Search for Low-Mass Dark-Sector Higgs Bosons
J. P. Lees,
1
V. Poireau,
1
V. Tisserand,
1
J. Garra Tico,
2
E. Grauges,
2
D. A. Milanes,
3a
A. Palano,
3a,3b
M. Pappagallo,
3a,3b
G. Eigen,
4
B. Stugu,
4
D. N. Brown,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
G. Lynch,
5
H. Koch,
6
T. Schroeder,
6
D. J. Asgeirsson,
7
C. Hearty,
7
T. S. Mattison,
7
J. A. McKenna,
7
A. Khan,
8
V. E. Blinov,
9
A. R. Buzykaev,
9
V. P. Druzhinin,
9
V. B. Golubev,
9
E. A. Kravchenko,
9
A. P. Onuchin,
9
S. I. Serednyakov,
9
Yu. I. Skovpen,
9
E. P. Solodov,
9
K. Yu. Todyshev,
9
A. N. Yushkov,
9
M. Bondioli,
10
D. Kirkby,
10
A. J. Lankford,
10
M. Mandelkern,
10
H. Atmacan,
11
J. W. Gary,
11
F. Liu,
11
O. Long,
11
G. M. Vitug,
11
C. Campagnari,
12
T. M. Hong,
12
D. Kovalskyi,
12
J. D. Richman,
12
C. A. West,
12
A. M. Eisner,
13
J. Kroseberg,
13
W. S. Lockman,
13
A. J. Martinez,
13
T. Schalk,
13
B. A. Schumm,
13
A. Seiden,
13
D. S. Chao,
14
C. H. Cheng,
14
D. A. Doll,
14
B. Echenard,
14
K. T. Flood,
14
D. G. Hitlin,
14
P. Ongmongkolkul,
14
F. C. Porter,
14
A. Y. Rakitin,
14
R. Andreassen,
15
Z. Huard,
15
B. T. Meadows,
15
M. D. Sokoloff,
15
L. Sun,
15
P. C. Bloom,
16
W. T. Ford,
16
A. Gaz,
16
M. Nagel,
16
U. Nauenberg,
16
J. G. Smith,
16
S. R. Wagner,
16
R. Ayad,
17,
*
W. H. Toki,
17
B. Spaan,
18
M. J. Kobel,
19
K. R. Schubert,
19
R. Schwierz,
19
D. Bernard,
20
M. Verderi,
20
P. J. Clark,
21
S. Playfer,
21
D. Bettoni,
22a
C. Bozzi,
22a
R. Calabrese,
22a,22b
G. Cibinetto,
22a,22b
E. Fioravanti,
22a,22b
I. Garzia,
22a,22b
E. Luppi,
22a,22b
M. Munerato,
22a,22b
M. Negrini,
22a,22b
L. Piemontese,
22a
V. Santoro,
22a
R. Baldini-Ferroli,
23
A. Calcaterra,
23
R. de Sangro,
23
G. Finocchiaro,
23
P. Patteri,
23
I. M. Peruzzi,
23,
†
M. Piccolo,
23
M. Rama,
23
A. Zallo,
23
R. Contri,
24a,24b
E. Guido,
24a,24b
M. Lo Vetere,
24a,24b
M. R. Monge,
24a,24b
S. Passaggio,
24a
C. Patrignani,
24a,24b
E. Robutti,
24a
B. Bhuyan,
25
V. Prasad,
25
C. L. Lee,
26
M. Morii,
26
A. J. Edwards,
27
A. Adametz,
28
J. Marks,
28
U. Uwer,
28
H. M. Lacker,
29
T. Lueck,
29
P. D. Dauncey,
30
P. K. Behera,
31
U. Mallik,
31
C. Chen,
32
J. Cochran,
32
W. T. Meyer,
32
S. Prell,
32
A. E. Rubin,
32
A. V. Gritsan,
33
Z. J. Guo,
33
N. Arnaud,
1
M. Davier,
1
D. Derkach,
1
G. Grosdidier,
1
F. Le Diberder,
1
A. M. Lutz,
1
B. Malaescu,
1
P. Roudeau,
1
M. H. Schune,
1
A. Stocchi,
1
G. Wormser,
1
D. J. Lange,
35
D. M. Wright,
35
I. Bingham,
36
C. A. Chavez,
36
J. P. Coleman,
36
J. R. Fry,
36
E. Gabathuler,
36
D. E. Hutchcroft,
36
D. J. Payne,
36
C. Touramanis,
36
A. J. Bevan,
37
F. Di Lodovico,
37
R. Sacco,
37
M. Sigamani,
37
G. Cowan,
38
D. N. Brown,
39
C. L. Davis,
39
A. G. Denig,
40
M. Fritsch,
40
W. Gradl,
40
A. Hafner,
40
E. Prencipe,
40
D. Bailey,
41
R. J. Barlow,
41,
‡
G. Jackson,
41
G. D. Lafferty,
41
E. Behn,
42
R. Cenci,
42
B. Hamilton,
42
A. Jawahery,
42
D. A. Roberts,
42
G. Simi,
42
C. Dallapiccola,
43
R. Cowan,
44
D. Dujmic,
44
G. Sciolla,
44
R. Cheaib,
45
D. Lindemann,
45
P. M. Patel,
45
S. H. Robertson,
45
M. Schram,
45
P. Biassoni,
46a,46b
N. Neri,
46a
F. Palombo,
46a,46b
S. Stracka,
46a,46b
L. Cremaldi,
47
R. Godang,
47,
§
R. Kroeger,
47
P. Sonnek,
47
D. J. Summers,
47
X. Nguyen,
48
M. Simard,
48
P. Taras,
48
G. De Nardo,
49a,49b
D. Monorchio,
49a,49b
G. Onorato,
49a,49b
C. Sciacca,
49a,49b
M. Martinelli,
50
G. Raven,
50
C. P. Jessop,
51
K. J. Knoepfel,
51
J. M. LoSecco,
51
W. F. Wang,
51
K. Honscheid,
52
R. Kass,
52
J. Brau,
