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Most tests of general relativity with gravitational-wave observations rely on inferring the degree to which
a signal deviates from general relativity in conjunction with the astrophysical parameters of its source, such
as the component masses and spins of a compact binary. Due to features of the signal, measurements of
these deviations are often highly correlated with the properties of astrophysical sources. As a consequence,
prior assumptions about astrophysical parameters will generally affect the inferred magnitude of the
deviations. Incorporating information about the underlying astrophysical population is necessary to avoid
biases in the inference of deviations from general relativity. Current tests assume that the astrophysical
population follows an unrealistic fiducial prior chosen to ease sampling of the posterior—for example, a
prior flat in component masses—which is inconsistent with both astrophysical expectations and the
distribution inferred from observations. We propose a framework for fortifying tests of general relativity by
simultaneously inferring the astrophysical population using a catalog of detections. Although this method
applies broadly, we demonstrate it concretely on massive graviton constraints and parametrized tests of
deviations to the post-Newtonian phase coefficients. Using observations from LIGO-Virgo-KAGRA’s third
observing run, we show that concurrent inference of the astrophysical distribution strengthens constraints
and improves overall consistency with general relativity. We provide updated constraints on deviations
from the theory, finding that, upon modeling the astrophysical population, the 90%-credible upper limit on
the mass of the graviton improves by 25% to mg ≤ 9.6 × 10−24 eV=c2 and the inferred population-level
post-Newtonian deviations move ∼0.4σ closer to zero.

DOI: 10.1103/PhysRevD.108.124060

I. MOTIVATION

Gravitational-wave observations from compact binarymer-
gers have provided a unique laboratory to test Einstein’s
theory of gravity in the strong-field regime [1–7]. These
individual detections by the Advanced LIGO [8] and
Advanced Virgo [9] detectors allow for various tests—
such as inspiral-merger-ringdown consistency [10,11], para-
metrized inspiral deviations [12–14], gravitational-wave
dispersion [15,16], birefringence [17,18], and nontensorial
polarizations [19–23], among many more; see Ref. [7] for
recent results—to both target specific properties of general
relativity (GR) as well as broadly explore its consistency
with observations. Beyond analyzing events individually,
the ensemble of detections can be analyzed collectively to

study the possibility of deviations from GR at the population
level [6,7,24,25]. Hierarchical population tests rely on infer-
ring the distribution of deviation parameters across all events
and confirming that it is consistent with a globally vanishing
deviation [24,26,27].
In this study we explore the systematic impact of astro-

physical population assumptions on these studies, show that
they already come into play for current catalogs due to the
increasing number of detections, and offer a solution under
the framework of hierarchical population modeling.
In inferences about deviations from GR, there are strong

likelihood-level correlations between the deviation param-
eters and the astrophysical parameters of the source, such as
the masses and spins of compact binaries [1,28,29].
Therefore, any inference of deviations from GR signals
from black hole coalescences will be affected by assump-
tions about the distribution of binary black-hole masses
and spins in the Universe—otherwise known as the astro-
physical population distribution [30]. This is true at both
the individual-event and catalog levels, regardless of the
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specific assumptions made in combining deviation param-
eters across events, whether the analysis is hierarchical or
not. Even when astrophysical parameters do not explicitly
appear in the catalog-level test of GR, assumptions about
these parameters are implicitly encoded in the individual-
event deviation posteriors through the prior. As the catalog
of gravitational-wave observations grows and the precision
of the measurements improves, these systematic effects
become more important.
In presence of correlations between deviation and astro-

physical parameters, we must simultaneously model the
astrophysical population distribution in conjunction with
testingGR. By not explicitly doing so, as has been the case in
previous tests ofGR [1–7,24], the astrophysical population is
typically implicitly assumed to be uniform in detector-frame
masses and uniform in spin magnitude. This fiducial sam-
pling prior is adopted to ensure broad coverage of the
sampled parameter space, and not to represent a realistic
astrophysical population. In reality, the primary-black hole
mass population more closely follows a decreasing power-
law with an excess of sources at ∼35M⊙, and preferentially
supports low spins [30,31]. This mismatch can lead to biased
inference regarding deviations from GR. Simultaneously
modeling the astrophysical and deviation distributions will
not eliminate the influence of the former on the latter, but it
will ensure that this interplay is informed by the data and not
arbitrarily prescribed by analysis settings.
While this insight applies to all tests of GR, for con-

creteness we devote our attention to constraints on the
mass of the graviton [15,16] and deviations in parametrized
post-Newtonian (PN) coefficients [12,13,32–35]. A mas-
sive graviton would affect the propagation of a gravitational
wave over cosmological distances; this leads to a frequency-
dependent dephasing of the gravitational wave which is
related to the mass of the graviton, mg, and the propagated
distance. The PN formalism describes the Fourier-domain
phase of an inspiral signal under the stationary phase
approximation through an expansion in the orbital velocity
of the binary system; each k=2 PN expansion order can then
bemodified by a deviation parameter, δφk, which vanishes in
GR. See Appendix A for further details about both calcu-
lations. We focus on these tests as they target the signal
inspiral phase, which also primarily informs astrophysical
parameters such as masses and spins; we leave other tests
[5–7,10,11,15,16,19–23] to future work.
As motivation, Fig. 1 shows how inference on the 0PN

coefficient of a real event (GW191216_213338) depends
on astrophysical assumptions. This figure compares mea-
surements with (blue) and without (red) a simultaneous
measurement of the population of black hole masses and
spins (see Sec. II). The observed binary black-hole pop-
ulation shows a preference for systems with comparable
masses; as a consequence of the strong correlation
between the 0PN deviation coefficient and the mass ratio
of GW191216_213338, this preference then “pulls” the
system towards more equal masses and a more negative

deviation coefficient. This is a direct manifestation of the
fact that tests of GR are contingent on our astrophysical
assumptions. Higher PN orders are expected to display
similar correlations as in Fig. 1 with these and other
parameters. For example, spins are known to be correlated
with the coupling constant of dynamical Chern-Simons
gravity which modifies the phase at the 2PN order [36–39].
While we have constructed the posterior informed results
here, it is more robust to simultaneously infer the astro-
physical population while also testing GR. Fixing the prior
to one astrophysical population realization or marginalizing
over possible distributions from other analyses will not
capture any correlated structure between the inferred
deviation parameters and the astrophysical distributions.
The above example serves only to illustrate the impact of
the arbitrary choices previously made.
The remainder of the manuscript focuses on combining

information frommany observations to simultaneously infer
the astrophysical populationwhile testingGR; it is structured
as follows.We first introduce our hierarchical analysis frame-
work, as well as astrophysical and GR deviation models, in
Sec. II. We then demonstrate the impact of incorporating
astrophysical information by constraining the graviton mass
and inferring thePNdeviationpropertieswith an ensemble of
gravitational-wave observations in Sec. III. We analyze

