Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 2, 2017 | Submitted
Report Open

Correcting for Survey Misreports using Auxiliary Information with an Application to Estimating Turnout


Misreporting is a problem that plagues researchers that use survey data. In this paper, we develop a parametric model that corrects for misclassified binary responses using information on the misreporting patterns obtained from auxiliary data sources. The model is implemented within the Bayesian framework via Markov Chain Monte Carlo (MCMC) methods, and can be easily extended to address other problems exhibited by survey data, such as missing response and/or covariate values. While the model is fully general, we illustrate its application in the context of estimating models of turnout using data from the American National Elections Studies.

Additional Information

Revised edition. Original date: August 2008

Attached Files

Submitted - sswp1294_-_revised.pdf


Files (752.0 kB)
Name Size Download all
752.0 kB Preview Download

Additional details

August 20, 2023
January 13, 2024