53
R. Frey,
53
N. B. Sinev,
53
D. Strom,
53
E. Torrence,
53
E. Feltresi,
54a,54b
N. Gagliardi,
54a,54b
M. Margoni,
54a,54b
M. Morandin,
54a
M. Posocco,
54a
M. Rotondo,
54a
F. Simonetto,
54a,54b
R. Stroili,
54a,54b
S. Akar,
55
E. Ben-Haim,
55
M. Bomben,
55
G. R. Bonneaud,
55
H. Briand,
55
G. Calderini,
55
J. Chauveau,
55
O. Hamon,
55
Ph. Leruste,
55
G. Marchiori,
55
J. Ocariz,
55
S. Sitt,
55
M. Biasini,
56a,56b
E. Manoni,
56a,56b
S. Pacetti,
56a,56b
A. Rossi,
56a,56b
C. Angelini,
57a,57b
G. Batignani,
57a,57b
S. Bettarini,
57a,57b
M. Carpinelli,
57a,57b,
k
G. Casarosa,
57a,57b
A. Cervelli,
57a,57b
F. Forti,
57a,57b
M. A. Giorgi,
57a,57b
A. Lusiani,
57a,57c
B. Oberhof,
57a,57b
E. Paoloni,
57a,57b
A. Perez,
57a
G. Rizzo,
57a,57b
J. J. Walsh,
57a
D. Lopes Pegna,
58
J. Olsen,
58
A. J. S. Smith,
58
A. V. Telnov,
58
F. Anulli,
59a
G. Cavoto,
59a
R. Faccini,
59a,59b
F. Ferrarotto,
59a
F. Ferroni,
59a,59b
M. Gaspero,
59a,59b
L. Li Gioi,
59a
M. A. Mazzoni,
59a
G. Piredda,
59a
C. Bu
̈
nger,
60
O. Gru
̈
nberg,
60
T. Hartmann,
60
T. Leddig,
60
H. Schro
̈
der,
60
C. Voss,
60
R. Waldi,
60
T. Adye,
61
E. O. Olaiya,
61
F. F. Wilson,
61
S. Emery,
62
G. Hamel de Monchenault,
62
G. Vasseur,
62
Ch. Ye
`
che,
62
D. Aston,
63
D. J. Bard,
63
R. Bartoldus,
63
C. Cartaro,
63
M. R. Convery,
63
J. Dorfan,
63
G. P. Dubois-Felsmann,
63
W. Dunwoodie,
63
M. Ebert,
63
R. C. Field,
63
M. Franco Sevilla,
63
B. G. Fulsom,
63
A. M. Gabareen,
63
M. T. Graham,
63
P. Grenier,
63
C. Hast,
63
W. R. Innes,
63
M. H. Kelsey,
63
P. Kim,
63
M. L. Kocian,
63
D. W. G. S. Leith,
63
P. Lewis,
63
B. Lindquist,
63
S. Luitz,
63
V. Luth,
63
H. L. Lynch,
63
D. B. MacFarlane,
63
D. R. Muller,
63
H. Neal,
63
S. Nelson,
63
M. Perl,
63
T. Pulliam,
63
B. N. Ratcliff,
63
A. Roodman,
63
A. A. Salnikov,
63
R. H. Schindler,
63
A. Snyder,
63
D. Su,
63
M. K. Sullivan,
63
J. Va’vra,
63
A. P. Wagner,
63
M. Weaver,
63
W. J. Wisniewski,
63
M. Wittgen,
63
D. H. Wright,
63
H. W. Wulsin,
63
C. C. Young,
63
V. Ziegler,
63
W. Park,
64
M. V. Purohit,
64
R. M. White,
64
J. R. Wilson,
64
A. Randle-Conde,
65
S. J. Sekula,
65
M. Bellis,
66
J. F. Benitez,
66
P. R. Burchat,
66
T. S. Miyashita,
66
M. S. Alam,
67
J. A. Ernst,
67
R. Gorodeisky,
68
N. Guttman,
68
D. R. Peimer,
68
A. Soffer,
68
P. Lund,
69
S. M. Spanier,
69
R. Eckmann,
70
J. L. Ritchie,
70
A. M. Ruland,
70
C. J. Schilling,
70
R. F. Schwitters,
70
B. C. Wray,
70
J. M. Izen,
71
X. C. Lou,
71
F. Bianchi,
72a,72b
D. Gamba,
72a,72b
L. Lanceri,
73a,73b
L. Vitale,
73a,73b
F. Martinez-Vidal,
74
A. Oyanguren,
74
H. Ahmed,
75
J. Albert,
75
Sw. Banerjee,
75
F. U. Bernlochner,
75
H. H. F. Choi,
75
G. J. King,
75
R. Kowalewski,
75
M. J. Lewczuk,
75
PRL
108,
211801 (2012)
PHYSICAL REVIEW LETTERS
week ending
25 MAY 2012
0031-9007
=
12
=
108(21)
=
211801(7)
211801-1
Ó
2012 American Physical Society
I. M. Nugent,
75
J. M. Roney,
75
R. J. Sobie,
75
N. Tasneem,
75
T. J. Gershon,
76
P. F. Harrison,
76
T. E. Latham,
76
E. M. T. Puccio,
76
H. R. Band,
77
S. Dasu,
77
Y. Pan,
77
R. Prepost,
77
and S. L. Wu
77
(
B
A
B
AR
Collaboration)
1
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universite
́
de Savoie,
CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy
3b
Dipartimento di Fisica, Universita
`
di Bari, I-70126 Bari, Italy
4
, Institute of Physics, University of Bergen, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
Ruhr Universita
̈
t Bochum, Institut fu
̈
r Experimentalphysik 1, D-44780 Bochum, Germany