FIG. 1. Posterior distributions for the 0PN deviation coefficient
δφ0, detector-frame chirp mass Mð1þ zÞ, and symmetric mass
ratio η for the gravitational-wave event GW191216_213338
[6,40], as inferred by a modified SEOBNRv4 waveform
[14,41–44]. Posteriors are conditioned on two different astro-
physical assumptions: the broad prior used during parameter
estimation (red), and the astrophysical population inferred by the
data using the model in Sec. II B (blue). The black dashed curves
show the expected correlation (Appendix B). Due to the corre-
lations between astrophysical and deviation parameters, different
astrophysical populations lead to different posteriors for δφ0.
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events from LIGO-Virgo-KAGRA (LVK)’s third observing
run with individual-event results from Ref. [7] (the posterior
samples are available in Ref. [45])—a subset of the events in
GWTC-3 [46]. The simultaneous modeling of the astro-
physical population while testing GR tightens the graviton
mass upper limit by 25%, and improves consistencywithGR
on the PN coefficients by ∼0.4σ, when using a modified
SEOBNRv4 waveform [14,41–44]. Finally, we conclude in
Sec. IV, where we summarize the case for jointly modeling
the astrophysical population when testing GR in order to
avoid biases and hidden assumptions, and comment on how
the same is true for gravitational-wave studies of cosmology
or nuclear matter.

II. POPULATION ANALYSES

In this section, we introduce the fundamentals of
inferring a population distribution from individual obser-
vations and discuss the population models we employ. We
also outline the implementation and importance of obser-
vational selection effects in accounting for the events used
within the analysis.

A. Preliminaries

We infer the astrophysical population distribution and
deviations from GR (see Refs. [47–49] for a discussion of
hierarchical inference in the context gravitational-wave
astronomy). This framework has already been extensively
applied to tests of GR and astrophysical population infer-
ence separately [6,7,24,25,30,31,50–66]. Here we focus on
combining both methods to jointly infer the astrophysical
population while testing GR.
Our approach is based on a population likelihood,

pðfdgjΛÞ, for the ensemble of observations, fdg, given
population hyperparameters, Λ ¼ fΛastro;ΛnGRg. We sep-
arate the hyperparameters into the parameters describing
the astrophysical population distribution, Λastro, and param-
eters describing the deviation to GR, ΛnGR. The hyper-
parameters encode the shape of the population distribution,
πðθjΛÞ, where θ are parameters of a single event; we
describe our population models in the following subsec-
tions. This hierarchical approach allows us to test GR while
concurrently inferring the astrophysical population from
the data. Given the likelihoods of individual events,
pðdijθiÞ, the population likelihood is

pðfdgjΛÞ ¼ 1

ξðΛÞN
YN
i¼1

Z
dθipðdijθiÞπðθijΛÞ; ð1Þ

where di and θi are, respectively, the data and parameters
for the ith event, and fdg is the collection of data for the
ensemble of N observations.1 We address the technical
aspects of the likelihood calculation in Appendix C.

In Eq. (1), ξðΛÞ is the detectable fraction of observations
given a set of population hyperparameters and accounts for
selection biases [47]. It is defined as

ξðΛÞ ¼
Z

dθpdetðθÞπðθjΛÞ: ð2Þ

Here pdetðθÞ is the probability of detecting a binary black-
hole system with parameters θ. The selection factor in
Eq. (2) accounts for both the intrinsic selection bias of
a gravitational-wave detector (e.g., heavier binaries are
more detectable), as well as selection thresholds used when
deciding which gravitational-wave events to analyze. The
detected fraction can also be framed as a “normalizing
factor,” which relaxes the need for normalizable population
distributions [so long as the integrals in Eqs. (1) and (2) are
finite] [67]. This correction will become important in
Sec. II C when discussing the selection criteria for events
to be included in the analysis.
In theory, the selection factor should account for the effect

of both astrophysical and deviation parameters. However, we
ignore the latter here, the effect ofwhich is subject of ongoing
research [68]. For the former, we compute the detectable
fraction, ξðΛÞ, from a set of recovered injections,

ξðΛÞ ¼ 1

Ninj

XNrec

i¼1

πðθijΛÞ
πdrawðθiÞ

; ð3Þ

where Ninj is the number of injected signals, Nrec is the
number of recovered signals, and πdrawðθiÞ is the distribution
fromwhich the injected signals were drawn (for more details
see Refs. [30,31,47–50]). The subset of injected signals that
are recovered is determined by the particular thresholds used
to determine which gravitational-wave observations to use
within the hierarchical analysis. To avoid biases, the criteria
on the threshold for the detectable fraction calculation must
match that of the observed signals. We address the specifics
of the relevant criteria for our analysis in Sec. II C.
Finally, Eq. (1) explicitly shows the need for jointly

modeling the astrophysical population when testing
GR. While the astrophysical population may be separ-
able from the deviation distribution so that πðθjΛÞ ¼
πðθastrojΛastroÞπðθnGRjΛnGRÞ, this factorization cannot be
undertaken for individual event likelihoods, as the devia-
tions are often correlated with astrophysics (see Fig. 1),
i.e., pðdijθÞ ≠ pðdijθnGRÞpðdijθastroÞ. Therefore, the inte-
grals of Eq. (1) do not separate and tests of GR cannot be
undertaken in isolation from the astrophysics.
From the hyperposterior distribution on the popu-

lation parameters, we can construct the individual event
population-informed posteriors following Refs. [69–71]
(and references therein). Such distributions represent our
best inference about the properties of a given event in
the context of the entire catalog of observed signals. These
calculations are subtle as they avoid “double counting”

1Equation (1) assumes a prior on the rate of observations as
πðRÞ ∝ 1=R, which was analytically marginalized [62].
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the gravitational-wave events which also used to infer the
population distribution.

B. Population models

In this subsection, we outline the population models for
both the GR deviations and the astrophysical population.
While many astrophysical population models have been
proposed [30,31,50–66] as a product of the increasing
number of observations [30,46], in this work we restrict
ourselves to standard parametrized models motivated by
previous analyses.

1. GR deviation population models

There are two typical approaches to combining poste-
riors on GR deviation parameters obtained from different
gravitational-wave observations, each stemming from dif-
ferent assumptions behind the deviations (see, e.g., dis-
cussions in [6,7]). The first, more general approach is to
assume that the population describing deviations from GR
is, to the lowest order, a Gaussian distribution with a mean,
μ, and standard deviation, σ [24,26]. In the limit that all
observations are consistent with GR, ðμ; σÞ → ð0; 0Þ and
the inferred distribution approaches a Dirac delta function
at the origin. Since a Gaussian distribution encapsulates the
lowest order moments of more complicated distributions,
given enough events any deviation from a delta function at
the origin will be identified as a violation of GR, even if the
exact shape of the deviation distribution is not captured by a
Gaussian [24,27]. This approach is now routinely applied
to post-Newtonian deviations tests, inspiral-merger-ring-
down consistency tests and ringdown analyses [6,7,24], but
it can be naturally extended to any analysis that recovers
GR in the limit of some vanishing parameter. This method
provides a null test in cases where the exact nature of the
deviation is unknown.
The second approach assumes all observations share the

same value of the deviation parameter [5,12–14,44,72–76].
This is the limiting case of the aforementioned Gaussian
model when σ → 0. This model (in the absence of
astrophysical information) is equivalent to simply multi-
plying the marginal likelihoods of the deviation parameter
obtained from the individual events. The assumption of a
shared parameter is only suitable in the context of specific
theories or models, in which case the expected degree of
deviation for each event can be predicted exactly as a
function system specific parameters (e.g., BH masses and
spins) and universal, theory-specific parameters (e.g.,
coupling constants), the second of which can be measured
jointly from a catalog of detections by multiplying like-
lihoods. In practice, the lack of complete waveform models
beyond GR means that this approach has so far only been
well-suited for measurements such as the mass of the
graviton, and features of the propagation of gravitational
waves whose observational signatures are independent of
specific source properties by construction [5–7].

