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A Supplementary results
In Tables S1-S2 we summarize the performance statistics for end-to-end structure prediction on targets reported in this study.
For each target, we generate six AF2 structure models with the following setup:

• For model 0, we use an MSA cluster size = 256, extra MSA size = 512, 3 recycling cycles, and the AF2 model version
"AlphaFold-ptm:3". This set of results is also used to generate the visualizations in Figure 4a-c.

• For models 1-5, we use an MSA cluster size = 512, extra MSA size = 1024, 3 recycling cycles, and AF2 model versions
"AlphaFold-ptm:1", "AlphaFold-ptm:2", "AlphaFold-ptm:3", "AlphaFold-ptm:4", "AlphaFold-ptm:5", respectively.

These AF2 structure models are used as the template inputs for NeuralPLexer to generate six independent sets of predictions;
for each apo protein or protein-ligand pair, we sample 8 NeuralPLexer structures using independent random seeds. On both
datasets, NeuralPLexer achieves the highest average prediction accuracy (as shown by the highest TM-score and lowest
backbone RMSD).

We observe that NeuralPLexer achieves a further improvement against AF2 when averaged against the sampled structures
of the highest TM-score for each target (Tables S1-S2, "per-target top-1"), suggesting that the multi-structure generative model
formulation naturally enables better coverage of the experimental structure compared to heuristic approaches that are based on
randomizing AF2.

Table S1. Model predictions on the PocketMiner dataset (33 holo structures + 29 apo structures).

Method Sampler
TM-score
(all predictions)

Backbone RMSD
(all predictions)

TM-score
(per-target top-1)

Backbone RMSD
(per-target top-1)

Ligand RMSD
(all predictions)

Ligand RMSD
(per-target top-1)

AlphaFold2 -

mean 0.929 1.548 0.943 1.323 - -
std 0.095 0.813 0.090 0.721 - -
25% 0.931 0.897 0.948 0.755 - -
50% 0.962 1.350 0.969 1.095 - -
75% 0.978 2.032 0.986 1.710 - -

NeuralPLexer
(no ligand)

DDIM [S1]

mean 0.895 2.082 0.938 1.501 - -
std 0.092 0.778 0.079 0.567 - -
25% 0.877 1.480 0.934 1.062 - -
50% 0.920 1.950 0.959 1.470 - -
75% 0.951 2.620 0.973 1.812 - -

LSA-SDE

mean 0.925 1.623 0.946 1.305 - -
std 0.091 0.784 0.087 0.647 - -
25% 0.910 0.970 0.952 0.788 - -
50% 0.958 1.470 0.970 1.195 - -
75% 0.973 2.172 0.982 1.625 - -

NeuralPLexer
(ours)

DDIM [S1]

mean 0.909 1.893 0.943 1.387 9.115 10.00
std 0.089 0.684 0.084 0.559 9.466 11.11
25% 0.898 1.370 0.943 1.008 3.101 3.394
50% 0.933 1.780 0.967 1.260 5.398 5.390
75% 0.958 2.310 0.978 1.680 9.808 10.30

LSA-SDE

mean 0.934 1.486 0.950 1.236 8.985 9.812
std 0.091 0.750 0.087 0.656 9.943 10.75
25% 0.938 0.900 0.955 0.720 2.674 2.583
50% 0.966 1.290 0.975 1.095 5.010 5.246
75% 0.978 1.870 0.987 1.613 9.388 10.54
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Table S2. Model predictions on 118 recent targets with ligand-induced conformational changes.

Method Sampler
TM-score
(all predictions)

Backbone RMSD
(all predictions)

TM-score
(per-target top-1)

Backbone RMSD
(per-target top-1)

Ligand RMSD
(all predictions)

Ligand RMSD
(per-target top-1)

AlphaFold2 -

mean 0.891 2.049 0.911 1.881 - -
std 0.111 1.007 0.099 1.057 - -
25% 0.852 1.368 0.865 1.103 - -
50% 0.930 1.910 0.951 1.615 - -
75% 0.969 2.592 0.975 2.322 - -

NeuralPLexer
(no ligand)

DDIM [S1]

mean 0.844 2.695 0.908 1.995 - -
std 0.112 0.924 0.092 0.878 - -
25% 0.802 2.010 0.898 1.390 - -
50% 0.877 2.570 0.942 1.755 - -
75% 0.920 3.270 0.961 2.370 - -