7
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
10
University of California at Irvine, Irvine, California 92697, USA
11
University of California at Riverside, Riverside, California 92521, USA
12
University of California at Santa Barbara, Santa Barbara, California 93106, USA
13
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
14
California Institute of Technology, Pasadena, California 91125, USA
15
University of Cincinnati, Cincinnati, Ohio 45221, USA
16
University of Colorado, Boulder, Colorado 80309, USA
17
Colorado State University, Fort Collins, Colorado 80523, USA
18
Technische Universita
̈
t Dortmund, Fakulta
̈
t Physik, D-44221 Dortmund, Germany
19
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern- und Teilchenphysik, D-01062 Dresden, Germany
20
Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
21
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
22a
INFN Sezione di Ferrara, I-44100 Ferrara, Italy
22b
Dipartimento di Fisica, Universita
`
di Ferrara, I-44100 Ferrara, Italy
23
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
24a
INFN Sezione di Genova, I-16146 Genova, Italy
24b
Dipartimento di Fisica, Universita
`
di Genova, I-16146 Genova, Italy
25
Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
26
Harvard University, Cambridge, Massachusetts 02138, USA
27
Harvey Mudd College, Claremont, California 91711
28
Physikalisches Institut, Universita
̈
t Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany
29
Humboldt-Universita
̈
t zu Berlin, Institut fu
̈
r Physik, Newtonstr. 15, D-12489 Berlin, Germany
30
Imperial College London, London, SW7 2AZ, United Kingdom
31
University of Iowa, Iowa City, Iowa 52242, USA
32
Iowa State University, Ames, Iowa 50011-3160, USA
33
Johns Hopkins University, Baltimore, Maryland 21218, USA
1
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN2P3/CNRS et Universite
́
Paris-Sud 11,
Centre Scientifique d’Orsay, B. P. 34, F-91898 Orsay Cedex, France
35
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
36
University of Liverpool, Liverpool L69 7ZE, United Kingdom
37
Queen Mary, University of London, London, E1 4NS, United Kingdom
38
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
39
University of Louisville, Louisville, Kentucky 40292, USA
40
Johannes Gutenberg-Universita
̈
t Mainz, Institut fu
̈
r Kernphysik, D-55099 Mainz, Germany
41
University of Manchester, Manchester M13 9PL, United Kingdom
42
University of Maryland, College Park, Maryland 20742, USA
43
University of Massachusetts, Amherst, Massachusetts 01003, USA
44
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
45
McGill University, Montre
́
al, Que
́
bec, Canada H3A 2T8
46a
INFN Sezione di Milano, I-20133 Milano, Italy
46b
Dipartimento di Fisica, Universita
`
di Milano, I-20133 Milano, Italy
47
University of Mississippi, University, Mississippi 38677, USA
48
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
49a
INFN Sezione di Napoli, I-80126 Napoli, Italy
PRL
108,
211801 (2012)
PHYSICAL REVIEW LETTERS
week ending
25 MAY 2012
211801-2
49b
Dipartimento di Scienze Fisiche, Universita
`
di Napoli Federico II, I-80126 Napoli, Italy
50
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
51
University of Notre Dame, Notre Dame, Indiana 46556, USA
52
Ohio State University, Columbus, Ohio 43210, USA
53
University of Oregon, Eugene, Oregon 97403, USA
54a
INFN Sezione di Padova, I-35131 Padova, Italy
54b