2. Astrophysical population models

Following Refs. [30,31,50], we model the primary black-
hole mass (m1) distribution as a power-law whose slope is
given by an index α, with a sharp cutoff governed by the
minimum mass, mmin, and a higher-mass Gaussian peak,

πðm1jΛÞ ¼ ð1 − fpeakÞP½α; mmin�ðm1Þ
þ fpeakN ½μpeak; σ2peak�ðm1Þ: ð4Þ

Here, fpeak is the fraction of binaries in the Gaussian peak,
the power law is given by

P½α; mmin�ðm1Þ ∝
�
m−α

1 ; m1 ≥ mmin

0; m1 < mmin
; ð5Þ

and N ½μ; σ2�ðxÞ is the probability density function for a
Gaussian with mean μ and variance σ2. We fix mmin ¼
5M⊙ for simplicity. Unlike other studies [30,31,53], we do
not infer much structure in the Gaussian peak as higher
mass features become unresolvable when looking at the
light binary systems that provide constraints of PN coef-
ficients (see Sec. II C).
We parametrize the distribution of mass ratios,

q≡m2=m1, as a conditional power law, with index β,
and a sharp cutoff imposed by mmin, such that

πðqjm1;ΛÞ ∝
�
qβ; 1 ≥ q ≥ mmin=m1

0; q ≤ mmin=m1

: ð6Þ

Here β can take any value without leading to a singularity
due to the lower bound on the mass ratio.
We adopt a truncated Gaussian population model for

the component spins with a mean, μχ , and standard
deviation, σχ , bounded between zero and one, assuming
both spins are drawn independently from the same pop-
ulation distribution. This differs from standard Beta dis-
tribution utilized in many recent analyses [30,31,50,54,77]
as it allows for nonzero support at the edges of the spin-
magnitude domain [78]. Furthermore, adopting a Gaussian
model allows for efficient computation of the population
likelihood via analytic integration (see Appendix C).
For individual-event analyses where the spins are assumed
to be aligned with the orbital angular momentum (as is
the case for posteriors using a modified SEOBNRv4 wave-
form [14,41–44]), this model treats the measured spin along
the orbital angular momentum as the total spin magnitude.
For analyses where the individual event inferences also

possess information about the spin-precession degrees of
freedom, we adopt a model for the spin tilts, cos θ1=2,
whereby the population is parametrized as a mixture of
isotropically distributed andpreferentially aligned spins [54],
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πðcos θ1; cos θ2jΛÞ ¼
fiso
4

þ ð1 − fisoÞ
×N ½1; σ2θ�ðcos θ1ÞN ½1; σ2θ�ðcos θ2Þ;

ð7Þ
where fiso is the mixing fraction, and σθ is the standard
deviation of the preferentially aligned Gaussian component.
This model is only relevant for analyses with precessing
spins. In this manuscript, this includes the massive graviton
constraints (Sec. III A), and PN deviation tests with the
IMRPhenomPv2 [34,35,79] waveform (Appendix D).
Finally, we also adopt a power-lawmodel for the merger-

rate density as a function of redshift [62],

πðzjΛÞ ∝ 1

1þ z
dVc

dz
ð1þ zÞλ; ð8Þ

where dVc=dz denotes the evolution of the comoving
volume with redshift, and λ is the power-law index.
When λ ¼ 0, the binary black-hole population is uniformly
distributed within the source-frame comoving volume.

C. Selection criteria and observations

We limit ourselves to binary black-hole observationsmade
during LIGO-Virgo-KAGRA’s third observing run [46] with
false-alarm rates of less than 10−3 per year.2 This mirrors
the selection criteria chosen for the tests of GR within
Refs. [5–7], and therefore we do need not reanalyze any
individual gravitational-wave observations [45,80]. The
events that pass these criteria are listed in Table IV of
Ref. [6] and Table V of Ref. [7]. In future studies, the
false-alarm-rate threshold could be raised to increase the
number of included gravitational-wave events. This would
likely improve inference of the astrophysical population and
GR deviation constraints due to the larger catalog of
observations. In our analyses, we exclude GW190814
[81] as it is an outlier from the binary black-hole population
[31] andGW200115_042309 since it is a neutron-star-black-
hole merger [82]. It is straightforward to extend this analysis
to additionally incorporate binary neutron star and neutron-
star-black-hole mergers by adopting a mixture model of the
different source classifications (see Ref. [30] for one exam-
ple). We then use all events except GW200316_2157563

when inferring themass of thegraviton,mirroring the analysis
in Ref. [7]. When constraining the PN deviation coefficients,
we include the additional criterion that signal-to-noise ratios
(SNRs) during the binaries’ inspiral must be greater than 6,
again mirroring previous analyses [6,7].
We use posteriors for the graviton’s mass inferred

using a modified IMRPhenomPv2 [34,35,79] waveform,

whereas we use both modified SEOBNRv4 [14,41–44]
(for results in Sec. III B) and modified IMRPhenomPv2

[12,13,34,35,73,76,79] (for results in Appendix D)4 wave-
form models when inferring the PN deviations. We sum-
marize these events and their relevant properties in Table I.
We do not include gravitational-wave events from the first
and second LIGO-Virgo observing runs, as a semianalytic
approximation was used to estimate the sensitivity of the
detector network during that time [5]. This approximation
does not compute a false-alarm rate and therefore cannot be
unambiguously incorporated into this methodology.
As described in Sec. II, selection effects are estimated

through an injection campaign. While we know the total
network SNR of the individual injections, part of our
selection criteria is based on the inspiral network SNR.
We approximate the inspiral SNR from the total SNR
by constructing a linear fit to their ratio as a function of
detector-frame total mass (Fig. 2). This fit is constructed
by inferring the slope and offset of the line, as well as
the uncertainty on the data points. We assume identical
uncertainties on all SNR ratios, and marginalize over this

FIG. 2. Ratio between the network maximum a posteriori
gravitational-wave inspiral and the total SNRs as a function of
detector-frame total mass, Mð1þ zÞ≡ ðm1 þm2Þð1þ zÞ, for all
gravitational-wave observations in the LIGO-Virgo-KAGRA
third observing run [6,7,46,83] with a false-alarm rate less than
10−3=yr. The solid blue line is the median best-fit line to the
observations, with the band representing the 90%-credible un-
certainty. While computing this fit, we also estimate the un-
certainty in the individual data points. We use this fit to compute
the inspiral SNR for the injections used to estimate the detection
probability, pdetðθÞ, as described in Sec. II C.