LSA-SDE

mean 0.877 2.261 0.916 1.847 - -
std 0.110 1.018 0.093 1.005 - -
25% 0.833 1.580 0.891 1.218 - -
50% 0.916 2.070 0.949 1.585 - -
75% 0.950 2.790 0.971 2.173 - -

NeuralPLexer
(ours)

DDIM [S1]

mean 0.867 2.418 0.921 1.818 14.22 13.79
std 0.110 0.908 0.089 0.948 13.01 12.50
25% 0.839 1.730 0.918 1.162 3.567 3.156
50% 0.903 2.280 0.953 1.555 7.410 7.878
75% 0.941 2.940 0.971 2.218 23.55 24.27

LSA-SDE

mean 0.893 2.026 0.926 1.676 14.03 12.72
std 0.110 0.982 0.091 0.961 12.94 12.23
25% 0.866 1.360 0.916 1.055 3.353 3.293
50% 0.929 1.870 0.958 1.425 8.146 5.907
75% 0.965 2.570 0.978 2.118 22.97 21.60
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B Algorithm overview
Given the set of query protein sequences, ligand molecular graphs, and optional template protein structure inputs, Al-

gorithm S1 summarizes the process that NeuralPLexer uses to sample an ensemble of protein or protein-ligand complex
structures.

Unless stated otherwise, LinearNoBias(·) denotes a standard linear transformation with a trainable weight matrix right-
multiplied to the last input tensor dimension; MLP(·) denotes a standard 3-layer multilayer perceptron with GELU activation
function [S3] and with layer normalization [S4] applied to the output activations.

C Diffusion SDEs
C.1 Preliminaries
For the temporally homogeneous forward-time SDE

dZt =−(UλλλU−1)Ztdt +(σU)dWt (S1)

or equivalently, in the space of latent coordinates

dzt = d(U−1Zt) =−λλλ · ztdt +σdWt (S2)

the corresponding reverse-time SDE is given by

dZt = [−(UλλλU−1)Zt −σ
2UU⊤sφ (Zt ; t)]dt +(σU)dWt . (S3)

The initial coordinates at t = T = 1.0 are sampled from the prior distribution qT

ZT ∼ qT
..= N (0, U

σ2

2λλλ
UT) (S4)

or equivalently,

ZT = U
√

σ/2λλλ
− 1

2 εεε, εεε ∼N (0, I) (S5)

C.2 Euclidean and chiral symmetries
Given group G, a function f : X → Y is said to be equivariant if for all g ∈ G and x ∈ X , f (ϕX (g) · x) = ϕY (g) · f (x), and f
is said to be invariant if f (ϕX (g) · x) = f (x). We are interested in the special Euclidean group G = SE(3) which consists of
all global rigid translation and rotation operations g ·Z ..= t+Z ·R where t ∈ R3 and R ∈ SO(3). To adhere to the physical
constraint that pdata is always SE(3)-invariant, the transition kernels of the forward-time SDE need to satisfy SE(3)-equivariance
q(Zt+s|Zt) = q(ϕt+s(g) ·Zt+s|ϕt(g) ·Zt) such that all marginals are invariant qt(Zt) = qt(ϕt(g) ·Zt) for all diffusion times t.
Since the forward SDE only involves terms that are isotropic in (x, y, z) components, the proof is straightforward:

q(
√

αααst+Zt+s ·R|t+Zt ·R)

= N
(√

αααst+Zt+s ·R;
√

αααs
(
t+Zt ·R

)
,U
√

I−αααsσ
2

2λλλ
UT)

= N
(√

αααstR⊤+Zt+s ·RR⊤;
√

αααs
(
tR⊤+Zt ·RR⊤

)
,U
√

I−αααsσ
2

2λλλ
UT⊗RR⊤

)
= N

(
Zt+s; Zt ,U

√
I−αααsσ

2

2λλλ
UT)

= q(Zt+s|Zt).

where the translation term after a time interval s is scaled by a factor
√

αααs due to the linear drift term in Eq. (S1). Because all
transition kernels are SE(3)-equivariant, it then follows that the score function ∇Z logqt(Z) is also equivariant:

∇Z′ logqt(Z′) where Z′ =
√

ααα t t+Z ·R
= ∇Z′ log[EZ0∼qdata qt(Z′|Z0)]

= ∇Z′ log[EZ0∼qdata qt(Z′|t+Z0 ·R)]

= ∇Z′ log[EZ0∼qdata qt(Z|Z0)]