Dipartimento di Fisica, Universita
`
di Padova, I-35131 Padova, Italy
55
Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-Paris6,
Universite
́
Denis Diderot-Paris7, F-75252 Paris, France
56a
INFN Sezione di Perugia, I-06100 Perugia, Italy
56b
Dipartimento di Fisica, Universita
`
di Perugia, I-06100 Perugia, Italy
57a
INFN Sezione di Pisa, I-56127 Pisa, Italy
57b
Dipartimento di Fisica, Universita
`
di Pisa, I-56127 Pisa, Italy
57c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
58
Princeton University, Princeton, New Jersey 08544, USA
59a
INFN Sezione di Roma, I-00185 Roma, Italy
59b
Dipartimento di Fisica, Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
60
Universita
̈
t Rostock, D-18051 Rostock, Germany
61
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
62
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
63
SLAC National Accelerator Laboratory, Stanford, California 94309 USA
64
University of South Carolina, Columbia, South Carolina 29208, USA
65
Southern Methodist University, Dallas, Texas 75275, USA
66
Stanford University, Stanford, California 94305-4060, USA
67
State University of New York, Albany, New York 12222, USA
68
School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978, Israel
69
University of Tennessee, Knoxville, Tennessee 37996, USA
70
University of Texas at Austin, Austin, Texas 78712, USA
71
University of Texas at Dallas, Richardson, Texas 75083, USA
72a
INFN Sezione di Torino, I-10125 Torino, Italy
72b
Dipartimento di Fisica Sperimentale, Universita
`
di Torino, I-10125 Torino, Italy
73a
INFN Sezione di Trieste, I-34127 Trieste, Italy
73b
Dipartimento di Fisica, Universita
`
di Trieste, I-34127 Trieste, Italy
74
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
75
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
76
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
77
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 8 February 2012; published 21 May 2012)
Recent astrophysical and terrestrial experiments have motivated the proposal of a dark sector with GeV-
scale gauge boson force carriers and new Higgs bosons. We present a search for a dark Higgs boson using
516 fb
1
of data collected with the
BABAR
detector. We do not observe a significant signal and we set
90% confidence level upper limits on the product of the standard model-dark-sector mixing angle and the
dark-sector coupling constant.
DOI:
10.1103/PhysRevLett.108.211801
PACS numbers: 14.80.Ec, 12.60.
i, 95.35.+d
While the astrophysical evidence for dark matter is now
overwhelming, its precise nature and origin remain elusive.
Recent results from terrestrial and satellite experiments
have motivated the proposal of a new, hidden gauge sector
under which WIMP-like dark matter particles are charged
[
1
–
3
]. An Abelian gauge field, the dark photon
A
0
, couples
this dark sector to standard model (SM) particles through
its kinetic mixing with the SM hypercharge fields [
4
]. In
this framework dark matter particles can annihilate into
pairs of dark photons, which subsequently decay to SM
particles. The dark photon mass is constrained to be at most
a few GeV to be compatible with astrophysical constraints
[
5
,
6
]. In a minimal model [
7
], the dark photon mass is
generated via the Higgs mechanism, adding a dark Higgs
boson
h
0
to the theory. The mass hierarchy between these
two particles is not constrained, and the dark Higgs boson
could be light as well.