2For comparison, the population analyses presented Ref. [30]
used a false-alarm-rate threshold of 1 per year. A more stringent
false-alarm-rate threshold is often adopted when testing GR to
avoid contaminating from false detections.

3GW200316_215756 was excluded from propagation tests
within Ref. [7] due to poor sampling convergence.

4Single-event results with IMRPhenomPv2 were only produced
during the first half of the third observing run [6,7].
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parameter to fit the line. We validate this approximation by
computing the detection probability pdetðθÞ with different
draws of the linear fit. We find that different realizations of
the approximation do not change the detection probability,

and so we consider this approximation to be sufficiently
accurate for our purposes. Future injection campaigns may
also opt to compute the inspiral SNR directly.

III. RESULTS

In this section we simultaneously infer the astrophysical
population while testing GR and quantify the impact of
fixing the population distribution to the sampling prior.
Throughout, we use the nomenclature “fixed” and
“inferred” to refer to whether the analysis uses the fixed
sampling prior or infers the distribution from data, respec-
tively. We implement the analyses using NumPyro [84,85]
and JAX [86], leveraging Astropy [87–89] and SciPy [90] for
additional calculations, and Matplotlib [91], ArviZ [92], and
Corner [93] for plotting purposes. The code for the hierar-
chical tests is available in Ref. [94].

A. Massive graviton constraints

We begin by demonstrating that astrophysical assump-
tions are crucial even in the simplest scenarios, where
a global deviation parameter is shared across events. This
is the case for the mass of the graviton, mg [15,16] (see
AppendixA 1), for whichwe produce an updated upper limit
by simultaneously inferring the astrophysical distribution.
We combine results from individual-event likelihoods

under the assumption of a shared deviation parameter as
described in Sec. II B. In practice, we compute this as the

TABLE I. Observations from the LIGO-Virgo-KAGRA’s third
observing run that pass our selection criteria [6,7,46,83]. The
different columns outline the gravitational-wave event, the
detector-frame chirp mass, the total and inspiral maximum
a posteriori SNRs (ρtot and ρinsp, respectively), and whether it
was included in the graviton constraint calculation (mg) or the
post-Newtonian deviation tests (PN). Horizontal lines split events
from the two halves of the third observing period. While we use
all events marked under “PN” in Sec. III B, we are limited to the
first half of observing run when using IMRPhenomPv2 posterior
samples in Appendix D.

Event ð1þ zÞM [M⊙] ρtot ρinsp mg PN

GW190408_181802 23.7þ1.4
−1.7 15.0 8.3 ✓ ✓

GW190412 30.1þ4.7
−5.1 19.1 15.1 ✓ ✓

GW190421_213856 46.6þ6.6
−6.0 10.4 2.9 ✓ � � �

GW190503_185404 38.6þ5.3
−6.0 13.7 4.3 ✓ � � �

GW190512_180714 18.6þ0.9
−0.8 12.8 10.5 ✓ ✓

GW190513_205428 29.5þ5.6
−2.5 13.3 5.1 ✓ � � �

GW190517_055101 35.9þ4.0
−3.4 11.1 3.4 ✓ � � �

GW190519_153544 65.1þ7.7
−10.3 15.0 0.0 ✓ � � �

GW190521_074359 39.8þ2.2
−3.0 25.4 9.7 ✓ ✓

GW190602_175927 72.9þ10.8
−13.7 13.1 0.0 ✓ � � �

GW190630_185205 29.4þ1.6
−1.5 16.3 8.1 ✓ ✓

GW170706_222641 75.1þ11.0
−17.5 12.7 0.0 ✓ � � �

GW190707_093326 9.89þ0.1
−0.09 13.4 12.2 ✓ ✓

GW190708_232457 15.5þ0.3
−0.2 13.7 11.1 ✓ ✓

GW190720_000836 10.4þ0.2
−0.1 10.5 9.2 ✓ ✓

GW170727_060333 44.7þ5.3
−5.7 12.3 2.0 ✓ � � �

GW190728_064510 10.1þ0.09
−0.08 12.6 11.4 ✓ ✓

GW190828_063405 34.5þ2.9
−2.8 16.2 6.0 ✓ ✓

GW190828_065509 17.4þ0.6
−0.7 9.9 6.3 ✓ ✓

GW190910_112807 43.9þ4.6
−3.6 14.4 3.3 ✓ � � �

GW190915_235702 33.1þ3.3
−3.9 13.1 3.7 ✓ � � �

GW190924_021846 6.44þ0.04
−0.03 12.2 11.8 ✓ ✓

GW191129_134029 8.49þ0.06
−0.05 14.1 12.8 ✓ ✓

GW191204_171526 9.70þ0.05
−0.05 18.0 16.3 ✓ ✓

GW191215_223052 24.9þ1.5
−1.4 10.6 5.5 ✓ � � �

GW191216_213338 8.94þ0.05
−0.05 17.9 15.6 ✓ ✓

GW191222_033537 51.0þ7.2
−6.5 13.1 3.1 ✓ � � �

GW200129_065458 32.1þ1.8
−2.6 25.7 10.4 ✓ ✓

GW200202_154313 8.15þ0.05
−0.05 11.1 10.5 ✓ ✓

GW200208_130117 38.8þ5.2
−4.8 9.9 3.0 ✓ � � �

GW200219_094415 43.7þ6.3
−6.2 11.2 2.8 ✓ � � �

GW200224_222234 40.9þ3.5
−3.8 19.4 4.7 ✓ � � �

GW200225_060421 17.7þ1.0
−2.0 12.9 6.8 ✓ ✓

GW200311_115853 32.7þ2.7
−2.8 17.5 6.5 ✓ ✓

GW200316_215756 10.7þ0.1
−0.1 11.5 10.7 � � � ✓

FIG. 3. Marginal one-dimensional posterior distributions for
the mass of a massive graviton. In practice, we compute the
shared value of graviton mass by assuming a shared deviation
parameter log10ðmgc2=eVÞ then reweighting to a uniform grav-
iton mass prior. The dashed lines correspond to the 90% upper
limits from the two analyses. We compare the result when
astrophysical information is not included, equivalent to multi-
plying individual event likelihood functions (yellow), to also
modeling the astrophysical population (dark blue). The result
shifts towards smaller values of mg if simultaneously modeling
the astrophysical population and the graviton’s mass.
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limit of a vanishing standard deviation of the hierarchical
analysis described in Sec. II. For technical reasons, we
assume a uniform prior distribution on log10ðmgÞ when
combining observations, which differs from Refs. [5–7]
which applied a uniform prior on mg itself; this is to
avoid poor convergence when reweighting between individ-
ual-event posterior distributions. In the end, we reweight the
shared graviton mass inference to a uniform prior to report
upper limits on mg. We compare this to results obtained
assuming the sampling prior for the astrophysical parameters.
The one-dimensional marginal distributions of the

shared mass of the graviton are shown in Fig. 3. The
inclusion of astrophysical information changes the inferred
distributions of the graviton’s mass increasing support
for mg ¼ 0. When using the sampling prior for the astro-
physical population (and thereby assuming the incorrect
distribution), the graviton’s mass is constrained to be mg ≤
1.3 × 10−23 eV=c2 at the 90% level5; however, upon infer-
ring the astrophysical population the graviton’s mass
becomes more constrained, with mg ≤ 9.6 × 10−24 eV=c2

at the 90% credible level. Under the expectation that GR is
correct and mg ¼ 0, a reduced constraint is generically
expected as we have included the correct information
regarding the astrophysical population. This highlights the

effect of unreasonable astrophysical assumptions, which are
inconsistent with the observed population, on tests of GR.