=
∂Z
∂Z′

∇Z log[EZ0∼qdata qt(Z|Z0)]

= ∇Z logqt(Z) ·R.
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Algorithm S1 NeuralPLexer Inference

Require: {s}, {G}, Nconformations, Nsteps = 40, use_template, compute_plddt
1: {fPLM}← Compute ESM-2-650M features for all input chains in {s} Ref. [S2]
2: if use_template then
3: {ftemplate}← Retrieve template protein structure and compute template features
4: end if
5: for i ∈ {1, · · · ,Nconformations} do
6: T = DiffusionTimeSchedule(τ = 1.0) Equation (8)
7: Sample initial protein coordinates xT from the prior qT Equation (S5)
8: residue_graph_0← Generate the residue-scale graph based on (xT )Cα Section E
9: FP← Sample NP protein backbone frame nodes and gather embeddings NP = 96

10: l̃← 0
# Generating contact maps and block-adjacency matrices (Equation (1))

11: if {G} contains more than 0 ligands then
12: Compute MHT embeddings for all input ligand molecular graphs in {G} Algorithm S2
13: FL← Sample NL ligand frame nodes, gather and symmetrize MHT embeddings NL = 32
14: for k ∈ {1, · · · ,NL} do
15: residue_graph_k← CPMForward(residue_graph_0, l̃,τ = 1.0) Section F
16: P̂ = LinearNoBias(MLP(GetEdgesBF(residue_graph_k))) P̂ ∈ RNres×NL×Nbins ,Nbins = 32
17: L̃k← DistogramToContactMap(P̂) Equation (4)
18: L̂k← SumIntoPatches(L̃k)⊙ [1−maxcolumn−wise(l̃)] L̂k ∈ RNP×NL

19: lk = OneHot(ik, jk); (ik, jk)∼ CategoricalNP×NL
(L̂k) lk ∈ {0,1}NP×NL

20: l̃← l̃+ lk l̃ ∈ {0,1}NP×NL

21: end for
22: Compute c and U for ligand degrees of freedom using predicted L̂ ..= L̂NL Equation (7)
23: Sample initial ligand coordinates yT from the prior qT Equation (S5)
24: ZT ← concat(xT ,yT )
25: else
26: ZT ← xT
27: end if

# Generating the 3D structure for all heavy atoms (Equation (2))
28: Compute MHT embeddings for all amino acid molecular graphs Algorithm S2
29: for τ ∈ {1,1−∆τ, · · · ,∆τ} do ∆τ = 1/Nsteps
30: t← DiffusionTimeSchedule(τ) Equation (8)
31: ∆t← DiffusionTimeSchedule(τ)−DiffusionTimeSchedule(τ−∆τ) Equation (8)
32: residue_graph,atomic_graph← Regenerate the residue-scale and atomic-scale graph based on Zt Section E
33: residue_graph← CPMForward(residue_graph, l̃,τ) Section F
34: graph_rep← Collate(residue_graph,atomic_graph,cross_scale_graph) Table S6
35: Ẑ0← ESDMForward(Zt ;graph_rep,τ) Section G
36: βt−∆t ← InvTempSchedule(τ−∆τ) See Methods, LSA-SDE
37: Zt−∆t = IntegratorStep(Zt , Ẑ0,βt−∆t ,∆t) Equation (12)
38: end for

# Assigning confidence estimations (per-residue and per-ligand-atom pLDDT)
39: if compute_plddt then
40: residue_graph,atomic_graph← Regenerate the residue-scale and atomic-scale graph based on Zt Section E
41: residue_graph← CPMForward(residue_graph,0,τ = 0.0) Section F
42: graph_rep← Collate(residue_graph,atomic_graph,cross_scale_graph) Table S6
43: pLDD_gram = ConfidenceEstimationHead(Z0;graph_rep) Section H
44: pLDDT _prot, pLDDT _lig = compute_plDDT(pLDD_gram) Equation S29
45: yield Z0,(pLDDT _gram, pLDDT _prot, pLDDT _lig)
46: else
47: yield Z0
48: end if
49: end for
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While the forward SDE is E(3)-equivariant as the noising process satisfies q(−Z(t + s)|−Z(t)) = q(Z(t + s)|Z(t)), it
is worth noting that the reverse SDE is only SE(3)-equivariant as parity-inversion transformations i : Z 7→ −Z on the data
distribution pdata is physically forbidden and thus the score ∇Z logqt(Z) is of broken chiral symmetry; in general: there exists
Z such that ∇−Z logqt(−Z) ̸=−∇Z logqt(Z).

