the nature of the turbulent wake at large Reynolds number
must ultimately address the evolution of the flow over long times and large distances.
Such calculations are particularly demanding in terms of computational resources, and
it is difficult to provide a reliable analysis of asymptotic behaviour in open flow systems
based on brute-force integration of the Navier–Stokes equations. In the present
study the three-dimensional flow at moderate Reynolds number is represented by a
dynamical system with about one million degrees of freedom. It takes approximately
5000 s to simulate one shedding cycle at this resolution using the available computer
resources. The time scale for a typical experiment in air at Re ≈ 1000 is about 0.005 s
per shedding cycle, giving a ratio of time scales between experiment and computation
of the order one million to one. This comparison is made simply to point out the
challenge facing realistic DNS of wake turbulence and to motivate the need for
appropriate model systems.
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On a more positive note, the flow past a circular cylinder is an ideal problem for
computation because the entire sequence of states from steady flow to ‘turbulence’ can
be studied in an extremely small range of Reynolds number. As Roshko (1954) first
suggested, the transition to ‘turbulence’ is essentially complete at Re ≈ 300. Within
this small parameter range there is a supercritical Hopf bifurcation, subcritical and
supercritical pitchfork bifurcations, coherent structures, complex vortex dynamics, and
spatiotemporal chaos . . . all for the simplest case of uniform flow past an infinitely
long cylinder! Even though the circular cylinder has served as the most important
prototype bluff body flow for almost a century, the quantitative description of these
phenomena has only begun to unfold in the past few years. As H. W. Liepmann is so
fond of saying, one can always discover interesting new things in the most classical
problems.
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