B. Hierarchical post-Newtonian deviation
constraints from SEOBNRv4

We repeat the population analysis, this time measuring
the hierarchical PN deviation distribution with a mean, μPN,

FIG. 4. Two-dimensional marginal posterior distributions for the hyperparameters of the Gaussian PN deviation distribution informed
by the 20 events in the third LIGO-Virgo-KAGRA observing run passing the selection criteria, analyzed with a modified SEOBNRv4
[14,41–44] waveform. The contours indicate the 50% and 90% credible regions. Each panel corresponds to a separate analysis where the
coefficient varied was at a different PN order. The analysis was undertaken with an implicitly assumed, astrophysically unrealistic
population (yellow), and a model which simultaneously infers the astrophysical population model (dark blue). Modeling both the
astrophysical population and the PN deviation population systematically shifts the inferred mean, μPN, closer to zero.

FIG. 5. Displacement of the deviation parameter distribution
from GR for each PN deviation coefficient. The displacement
corresponds to the credible levels at which the hyperparameter
values corresponding to GR, ðμPN; σPNÞ ¼ ð0; 0Þ, reside for two
different models as shown in Fig. 4. This quantity is indicative of
the relative position of the posterior to the GR value. Incorpo-
rating the astrophysical population as well as the hierarchical
model for the PN deviation leads to an inferred result more
consistent with GR for most cases.

5This constraint differs from the 90% upper limit of 1.27 ×
10−23 eV=c2 calculated in Ref. [7], which is determined by
additionally incorporating observations from the first and second
LIGO-Virgo-KAGRA observing periods [5,95]. We do not
include these observations due to the ambiguity in the detector
network sensitivity during these periods.
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and standard deviation, σPN, for all PN orders. This is
corresponds to ten separate analyses where only one PN
deviation coefficient is allowed to vary. To compare with
the default approach (which implicitly assumes a flat-in-
detector-frame mass, uniform mass ratio, uniform spin-
magnitude aligned spin, and comoving volume redshift

distributions), we also fit the GR deviation in isolation
under the assumption of the (astrophysically unrealistic)
sampling prior [6,7].
Figure 4 shows the two-dimensional posterior distri-

bution of the deviation hyperparameters for −1 through
to 3.5PN orders. The standard results implicitly using the

FIG. 6. Marginal one- and two-dimensional posterior distributions for the δφ6 PN deviation and a subset of astrophysical population
hyperparameters. Contours correspond to the 50% and 90% credible regions. Results from four analyses are shown—population
inference using the PN deviation population only with the “default” sampling prior astrophysical population (yellow), astrophysical
population only (green), astrophysical population under the assumption that GR is correct (dashed green), and the joint analysis inferring
the post-Newtonian deviation and astrophysical populations simultaneously (dark blue). No strong correlations exist between either the
mean or standard deviation of the deviation Gaussian and astrophysical population parameters. The starkest difference is that inferring
the population when the PN deviation population is ignored leads to broad spin magnitude populations.
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sampling prior are shown inyellow,while the results from the
simultaneous modeling of the astrophysical and deviation
populations are shown in dark blue. When concurrently
modeling the astrophysical distribution, in all PN deviation
parameters the inferred mean resides closer to zero, i.e.,
the expected value from GR, while there is no clear trend
in σPN. Overall, ðμPN; σPNÞ ¼ ð0; 0Þ is retained with greater
significance for almost all PN orders.
We quantify this improvement by comparing the two-

dimensional credible level6 at which the expected GR
value, ðμPN; σPNÞ ¼ ð0; 0Þ, resides in Fig. 5. A lower value
for the credible region implies that the value of hyper-
parameters expected from GR resides closer to the bulk of
the distribution. In all but one PN order, jointly inferring the
astrophysical and PN deviation distributions moves the
inferred distribution to be more consistent with GR. For
the 0.5PN deviation coefficient, δφ1, there is little change in
the credible level at which GR is recovered. Generally,
inference of the astrophysical population allows our infer-
ences of GR deviations to be more consistent with GR, with
an average improvement of 0.4σ.
To shed further light on the interaction between the GR

and astrophysics parameters, we focus on two specific
deviation parameters. In particular, we draw attention to the
3PN coefficient (which shows the largest tightening of the
supported hyperparameter space in Fig. 4) and the 0PN
coefficient (where the PN deviation is most inconsistent
with GR in Fig. 5).

1. Example: 3PN deviation coefficient, δφ6

To understand the origin of the improved measurement
for δφ6 when modeling astrophysics in Fig. 4, we show
an expanded corner plot in Fig. 6 with an additional subset
of the hyperparameter posterior distributions. The top
left corner reproduces the corresponding panel in Fig. 4,
wherein the yellow posterior distribution is obtained under
the assumption of the astrophysical population given by the
sampling priors, while the dark blue is obtained by
simultaneously inferring the astrophysical population and
the GR deviation parameters.
Additionally, we use the same set of individual-event

posterior samples to separately infer the astrophysical
population independently of the PN deviation parameters,
which amounts to assuming a uniform distribution of devia-
tions across events (solid green). This differs from standard
astrophysical population inference, which assumes that
GR is correct a priori and thus starts from individual-event
posteriors conditioned on δφ ¼ 0 [30,31,50]. Finally, we also
compute the astrophysical population under the assumption

that GR is correct, ðμPN; σPNÞ ¼ ð0; 0Þ (dashed green). The
result assuming GR is correct is computed by fixing
ðμPN; σPNÞ → ð0; 0Þ to ensure equivalent samples are used
between analyses, and is consistent with the usual population
inference modulo model choices at the individual-event and
population levels [30,31,50].
From the two-dimensional marginal distributions, the

most apparent feature is that inferring the astrophysical
population under the assumption of a broad uniform
GR deviation population (shown in solid green) leads to
inferences consistent with broad spin populations (large
σχz) and populations favoring uneven mass ratios (β < 0).
This can be straightforwardly explained by the presence of
correlated structure between δφ6, mass ratio, and the
component spins at the individual-event level.
To demonstrate this, Fig. 7 shows four different posteriors

for GW191216_213338 under different priors. The four
distributions shown are the posterior obtained with the

FIG. 7. One- and two-dimensional posterior distributions for
the 3PN deviation parameter, the mass ratio, and the primary
black-hole spin for GW191216_213338 under four different
assumptions: broad sampling priors (red), informed by the GR
deviation population analysis (yellow), informed by the astro-
physical population (green), informed by the joint inference of
PN deviation and astrophysical populations (dark blue). Contours
indicate the 90% credible region. Evidence for both a low mass
ratio and larger primary spins is strongly contingent upon the
astrophysical assumptions. Broad priors such as those used while
sampling the posterior distribution have significant support for
lower mass ratios. Inclusion of information from both the
deviation population and the astrophysics leads to an inferred
result with both low primary spin and high mass ratio.