C.3 Derivation of the semi-analytic integrator (Eq. 12)
Without loss of generality, we consider a homogeneous, fixed-temperature analog of the temperature-adjusted reverse-time
SDE (10) with zt ∈ R3, t ∈ (0,∞)

dzt = [−θzt −
1+β

2
σ

2sφ (zt ; t)]dt +

√
1
β

σdWt (S6)

where

sφ (zt ; t) =
√

αt ẑ0(zt)− zt

1−αt
; αt = exp(−2θ t) (S7)

thus

dzt = [−θzt −
1+β

2
σ

2 exp(−θ t)ẑ0(zt)− zt

1− exp(−2θ t)
]dt +

√
1
β

σdWt (S8)

For an integration time interval from s = t +∆t to t, we make the approximation that the score function is linear with respect
to the attraction term ẑ0(zs;φ ,s)− 1√

ατ
zτ for τ ∈ [t,s):

dzτ = [−θzτ −
1+β

2
σ

2 exp(−θτ)ẑ0(zs)− zτ

1− exp(−2θτ)
]dτ +

√
1
β

σdWτ (S9)

or equivalently,

dzτ = a(τ)+b(τ)zτ dτ + cdWτ (S10)

where

a(τ) =−1+β

2
σ

2 exp(−θτ)ẑ0(zs)

1− exp(−2θτ)
, b(τ) = [

1+β

2 σ2

1− exp(−2θτ)
−θ ]; c =

√
1
β

σ . (S11)

Defining Ψ(t,s) ..= exp(
∫ t

s −b(τ)dτ), by applying Ito’s Lemma we note that

d(Ψ(t,s)zt) = [
d
dt

Ψ(t,s)zt +a(t)Ψ(t,s)+b(t)ztΨ(t,s)]dt + cΨ(t,s)dWt (S12)

= a(t)Ψ(t,s)dt + cΨ(t,s)dWt (S13)

which implies

E(zt) =
∫ t

s
a(τ)

Ψ(τ,s)
Ψ(t,s)

dτ +
zs

Ψ(t,s)
; Var(zt) =

∫ t

s

(
c

Ψ(τ,s)
Ψ(t,s)

)2
dτ (S14)

Computing the integrals analytically yields

Ψ(t,s) =
(e2θs−1

e2θ t −1

) 1+β

4θ
σ2

· eθ(t−s) (S15)

∫ t

s
a(τ)

Ψ(τ,s)
Ψ(t,s)

dτ =
∫ t

s
−1+β

2
σ

2 exp(−θτ)ẑ0(zs)

1− exp(−2θτ)

( e2θ t −1
e2θτ −1

) 1+β

4θ
σ2

· eθ(τ−t)dτ (S16)

=
∫ t

s
−1+β

2
σ

2 ẑ0(zs)

1− exp(−2θτ)

( e2θ t −1
e2θτ −1

) 1+β

4θ
σ2

· e−θ tdτ (S17)

=−1+β

2
σ

2ẑ0(zs)e−θ t
(

e2θ t −1
) 1+β

4θ
σ2 ∫ t

s

e2θτ

(e2θτ −1)1+ 1+β

4θ
σ2

dτ (S18)

= e−θ t
[
1−

( e2θ t −1
e2θs−1

) 1+β

4θ
σ2]

ẑ0(zs) (S19)
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E(zt) = e−θ t
[
1−

( e2θ t −1
e2θs−1

) 1+β

4θ
σ2]

ẑ0(zs)+
( e2θ t −1

e2θs−1

) 1+β

4θ
σ2

· eθ(s−t)zs (S20)

For simplicity, we adapt the variance term to that of the forward SDE: Var(zt)≈ σ2

2θβ
(e−2θ t − e−2θs). Matching the conditional

expectations and variances to the Gaussian transition kernel qt:t+∆t(·|zt+∆t) and directly generalizing to the rotation-corrected
multivariate setting, we recover Equation 12. Note that the DDIM [S1] integrator can be recovered by removing the noise term
and setting β ≡ 0,σ ≡ 1,θ ≡ 1

2 which corresponds to the standard variance-preserving (VP)-SDE [S5].
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D Molecular graph featurization and encoder details
D.1 Molecular representations
Given a set of molecular graphs {G}, the MHT network processes the following collection of embeddings:

• Atom representations fatom ∈ RNatom × c. The input atom representation is a concatenation of one-hot encodings of
element group index and period index for the given atom, which is embedded by a linear projection layer R18+7→ Rc;

• Frame representations fframe ∈RNframe×c. For a given frame u, (Hframe)u is initialized by a 2-layer MLP R4∗2+18+7→Rc

that embeds the bond type encodings (defined as [is_single, is_double, is_triple, is_aromatic]) of the "incoming" bond
(i(u), j(u)), "outgoing" bond ( j(u),k(u)), and the atom type encoding of the center atom j(u);

• Stereochemistry edge encodings S ∈ RNframe×Nframe×cs , as detailed in Table S3. S is a sparse tensor where an element Suv
is nonzero only if the pair of frames (u,v) is adjacent, i.e., frame u and frame v sharing a common chemical bond; only
pairs with non-zero Suv are included as model inputs.

• 3-hop edge representations faa ∈ RNatom×Natom×cp . For each pair of atoms (i, j), the element (faa)i j is initialized by a
linear layer R4+4→ Rcp that embeds the set of binary graph-distance encodings of whether a path of k (k ∈ {0,1,2,3})
chemical bonds exists between atom i and j, as well as the bond type one-hot encoding in case a chemical bond exists
between atom i and j; only edges with non-zero faa are included as model inputs.

• Pair representations ffa ∈ RNframe×Natom×cp . For each frame-atom pair (u, l), the element (ffa)ul is initialized by a linear
layer R3∗4→ Rcp that embeds the concatenation of graph-distance encodings {(faa)i(u)l ,(faa) j(u)l ,(faa)k(u)l}.

We denote Xs as the Nframe×Nframe binary adjacency matrix of edges among frame nodes, and Xa as the Natom×Natom binary
adjacency matrix of 3-hop edges among atomic nodes. We additionally denote Hfa as the Nframe×Natom incidence matrix
between atomic nodes and frame nodes, i.e., (Hfa)u,l = 1 if l ∈ {i(u), j(u),k(u)}, and otherwise zero.

Elements of the stereochemistry encoding tensor S are determined based on the relative orientations among neighboring
frames of the input molecular graph. is_above_plane(u,v) is defined as one of the three atoms in frame v is above the

plane formed by frame u with normal vector vu =
(r j(u)−ri(u))×(rk(u)−r j(u))

∥r j(u)−ri(u)∥∥rk(u)−r j(u)∥
; is_same_side(u,v) is true iff the two bonds not

shared between u,v are on the same side of the common bond, equivalent to vu ·vv > 0, or vice versa. Our current technical
implementations for is_above_plane and is_same_side are based on computing the normal vectors and dot-products using the
coordinates from an auxiliary conformer, but we note that in principle all stereochemistry encodings can be generated based on
cheminformatic rules without explicitly generating all atomic coordinates.

Table S3. Stereochemistry encoding definitions.

Feature Definition

# Relative topological orientation between two frames
Suv,0 common_bond(u,v) = incoming_bond(u)
Suv,1 common_bond(u,v) = incoming_bond(v)
Suv,2 common_bond(u,v) = outgoing_bond(u)
Suv,3 common_bond(u,v) = outgoing_bond(v)
# Detect small ring structures
Suv,4 i(v) ∈ {i(u), j(u),k(u)}
Suv,5 j(v) ∈ {i(u), j(u),k(u)}
Suv,6 k(v) ∈ {i(u), j(u),k(u)}
# Polyhedral chiral center stereochemistry
Suv,7 (j(u) = j(v))∧ is_above_plane(u,v)
Suv,8 (j(u) = j(v))∧ is_below_plane(u,v)
# Planar stereochemistry for double and π bonds
Suv,9 is_double_or_aromatic(common_bond(u,v))∨ is_same_side(u,v)
Suv,10 is_double_or_aromatic(common_bond(u,v))∨not_same_side(u,v)

The notion of "frames" in a coordinate-free topological molecular graph is justified by the observation that most bending
and stretching modes in molecular vibrations are of high frequency, i.e., most bond lengths and bond angles fall into a small
range as predicted by valence bond theory, such that the local frames comprise a consistent molecular representation without
prior knowledge of 3D coordinates.
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D.2 The MHT network architecture
The forward pass of the Molecular Heat Transformer (MHT) propagates both the node and edges of a graph representation.
After executing the MHT network for all ligands in {G}, we proceed by uniformly sampling NL anchor nodes from all Nframe
nodes for subsequent processing; we denote HL as the NL×Nframe incidence matrix indicating whether a frame node is selected.