A consequence of this scenario is the possibility of
probing a light dark sector at low-energy
e
þ
e
colliders
[
7
,
8
] and fixed-target experiments [
9
,
10
]. Searches for dark
photon production have yielded negative results, and con-
straints have been derived on the mixing strength between
the SM and the dark sector,
, as a function of the dark
photon mass [
9
].
PRL
108,
211801 (2012)
PHYSICAL REVIEW LETTERS
week ending
25 MAY 2012
211801-3
The Higgs-strahlung process,
e
þ
e
!
A
0
h
0
,
h
0
!
A
0
A
0
,
might offer another gateway to a dark sector. This reaction
is of particular interest, since it is one of the few process
suppressed by a single factor of
, and the background is
expected to be small. If observed, this reaction could
provide an unambiguous signature of physics beyond the
standard model. The event topology depends on the dark
Higgs boson and dark photon masses. While Higgs bosons
heavier than two dark photons decay promptly, their
lifetime becomes large enough to escape undetected for
m
h
0
<m
A
0
. Moreover, the dark photon width is propor-
tional to
m
A
0
2
, and its decay can be prompt or displaced,
depending on the value of these parameters. At
BABAR
energies, the decay length in the detector is
O
ð
100
Þ
m
or
less for
m
A
0
>
250 MeV
and
*
10
4
, and dark photon
decays can be considered as prompt in this regime.
We report a search for dark Higgs production in the
Higgs-strahlung process. The measurement is performed
in the range
0
:
8
<m
h
0
<
10
:
0 GeV
and
0
:
25
<m
A
0
<
3
:
0 GeV
with the constraint
m
h
0
>
2
m
A
0
. To avoid any
experimental bias, the data are not examined before the
selection procedure is finalized. The data sample used in
this analysis consists of
521 fb
1
of data collected mostly
at the
ð
4
S
Þ
resonance, but also including luminosity at the
ð
3
S
Þ
and
ð
2
S
Þ
peaks, as well as off-resonance data. A
sample corresponding to
10%
of the data (optimization
sample) is used to optimize the selection criteria and is
discarded from the final data set. This sample is treated
entirely as background for optimization and background
studies.
The
BABAR
detector is described in detail elsewhere
[
11
]. Charged-particle momenta are measured in a tracking
system formed by a five-layer double-sided silicon vertex
detector and a 40-layer central drift chamber both im-
mersed in a 1.5 T axial magnetic field. Electron and photon
energies are measured in a CsI(Tl) electromagnetic calo-
rimeter. Charged-particle identification (PID) is performed
using an internally reflecting ring-imaging Cherenkov de-
tector and the energy loss
dE=dx
measured by the silicon
vertex detector and central drift chamber. Muons are
mainly identified by the instrumented magnetic flux return.
Signal events are generated by
MADGRAPH
[
12
] for about
40 different hypotheses of dark photon and Higgs boson
masses. The hadronization of the
A
0
!
q
q
(
q
¼
u
,
d
,
s
,
c
)
decay is performed by
JETSET
[
13
]. The detector accep-
tance is studied using Monte Carlo (MC) simulation based
on
GEANT4
[
14
]. Time-dependent detector inefficiencies, as
monitored during data taking periods, are included in the
simulation.
The
e
þ
e
!
A
0
h
0
,
h
0
!
A
0
A
0
reaction is either fully
reconstructed in the
3
ð
l
þ
l
Þ
,
2
ð
l
þ
l
Þ
þ
and
l
þ
l
2
ð
þ
Þ
final states (
l
¼
e
,
), or partially recon-
structed in the
2
ð
þ
Þþ
X
and
þ
e
þ
e
þ
X
chan-
nels, where
X
denotes any final state other than a pair of
pions or leptons. The
2
ð
e
þ
e
Þþ
X
mode suffers from
significantly more background than the other channels
and is excluded. The first modes are collectively referred
to as ‘‘exclusive modes’’, as opposed to ‘‘inclusive modes’’
for the
2
ð
l
þ
l
Þþ
X
channels. The inclusive modes are
only considered in the region
m
A
0
>
1
:
2 GeV
, since their
contribution is small below this threshold and the back-
ground level becomes large.
The event selection proceeds by first reconstructing dark
photon candidates from pairs of oppositely-charged tracks
identified as electrons, muons or pions by PID algorithms.