6This “displacement” is related to the quantile, QGR, reported
in Refs. [6,7] as ðdisplacementÞ2 ¼ −2 lnð1 −QGRÞσ2. The
quantile is computed by integrating over all regions of the
hyperposterior distribution which are at a higher probability than
ðμPN; σPNÞ ¼ ð0; 0Þ. We report values in terms of the standard
deviation in two dimensions, 1σ and 2σ correspond to ∼39.3%
and ∼86.5% credibility, respectively.
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sampling priors (red), the one informed by the GR deviation
population only analysis (yellow), the one informed by the
astrophysical population only analysis (green), and the one
informed by the jointly inferred GR deviation and astro-
physical populations (blue). The posteriors which involve
information from inferred populations are computed fol-
lowing Ref. [69], and do not double count the data from
GW191216_213338, as discussed in Sec. II A.

Under the sampling astrophysical prior, posteriors exhibit
a low-q, high-χ1 mode. Since the inferred astrophysical
population is inconsistent with lowmass ratios and high spin
magnitudes, the astrophysical-population-informed posteri-
ors have reduced support for unequal masses (compare the
red contour to the green one). Additionally incorporating the
GR deviation information (blue), the population-informed
posterior further reduces support for high-spinning systems.

FIG. 8. Similar to Fig. 6, one- and two-dimensional posterior distributions for the δφ0 deviation and a subset of astrophysical
population hyperparameters. A strong correlation is found between the width of the inferred post-Newtonian deviation population and
the index of the mass ratio power law when jointly inferring the deviation and astrophysical population models. There is also a less
pronounced correlation between the deviation and spin population standard deviations. In the absence of modelling the astrophysical
population, the inferred PN population is pulled to a higher mean with a reduced width.
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The similarity of the results under the sampling prior (red)
with those in which only the GR deviation population is
inferred (yellow), suggests that inferring smallGRdeviations
is on its own not enough to significantly affect the inference
of the astrophysical parameters in this case.
The tightening of the σχz hyperposterior distribution

(i.e., inferring a more narrow spin population) when jointly
inferring the GR deviation and astrophysical populations is
precisely what we observe at the population level in Fig. 6
comparing the dark blue and green contours. Additionally,
when enforcing that δφ6 ¼ 0 for all events (dashed green),
we no longer recover support for broad spin populations.
Interestingly, the astrophysical population inferred jointly
with the GR deviation population is very similar to the
result obtained when fixing δφ6 ¼ 0. This illustrates that, if
we allow the model to infer that the scale of GR deviations
is small, we will recover similar inferences overall as if we
had fixed δφ ¼ 0 a priori: we are learning both that spins are
small and that any GR deviation must be small at this PN
order. Conversely, an assumption of a broad GR deviation
population leads to unrealistic astrophysical populations to
account for the far-fetched astrophysical systems such
analyses allow. We can also use this example to understand
why inferring the deviation population in the absence of
astrophysical modelling leads to a different deviation pop-
ulationwith a larger inferredmean. Figure 7 shows thatq and
δφ6 are correlated at the individual-event level, and therefore
a broader q distribution will lend more support to the higher
values of δφ6. This correlation then systematically pulls the
mean of the PN deviation distribution to higher values.

2. Example: 0PN deviation coefficient, δφ0

We now turn to δφ0, for which the standard analysis with
a fixed astrophysical prior finds the least consistency with
GR, at the 2.2σ credible level (yellow circle for δφ0 in
Fig. 5), driven by a displacement away from μPN ¼ 0
(Fig. 4). Since this parameter is strongly correlated with the
chirp mass and mass ratio (Fig. 1), we expect improvements
when jointly modeling the astrophysical and deviation
distributions; indeed that is the case, with GR recovered
at the 1.6σ level (blue circle in Fig. 5). This analysis infers a
σPN distribution that peaks slightly away from zero.
Wecanunderstand this behaviorwithFig. 8,whereweplot

a subset of the two-dimensional marginal population pos-
terior distributions in the same color scheme as Fig. 6. The
structure of the PN deviation distribution is directly corre-
lated with the mass ratio power-law index, β: steeper power-
laws correspond tomore variance in the GR deviation (larger
β, largerσPN). This is alsomanifested in the fact thatwhen the
PN deviation is assumed to be uniformly distributed (solid
green), the astrophysical inference prefers steeper mass ratio
power laws (larger β), and that the analysis with deviations
fixed to zero (dashed green) leads to a shallower slope
(β ≲ 6). There is also a correlation between σPN and the
width of the spin distribution, σχz , by which a narrower spin

distribution demands for a greater spread in deviation
parameters within the population.
Such correlations highlight precisely why we need to

account for the astrophysical population when testing GR.
By assuming a particular, fixed model for the astrophysical
population, the hyperparameter correlations will not be
captured in the marginal posterior for the GR deviation
population. The analysis assuming the sampling prior for
the astrophysical population (yellow), infers a value of σPN
which peaks at zero. Among other hyperparameters, the
sampling prior corresponds to a uniform (β ¼ 0) mass-ratio
distribution. Fixing the astrophysical population in such a
way will lead to the hyperparameter posterior peaking at
σPN ¼ 0, as seen in Fig. 8.