Algorithm S2 Molecular Heat Transformer (MHT) Inference
def MHT(fatom, fframe, faa, ffa,S,Nblocks = 8,K = 8, c = 512, cp = 64)

1: for i = 1 to Nblocks do
2: # Pair update block (Line 3-7)
3: fK, fQ,b = LinearNoBias(fframe),LinearNoBias(fframe),LinearNoBias(S)

# Computing a normalized affinity matrix for nearest-neighbor frames
4: Ul = Softmaxrow−wise

( 1√
cP
(fK · f⊤Q)+b− Inf · (1−Xs)

)
# Propagating to all frame-frame pairs via heat kernel expansion
# Approximating the matrix exponential exp(U)≈ (1+ 1

K U)K

5: Ũ = (I+ 1
K Ul)

K

# Updating frame-atom pairs using broadcasted kernel matrices
6: g = Ũ ·LinearNoBias(ffa)
7: ffa←MLP(concat(g, ffa))+ ffa

# Graph attention block (Line 8-12)
8: fnode = concatcolumn−wise(fatom, fframe)
9: fedge = concatcolumn−wise(concatrow−wise(faa, f⊤fa),concatrow−wise(ffa,S))

10: X = concatcolumn−wise(concatrow−wise(Xa,1),concatrow−wise(1,Xs))
11: fout,_,zout = MHAwithEdgeBias(fnode, fnode, fedge,X,nheads = 8,chead = 8)
12: fedge←MLP(LinearNoBias(zout)+ fedge)+ fedge

# Note update block
13: fnode←MLPhidden_dim=2048(fout + fnode)+ fnode
14: Update fframe, ffa from merged embeddings fnode, fedge
15: end for
16: if Subsample ligand pair representations then
17: FL← 1

2

(
HL · ffa +(HL · ffa)

⊤) FL ∈ RNL×NL×cp

18: end if
19: return fatom, fframe, ffa, faa,FL

MHAwithEdgeBias (Algorithm S3) denotes a multi-head cross-attention layer between source node embeddings and
destination node embeddings, with edge embeddings entering attention computation as a relative positional encoding term.

Algorithm S3 Multi-head Graph Attention with Edge Bias. X denotes the adjacency matrix of all edges on the graph.

def MHAwithEdgeBias(fsrc, fdst, fedge,X,c = 512,cp = 64,nhead,chead) fsrc ∈ RNsrc×c, fdst ∈ RNdst×c, fedge ∈ RNedges×cp

1: fK, fVs = LinearNoBias(fsrc) fK, fVs ∈ RNsrc×nheads×cheads

2: fQ, fVd = LinearNoBias(fdst) fQ, fVd ∈ RNdst×nheads×cheads

3: b = LinearNoBias(fedge) b ∈ RNedges×nheads×1

4: zi j =
1√

chead
(fK,i · f⊤Q, j)+bi j z ∈ RNedges×nheads×1

5: ai j = Softmax
Xi j=1
j zi j a ∈ RNedges×nheads×1

6: fos,i← LinearNoBias(∑
Xi j=1
j ai j⊙ fVd, j) fos ∈ RNsrc×c

7: fod, j← LinearNoBias(∑
Xi j=1
j ai j⊙ fVs,i) fod ∈ RNdst×c

8: return fos, fod,z
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Algorithm S4 rigidFrom3Points (adapted from Ref. [S6], Alg. 21)

def rigidFrom3Points(x1 ∈ R3,x2 ∈ R3,x3 ∈ R3,ε = 0.01Å)
1: v1← x3−x2
2: v2← x1−x2
3: e1← v1√

∥v1∥22+ε2

4: u2← v2− (e⊤1 v2)e1
5: e2← u2√

∥u2∥22+ε2

6: e3← e1× e2
7: R← vstack(e1,e2,e3) R ∈ R3×3

8: t← x2
9: return t,R

D.3 MHT model pretraining

Table S4. Composition of the dataset used for pretraining the MHT chemical encoder.