In addition, the helicity angle of the electron in the dark
photon rest frame,
e
, must satisfy
cos
e
<
0
:
9
. The back-
ground from accidental
e
þ
e
pairs exhibits a peaking
component near
cos
e
1
, while signal events are broadly
distributed. Events are then processed according to the
following sequence of hypotheses until a match is found:
6
,
4
2
e
,
2
4
e
,
6
e
,
4
2
,
2
2
e
2
,
4
e
2
,
2
4
,
2
e
4
,
4
þ
X
,
2
2
e
þ
X
. This order is chosen to mini-
mize the cross-feed between channels and the efficiency
loss due to misclassification.
Additional criteria are applied to increase the purity of
the signal. Exclusive modes must contain exactly six
charged tracks, and the invariant mass of the three dark
photon system must be larger than 95% of the
e
þ
e
center-
of-mass energy. The dark photons are then fitted, constrain-
ing the tracks to originate from the interaction point. The fit
probability is required to be larger than
10
5
. Finally, the
largest mass difference between the dark photon candi-
dates,
M
, must be less than 10–240 MeV, depending on
the final state and the dark photon masses. The distribution
of this variable after all other selection criteria are applied
is displayed in Fig.
1
for the
2
e
4
final state. The signal
peaks near
M
0
, while the background is concentrated
towards higher values.
Inclusive modes are selected by requiring two leptonic
dark photon candidates with similar masses. The two dark
photons are fitted, constraining the four leptons to originate
from the interaction point. Events with a fit probability less
than
10
5
are discarded. The remaining dark photon is then
identified as the system recoiling against the two lepton
pairs. The cosine of its polar angle in the laboratory frame
must be less than 0.99 to remove radiative QED events.
Finally, the masses of all dark photons must be compatible
within their uncertainties.
A total of six events are selected by these criteria: one
4
2
, two
2
4
, two
2
e
4
and one
4
þ
X
events. No
candidate containing six leptons survives the selection. The
distribution of the dark photon mass versus the dark Higgs
boson mass is shown in Fig.
2
. Three entries, correspond-
ing to the possible assignments of the decay
h
0
!
A
0
A
0
, are
considered for each event. Besides the contribution of
!
þ
or
!
!
þ
decays near
m
A
0
0
:
7
–
0
:
8GeV
,no
significant signal is observed. This result is consistent with
the two events observed in the optimization
sample, assumed to be background. Given these limited
PRL
108,
211801 (2012)
PHYSICAL REVIEW LETTERS
week ending
25 MAY 2012
211801-4
statistics, a second background estimation based on the
full data set using same-sign combinations, such as
ð
e
þ
e
Þð
þ
þ
Þð
Þ
or
ð
e
þ
e
þ
Þð
Þ
X
, is used as
a cross-check. Both methods predict background levels
consistent within their statistical uncertainties.
Using uniform priors in the cross-section, 90% confi-
dence level (CL) Bayesian upper limits on the production
cross-section are derived for each mode separately as a
function of the dark Higgs and dark photon masses. The
(
m
h
0
,
m
A
0
) plane is scanned in steps of 10 MeV in both
directions between
0
:
8
<m
h
0
<
10 GeV
and
0
:
25
<
m
A
0
<
3 GeV
. For each mass hypothesis, the signal region
is taken as the interval
m
h
0
5
m
h
0
<m
h
0
<m
h
0
þ
3
m
h
0
and
m
A
0
5
m
A
0
<m
A
0
<m
A
0
þ
3
m
A
0
, where
m
A
0
(
m
h
0
)
denotes the corresponding dark photon (Higgs) mass reso-
lution. An asymmetric range is used to accommodate the
non-Gaussian tail of the low-mass side of the signal. The
dark photon (Higgs) mass resolution varies between 2–
17 MeV (3–55 MeV), depending on the dark photon
(Higgs) mass and final state. While setting the limits we
adopt the most conservative approach, treating as signal
every observed event in the signal region. The systematic
uncertainties are included by convolving the likelihood of
each final state with Gaussian distributions having varian-
ces equal to the systematic uncertainties described below
taking correlations into account.
The efficiency is determined for several values of dark
photon and Higgs boson masses, and is linearly interpo-
lated between the known points. The efficiency includes
acceptance, trigger, selection criteria and the dark photon
branching fraction. The branching fractions into leptons
and hadrons are given by
BF
ð
A
0
!
‘
þ
‘
Þ¼
1
=
ð
2
þ
R
Þ
,
BF
ð
A
0
!
hadrons
Þ¼
R=
ð
2
þ
R
Þ
and
BF
ð
A
0
!
þ
Þ¼
BF
ð
A
0
!
hadrons
Þ
ð
e
þ
e
!