IV. CONCLUSIONS

In this study, we have shown the importance of modeling
the astrophysical population when testing GR with gravi-
tational waves. Current tests do not explicitly model the
astrophysical population, and therefore implicitly treat the
prior used for sampling the posterior distribution as the
assumed astrophysical population. Due to the presence of
correlations between many GR deviations and astrophysi-
cal parameters, inappropriate astrophysical population
choices will bias the test of GR. Like other sources of
systematics, including waveform modeling [96–99], the
severity of this bias increases with the number of detec-
tions. We have shown that the effect of this bias is already
being felt in the present catalog. This issue can only be fully
addressed by simultaneously modeling both the astrophysi-
cal population in addition to the GR deviations.
We demonstrate the effect of inappropriate astrophysical

models using constraints of the graviton’s mass and tests
of PN deviations as concrete examples. We show that
jointly modeling the astrophysical population distribution
while testing GR leads to results more consistent with GR.
Furthermore, for some deviations at various PN orders
there are correlations between hyperparameters governing
the astrophysical and deviation populations. The impact of
the astrophysical distribution is not just important for these
parameters and these hierarchical models: any test of GR
should accurately account for the astrophysical population.
In fact, this problem is not unique to tests of GR—attempts
to infer cosmological properties [100] or the equation of
state of dense nuclear matter [101] are also impacted by
these same considerations.
We can generically understand the impact of folding

in the astrophysical population as follows. The standard
sampling prior is chosen to broadly cover the parameter
range of interest, and not to accurately represent the true
astrophysical population. The actual population distribu-
tion will then typically provide support on a more narrow
region of parameter space than the sampling prior. As a
result, population-informed posteriors will not only avoid
systematic biases but will also provide more stringent
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constraints on GR due to the additional information from
the associated narrower population.
This posterior shrinkage is illustrated in Fig. 9, which

shows the 0PN deviation parameter and detector frame chirp
mass for the 20 events considered in our study (Table I). The
three sets of distributions correspond to the posteriors under
different priors: fixed sampling priors (light red), fixed
astrophysical prior and an inferred PN deviation population
(yellow), as well as the case where both PN deviation and
astrophysics distributions are inferred (blue). As more
information about the GR deviation distribution is included,
the inferred posterior of 0PN deviation parameter and the
detector-frame chirp mass is more constrained. The poste-
riors are then constrained further still as additional informa-
tion regarding the astrophysical population is included.
There are a number of directions in which to extend our

work. The first would be to account for selection effects on
the hyperparameters of the GR deviation distribution; this
is to be addressed in upcoming work [68]. Additionally,
here we have assumed a strongly parametrized model
for the astrophysical population, with a power law and a
Gaussian peak. This model is currently flexible enough
given the number of events, with the primary mass
Gaussian peak not impacting the inferred PN deviations
with the selection of events considered. As the number of
events used with these tests increases, and subtle features in
the astrophysical population reveal themselves, we will
likely need more flexible models [63–66] to further avoid

biases from misspecified population models [102–104].
Furthermore, in the case of PN coefficients, one would
ideally constrain all orders simultaneously, in addition to
the astrophysical parameters [1,105–109].
Concurrently modeling the astrophysical population

when testing GR is inevitable. Models that do not include
a parametrized astrophysical population are implicitly
assuming the sampling prior as the fixed population model.
Such an assumption may induce systematic biases, cause
false detections of GR violations, or incorrectly claim a
stronger confirmation of GR than is warranted by the data.
Moreover, even when accounting for the astrophysical
population, correlations between GR deviation and astro-
physical hyperparameters suggest that a true deviation
could be absorbed into an unphysical inferred astrophysical
population, a case that can only be noticed in studying the
hyperposterior relating astrophysical to deviation parame-
ters. Hierarchically modeling the astrophysical population
while testing GR provides the solution to the implicit bias
of assuming a fixed astrophysical population, and allows us
to explore correlations between astrophysical parameters
and deviations from GR, with fewer hidden assumptions.
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APPENDIX A: FORMULATION
OF PARAMETRIZED TESTS
OF GENERAL RELATIVITY

In this appendix we outline the calculations required to
constrain the graviton’s mass (Appendix A 1) and infer the
PN deviation parameters (Appendix A 2).

1. Massive graviton measurements

The impact of a massive graviton on the propagation
of gravitational waves has been studied in Refs. [15,16] and
references therein. A graviton with mass mg modifies the
dispersion relation of the gravitational wave. In a cosmo-
logical background, gμν,

gμνpμpν ¼ −m2
g; ðA1Þ

where pμ is the 4-momentum of the graviton. This leads to
a dephasing of the gravitational wave, δΦðfÞ, that scales
with the distance over which the signal propagates,

δΦðfÞ ¼ −
πð1þ zÞD2

Lm
2
gc3

D0h2
f−1; ðA2Þ

whereDL is the luminosity distance, h is Planck’s constant,
and

D0 ¼
cð1þ zÞ

H0

Z
z

0

dz0
ð1þ z0Þ−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωmð1þ z0Þ3 þ ΩΛ
p : ðA3Þ

Here,H0 ¼ 67.9 km s−1Mpc−1 is the Hubble constant, and
Ωm ¼ 0.3065 and ΩΛ ¼ 0.6935 are the matter and dark
energy density parameters, respectively, adopting the
values used in previous analyses [7,46,111].

2. Post-Newtonian deviation tests

Current parametrized PN tests are constructed by single-
parameter modifications to the post-Newtonian description
of the inspiral gravitational-wave phase in the frequency
domain. This is given by [34,112]

ΦðfÞ ¼ 2πftc − ϕc −
π

4
þ 3

128

×
X7
k¼0

1

ηk=5
ðφk þ φk;l ln f̃Þf̃ðk−5Þ=3: ðA4Þ

Here, ΦðfÞ is the frequency-domain gravitational-
wave phase under the stationary-phase approximation,
f̃ ¼ πGMð1þ zÞf=c3, where Mð1þ zÞ is the redshifted
chirp mass, M ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 is the source-
frame chirp mass, η ¼ m1m2=M2 is the symmetric mass
ratio, tc and ϕc are the coalescence time and phase of
the binary; finally, k indexes the k=2 PN order, and φk and
φk;l are the PN coefficients. The logarithmic coefficients,
φk;l only enter at 2.5 and 3.5PN orders and otherwise
vanish [113,114]. In GR, the coefficients are functions of
the intrinsic parameters of the binary, their masses and
spins. From this prescription, modifications to GR are
incorporated by modifying [12,13,32]

φk → ð1þ δφkÞφk; ðA5Þ

except for ks for which φk ¼ 0 in GR (k ¼ −2, 1); in these
cases, the modification is φk → δφk, and δφk is an absolute
deviation [115].
In practice, modifications to IMRPhenomPv2

[12,13,34,35,73,76,79] and SEOBNRv4 [14,41–44] wave-
forms are computed differently, then the latter is trans-
formed to the former. For the modified SEOBNRv4

waveform, the deviation is applied as above [14]. While,
IMRPhenomPv2 is modified to only apply the deviation is
onto the nonspinning portion of the PN coefficient [12,13].
We translate all inferred deviation parameters to the
IMRPhenomPv2 deviation parameter δφIMR

k for consistency,

δφIMR
k ¼ δφk

φk

φNS
k

; ðA6Þ

where φNS
k is the nonspinning value of the PN coefficient—

calculated by setting the spins to zero for a particular set of
compact binary masses. Additionally, care needs to be
taken when translating to a uniform prior on δφIMR

k , as the
appropriate Jacobian,

dδφIMR
k

dδφk
¼ φk

φNS
k

; ðA7Þ

is necessary. If the original prior is uniform on δφk, then the
δφIMR

k must be weighted by the Jacobian to be effectively
translated to another uniform prior.