Data source Num. samples collected Sampling weight L3D LREG LMLM

BioLip [S7] ligands
(deposited date<2019.1.1) 160k 1.0 + - +

GEOM [S8] 450k * 5 0.25 + - +
PEPCONF [S9] 3775 5.0 + - +

PubChemQC [S10, S11] 3.4M 0.25 + - +
Chemical Checker [S12] 800k 1.0 - + +

In Table S4 we summarize the small molecule datasets used for training the MHT encoder used in the reported NeuralPLexer
model. The loss function used in MHT pretraining is the following:

Llig−pretraining = L3D−marginal +L3D−DSM +LCC−regression +0.01 ·LCC−ismask +0.1 ·LMLM (S21)

We use a mixture density network head to encourage alignment between the learned last-layer pair representations G and
the intra-molecular 3D coordinate marginals. For a single training sample with 3D coordinate observation y:

L3D−marginal =
Nframe

∑
u

Natom

∑
i

log
[Nmodes

∑
l

exp(wiul) ·q3D(T−1
u ◦yi|miul)

∑
Nmodes
l exp(wiul)

]
(S22)

where Tu
..= (Ru, tu), T−1

u ◦yi
..= (yi− tu) ·R⊤u . tu ∈ R3 and Ru ∈ SO(3) are given by

(Ru, tu) = rigidFrom3Points(yi(u),y j(u),yk(u)) (S23)

where rigidFrom3Points (Alg. S4) is the Gram–Schmidt-based frame construction operation originally described in Ref. [S6];
we additionally add a numerical stability factor of 0.01Å to the vector-norm calculations to handle edge cases when computing
the rotation matrices from perturbed coordinates. Each component the 3D distance-angle distribution q3D is parameterized by

q3D(t|µ,σ ,v) = Gaussian(∥t∥2|µ,σ)×PowerSpherical(
t
∥t∥2
|v,d = 3) (S24)

where PowerSpherical is a power spherical distribution introduced in [S13]; miul
..= (µ,σ ,v)iul , and

[wiu,miu] = 3DMixtureDensityHead
(
Glmax

)
iu. (S25)

where 3DMixtureDensityHead is a 3-layer MLP.
Using an equivariant graph transformer similar to ESDM (see Sec. G) but with all receptor nodes dropped, we construct

a geometry prediction head to perform global molecular 3D structure denoising. We sample noised coordinates y(t) from
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a VPSDE [S5] and introduce a SE(3)-invariant denoising score matching loss based on the Frame Aligned Point Error
(FAPE) [S6]:

L3D−DSM = Et∼(0,1],yt∼q0:t (·|y)
[
meanu,i min(∥T−1

u ◦yi− T̂−1
u ◦ ŷi∥2,10Å) ·

√
αt
]

(S26)

where

ŷ = GeometryPredictionHead(yt ;Hlmax ,Flmax ,Glmax) (S27)

LCC−regression is a SmoothL1 loss for fitting the "level 1" chemical checker (CC) [S12] embeddings which represents
harmonized and integrated bioactivity data, and LCC−ismask is an auxiliary binary cross entropy loss for classifying whether
a specific CC entry is available for any molecule in the chemical checker dataset. LMLM is a standard cross-entropy loss
for predicting the masked tokens. The MHT model is trained with a 50% masking ratio for all the atom, bond, edge, and
stereochemistry encodings, and with dropout=0.1; we trained the model with batch size = 32 for 1.5×106 iterations using a
cosine annealing schedule, taking 184 hours on a single NVIDIA-Tesla-V100-SXM2-32GB GPU.
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E Protein-ligand graph featurization

Table S5. Notations for all node types in the protein-ligand graph (also see Figure 2e).

Abbr. Count Meaning Initial features

B Nres Residue-wise backbone frames PLM + template node features (see Sec. E.1)
S NP Patch-wise anchor frames subset of above (B)
F NL Ligand anchor frames MHT frame node embeddings fframe
P Nprotatm All protein atoms MHT atomic node embeddings fatom
L Nligatm All ligand atoms MHT atomic node embeddings fatom

Table S6. All edge types in the protein-ligand graph (also see Figure 2e). All edges comprised of two distinct node types are
bidirectional; for conciseness, only one of the two directions is explicitly shown below. RBF(·) denotes a damped random
Fourier basis function layer as defined in Eq. (S28). For the exponential-kNN scheme, see Algorithm S5.