þ
Þ
=
ð
e
þ
e
!
hadrons
Þ
,
where
R
denotes the ratio
ð
e
þ
e
!
hadrons
Þ
=
ð
e
þ
e
!
þ
Þ
[
15
]. The efficiency increases from a
few per mille in regions with small branching fractions to
33% for the six electron mode in the region
m
A
0
<
0
:
2 GeV
. It drops rapidly in the region
m
h
0
<
0
:
8 GeV
and
m
h
0
>
10 GeV
, as tracks produced by dark photon
decays have a low transverse momentum or are emitted
close to the beam and are not reconstructed.
The limits on each channel are then combined to extract
90% CL upper limits on the
e
þ
e
!
A
0
h
0
,
h
0
!
A
0
A
0
cross
(GeV)
h’
m
12 3 4 5 6 7 8 910
(GeV)
A’
m
0.5
1
1.5
2
2.5
3
π
2
μ
4
π
4
μ
2
π
2e4
+X
μ
4
FIG. 2 (color online). Distribution of dark photon mass (
m
A
0
)
versus the dark Higgs mass (
m
h
0
) for the final data sample. Three
entries are plotted for each event, corresponding to the possible
assignments of the decay
h
0
!
A
0
A
0
.
(GeV)
A’
m
0
0.2 0.4 0.6 0.8
1
1.2 1.4
1.6 1.8
2
M (GeV)
∆
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
Data optimization
Data same-sign
Signal MC
FIG. 1 (color online). Distribution of the largest mass differ-
ence between the three dark photon candidates (
M
) versus the
average dark photon mass (
m
A
0
) after all other selection criteria
are applied for the
2
e
4
final state. The data are shown for
opposite-sign combinations from the optimization sample (plain
squares) as well as an additional background estimation, de-
scribed later, of same-sign combinations from the full data set
(open squares). The Monte Carlo predictions for
m
h
0
¼
3
:
0 GeV
and
m
A
0
¼
0
:
5 GeV
are displayed as plain circles. The signal
region for the
2
e
4
mode is delimited by the dashed line.
(GeV)
h’
m
123 45 6 78 910
(GeV)
A’
m
0.5
1
1.5
2
2.5
3
10
2
10
ω
φ
Cross section upper limit (ab)
FIG. 3 (color online). Upper limit (90% CL) on the
e
þ
e
!
A
0
h
0
,
h
0
!
A
0
A
0
cross-section as a function of the dark photon
and dark Higgs masses. The limits in the
!
- and
-mesons
regions are orders of magnitude larger than the average limits
and the corresponding regions (horizontal bands centered around
m
A
0
0
:
78 GeV
and
m
A
0
1
:
04 GeV
) are masked to avoid
overflow.
PRL
108,
211801 (2012)
PHYSICAL REVIEW LETTERS
week ending
25 MAY 2012
211801-5
section. The results are displayed in Fig.
3
. The limits are
typically at the level of 10–100 ab.
The major contribution to the systematic uncertainty
arises from the extrapolation procedure used to determine
the efficiency, which is estimated by comparing the ex-
trapolated value to the nearest known point. This uncer-
tainty increases from 1% to 8% in some corners of the
phase space. The uncertainty on the branching fractions
ranges from a few per mille to 4%. The uncertainty due to
the modeling of
A
0
!
hadron decays in inclusive modes is
estimated by comparing different fragmentation models.
This systematic is found to be 4% reflecting the limited
sensitivity of the selection procedure to the hadronic sys-
tem produced by the dark photon decay. The uncertainty
due to PID algorithms varies between 1.5% and 4.5%,
assessed using high-purity samples of leptons and pions.
Additional uncertainties include the determination of the
track reconstruction efficiency (1.2%), luminosity (0.6%),
and the limited Monte Carlo statistics (0.5%–2.4%).
The limits on the
e
þ
e
!
A
0
h
0
,
h
0
!
A
0
A
0
cross section
are finally translated into 90% CL upper limits on the
product
D
2
, where
D
¼
g
2
D
=
4
and
g
D
is the dark-
sector gauge coupling [
7
]. The results are displayed in
Fig.
4
as a function of the dark photon (Higgs) mass for
selected values of the dark Higgs boson (photon) mass.
Values down to
10
10
–
10
8
are excluded for a large range
of dark photon and dark Higgs masses. These results
assume prompt dark Higgs boson and dark photon decays.