FORTIFYING GRAVITATIONAL-WAVE TESTS OF GENERAL … PHYS. REV. D 108, 124060 (2023)

124060-13



APPENDIX B: COMPUTING EXPECTED
PARAMETER CORRELATIONS

Correlations between GR deviation and astrophysical
parameters can be analytically approximated by identifying
regions of the parameter space that lead to a similar
frequency evolution [28] and signal duration. The dominant
correlation is the one between the detector-frame chirp
mass, Mð1þ zÞ, and the symmetric mass ratio, η. The
duration of a gravitational-wave signal is related to the
detector-frame chirp mass and some fiducial cutoff
frequency [116],

T ∝ M5=3ð1þ zÞ5=3f−8=3cut : ðB1Þ
If we relate the final frequency to the innermost stable orbit
or any cutoff which scales inversely with the binary’s
total mass, then T ∝ η−8=5M13=3ð1þ zÞ13=3. A constant
duration then implies

Mð1þ zÞ ∝ η−24=65: ðB2Þ
Here we have ignored both the contributions of a spin-
induced “hang-up” effect [117] and GR deviations.
Correlations between astrophysical parameters and GR

deviations can then be computed at lowest order [28] by
enforcing that the second-order derivative of the phase
evolution as a function of frequency be constant. As an
example, for the correlation in Fig. 1, we compare the phase
evolution when δφ0 ¼ 0 and when varying δφ0 at the
leading PN order, resulting in

M−5=3
0 ð1þ z0Þ−5=3 ∼ ð1þ δφÞM−5=3ð1þ zÞ−5=3: ðB3Þ

Here M0 and z0 are the values of the chirp mass and
redshift when there is no deviation. We find the 0PN
deviation coefficient to only be directly correlated with the
detector frame chirp mass,

δφ0 ∼
�

Mð1þ zÞ
M0ð1þ z0Þ

�
5=3

− 1: ðB4Þ

This calculation can be repeated for higher PN orders as
well, however care needs to be taken as lower PN orders
need to be retained when computing higher PN deviation
coefficient correlations.

APPENDIX C: POPULATION LIKELIHOOD
APPROXIMATION

In practice,we carry out single-event parameter estimation
with a fiducial sampling prior, πðθÞ, before the hierarchical
population analysis. We therefore do not possess representa-
tions of the individual event likelihoods, pðdjθÞ, but rather
samples drawn from the fiducial posterior distribution
pðθjdÞ ∝ pðdjθÞπðθÞ. Therefore, it is common to instead
reformulate the integral within Eq. (1) as an average over
samples drawn fromeachevent’s posterior distribution [47–49],

pðfdgjΛÞ ∝ 1

ξðΛÞN
YN
i¼1

1

Mi

XMi

k¼1

πðθi;kjΛÞ
πðθi;kÞ

; ðC1Þ

where Mi is the number of posterior samples for the ith
event. It is possible for this Monte Carlo integration to not
converge—particularly if the population distribution πðθjΛÞ is
narrower than posterior distributions for individual events
[48,61,67,78,118,119]. This is particularly important in our
scenario, since the inferred population of deviations fromGR is
typically narrower than marginal measurements from many
individual events. This leads to a dearth of samples within the
inferred GR deviation population, which subsequently leads to
unreliable Monte Carlo integration in Eq. (C1).
To address this issue, we use Gaussian kernel density

estimates to represent the individual-event posteriors in a
number of parameters, and simplify the calculation ana-
lytically by leveraging Gaussian population models.
Dividing the parameters into the subset described by
the Gaussian population distributions, θG, and the non-
Gaussian distributions, θNG, we can analytically integrate
over the former without resorting to Eq. (C1). The Gaussian
population parameters are the GR deviation parameter and
the binary-hole spin magnitudes, whereas the black-hole
primary mass and mass ratio, redshift, and spin tilts (for the
analysis in Appendix D) are included in the non-Gaussian
set of parameters. For the kernel density estimation, we
determine the corresponding covariance matrix for each
individual event’s distribution using Scott’s rule [120],

ΣBW;i ≈
Σi

n2=ðdþ4Þ
eff;i

; ðC2Þ

whereΣi is theweighted covariance matrix of the parameters
being estimated, d is the number of Gaussian dimensions,
and neff is the effective number of samples [121,122],

neff;i ¼
ðPMi

k¼1 wðθGi;kÞÞ2PMi
k¼1 wðθGi;kÞ2

; ðC3Þ

with the weights, wðθGi;kÞ ¼ 1=πðθGi;kÞ.
Since the integrand in the θG space is a product of

Gaussian distributions, the resulting integral is also a
Gaussian [123]. This leads to the straightforward expres-
sion for the likelihood function

pðfdgjΛÞ ∝ 1

ξðΛÞN
YN
i¼1

1

Mi

XMi

k¼1

πðθNGi;k jΛÞ
πðθi;kÞ

×N ½μðΛÞ; ΣBW þ ΣðΛÞ�ðθGi;kÞ; ðC4Þ

where μðΛÞ ¼ ðμ; μχ ; μχÞ and ΣðΛÞ ¼ diagðσ2; σ2χ ; σ2χÞ,
though more complicated structure can be imposed on
the population model. Since this integral is computed
analytically, we empirically find improved convergence.
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APPENDIX D: CONSTRAINTS
FROM IMRPhenomPv2

While we have focused on results from SEOBNRv4

[14,41–44], these analyses do not include preces-
sing degrees of freedom. However, evidence for pre-
cession has been found at the population level within
gravitational-wave observations [30,31]. Therefore, to
explore if there are any major changes when incor-
porating precession effects, we use the 12 events from
the first half of the third observing run analyzed with
IMRPhenomPv2 [12,13,34,35,73,76,79] which meet our
selection criteria [6]. There are no equivalent results
from the second half of the third observing run [7].
We show the summary of the marginal two-
dimensional posterior distribution for the Gaussian
population hyperparameters with and without the
inclusion of astrophysical information in Fig. 10.
Generally, these results are less constrained due to
the smaller number of events, though we still witness
a similar shift in the means of the Gaussian popula-
tions as in Fig. 4. We also summarize the quantiles at
which the expectation from GR presides in Fig. 11.
Generally, the IMRPhenomPv2 results are more con-
sistent with GR than the equivalent SEOBNRv4 results

presented in Sec. III B. This could be a product of this
waveform model incorporating precession, or simply
that fewer events were analyzed, leading to a decrease
in precision.

FIG. 11. Same as Fig. 5, for the results from the IMRPhenomPv2
analysis. As seen throughout the manuscript, inclusion of the
astrophysical population model in general leads to improved
consistency with GR. Furthermore, the posterior distributions sit
closer to GR for IMRPhenomPv2 than SEOBNRv4, likely as a result
of analyzing fewer events.

FIG. 10. Same as Fig. 4 but using 12 events from the first half of the third LIGO-Virgo-KAGRA observing run, with individual event
posterior distributions constructed with IMRPhenomPv2. We generally observe similar structure to the results with SEOBNRv4, although
parameters are less constrained—likely due to fewer observations incorporated.
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