In conclusion, a search for dark Higgs boson production
has been performed in the range
0
:
25
<m
A
0
<
3 GeV
and
0
:
8
<m
h
0
<
10 GeV
for
m
h
0
>
2
m
A
0
. No signal has been
observed and upper limits on the product of the mixing
angle and the dark coupling constant in the case of a hidden
sector with an Abelian Higgs boson have been set at the
level of
10
10
–
10
8
. Assuming
D
¼
, these measure-
ments translate into limits on the mixing strength in the
range
10
4
–
10
3
, an order of magnitude smaller than the
current bounds.
The authors wish to thank R. Essig, N. Toro, and P.
Schuster for useful discussions on theoretical issues. We
are grateful for the excellent luminosity and machine con-
ditions provided by our PEP-II colleagues, and for the
substantial dedicated effort from the computing organiza-
tions that support
BABAR
. The collaborating institutions
wish to thank SLAC for its support and kind hospitality.
This work is supported by DOE and NSF (USA), NSERC
(Canada), CEA and CNRS-IN2P3 (France), BMBF and
DFG (Germany), INFN (Italy), FOM (The Netherlands),
NFR (Norway), MES (Russia), MICIIN (Spain), STFC
(United Kingdom). Individuals have received support
from the Marie Curie EIF (European Union), the A. P.
Sloan Foundation (USA) and the Binational Science
Foundation (USA-Israel).
*
Present address: The University of Tabuk, Tabuk 71491,
Saudi Arabia.
†
Also with Universita
`
di Perugia, Dipartimento di Fisica,
Perugia, Italy.
‡
Present address: The University of Huddersfield,
Huddersfield HD1 3DH, UK.
§
Present address: University of South Alabama, Mobile,
AL 36688, USA.
k
Also with Universita
`
di Sassari, Sassari, Italy.
[1] P. Fayet,
Phys. Rev. D
75
, 115017 (2007)
.
[2] M. Pospelov, A. Ritz, and M. B. Voloshin,
Phys. Lett. B
662
, 53 (2008)
.
[3] N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N.
Weiner,
Phys. Rev. D
79
, 015014 (2009)
.
[4] B. Holdom,
Phys. Lett. B
166
, 196 (1986)
.
[5] O. Adriani
et al.
(PAMELA Collaboration),
Nature
(London)
458
, 607 (2009)
.
[6] M. Ackermann
et al.
(Fermi LAT Collaboration),
Phys.
Rev. D
82
, 092004 (2010)
.
[7] B. Batell, M. Pospelov, and A. Ritz,
Phys. Rev. D
79
,
115008 (2009)
.
[8] R. Essig, P. Schuster, and N. Toro,
Phys. Rev. D
80
,
015003 (2009)
and references therein.
[9] J. D. Bjorken, R. Essig, P. Schuster, and N. Toro,
Phys.
Rev. D
80
, 075018 (2009)
.
[10] B. Batell, M. Pospelov, and A. Ritz,
Phys. Rev. D
80
,
095024 (2009)
.
(GeV)
A’
m
0
0.5
1
1.5
2
2.5
3
2
ε
D
α
-10
10
-9
10
-8
10
-7
10
-6
10
= 9 GeV
h’
m
= 7 GeV
h’
m
= 5 GeV
h’
m
= 3 GeV
h’
m
= 1 GeV
h’
m
(GeV)
h’
m
246810
2
ε
D
α
-10
10
-9
10
-8
10
-7
10
-6
10
= 2.5 GeV
A’
m
= 1.5 GeV
A’
m
= 1 GeV
A’
m
= 0.5 GeV
A’
m
= 0.3 GeV
A’
m
FIG. 4 (color online). Upper limit (90% CL) on the product
D
2
as a function of the dark photon mass for selected values of
dark Higgs boson masses (top) and as a function of the dark
Higgs boson mass for selected values of dark photon masses
(bottom).
PRL
108,
211801 (2012)
PHYSICAL REVIEW LETTERS
week ending
25 MAY 2012
211801-6
[11] B. Aubert
et al.
(
BABAR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002)
.
[12] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M.
Herquet, F. Maltoni, T. Plehn, and D. L. Rainwater
et al.
,
J. High Energy Phys. 09 (2007) 028
.
[13] T. Sjostrand,
Comput. Phys. Commun.
82
, 74 (1994)
.
[14] S. Agostinelli
et al.
(GEANT4 Collaboration),
Nucl.
Instrum. Methods Phys. Res., Sect. A
506
, 250
(2003)
.
[15] K. Nakamura
et al.
(Particle Data Group),
J. Phys. G
37
,
075021 (2010)
and 2011 partial update for the 2012
edition.
PRL
108,
211801 (2012)
PHYSICAL REVIEW LETTERS
week ending
25 MAY 2012
211801-7