Abbr. Edge type src type dst type Connectivity Initial features

# Residue-scale subgraph
BB local B B Exponential-kNN(xCα ), kNN = 32 See Section E.1
BS local B S Intra-patch, dense See Section E.1
BF long-range B F Dense Node embedding outer sum
SS long-range S S Dense See Section E.1
SF long-range S F Dense Zero tensors
FF long-range F F Dense Symmetrized MHT embeddings FL
# Atomic-scale subgraph
As local P+L P+L Exponential-kNN(Z), kNN = 8 RBF32(∥Zsrc−Zdst∥/10Å)
Ac local P+L P+L Molecular graph n-hop, n=3 Gathered MHT embeddings faa
Ab local P+L P+L Inter-molecular covalent bonds Trainable random embedding
# Cross-scale edges connecting atoms and residues
BP local B P Intra-residue, dense Gathered MHT embeddings ffa
FL local F L Intra-ligand, dense Gathered MHT embeddings ffa

Given the primary model inputs and a noisy geometry, the schemes for constructing the residue-scale and atomic-scale
graph representations are summarized in Table S5-S6. The protein anchor frame nodes (Table S5 S) are selected by first
sequentially segmenting the input protein sequence into NP = 96 patches of the same sequence length (with the last patch
potentially truncated), and then sampling one unique backbone frame index for each protein patch. The intra-patch edges
(Table S6 BS) then connect each protein residue node to the anchor node within the same patch.

The geometry-dependent local edges (Table S6 BB, As) are generated using a randomized k-nearest-neighbor (kNN)
scheme with an exponentially-decaying attachment probability p(add_edge(i, j)) ∝ exp(−∥Zi−Z j∥/5.0Å) with respect to
the distance matrix among nodes, implemented via a Gumbel-Topk trick (note that a similar scheme is adopted in Ref. [S14]):

Algorithm S5 Exponential-kNN scheme for generating local edges

Require: All node Euclidean coordinates Z, node degree kNN, decay scale D = 5.0Å
1: for i ∈ {1, · · · ,Nnodes} do
2: for j ∈ {1, · · · ,Nnodes} do
3: si j←−∥Zi−Z j∥/D
4: ui j ∼ Uniform(0,1)
5: s̃i j← si j− log(− log(ui j)) Gumbel distribution over logits si j
6: end for
7: {src_idx}i,{dst_idx}i← ArgTopK j({s̃i j}i), i Row-wise top-k node indices, k=kNN
8: end for
9: return {src_idx},{dst_idx}
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RBF(·) :R→R2∗Nbasis denotes a damped random Fourier Feature encoding layer with sine and cosine frequencies κκκ ∈RNbasis

initialized from a univariate Gaussian distribution:

RBFNbasis(r)
..= [sin(κκκ · r),cos(κκκ · r)]⊤/(1+ r) (S28)

The inter-molecular covalent edges (Table S6 Ab, such as those in post-translational modifications and polysaccharides for
which monomers are deposited as individual ligands) are determined based on the reference complex structure; an atom pair
(i, j) is considered a covalent bond iff di j < 1.2σi j where σi j =

1
2 (σi +σ j) is the average Van der Waals (VdW) radius.

E.1 Protein residue sub-graph featurization
The initial node features of all protein residue nodes are a concatenation of (a) the one-hot amino-acid types (20 standard residues
+ 1 "unknown" token) and (b) the concatenation of ESM-2-650M embeddings [S2] computed for all input protein sequences,
and, when available, (c) internal coordinates of all atoms in the template protein structure xtemplate in the corresponding backbone
coordinate frame, padded into the fixed-length atom37 format of PDB amino acid atom types. The initial node features are then
embedded by a standard 3-layer MLP: RNres×(1280+21+37∗3)→ RNres×c.

As detailed in Algorithm S6, the initial edge features of all protein residue-residue edges (Table S6 BB, BS, SS) are a
combination of (a) an outer-sum of source and destination node features, (b) relative positional encodings of residue indices in
the protein sequences, (c) relative geometrical encodings of residue backbones in the input noisy protein structure xt , and, when
available, (d) relative geometrical encodings of residue backbones in the template protein structure xtemplate.

Algorithm S6 Computing the initial feature for a single residue-residue edge

Require: src_idx, dst_idx, residue node features fB, input protein coordinates xt , input template coordinates xtemplate (optional)

1: fosum = (fB)src_idx +(fB)dst_idx Eq. S28
2: fseq = RBF16(residue_idx(src_idx)− residue_idx(dst_idx)) · IsSameChain(src_idx,dst_idx)
3: fgeom = RelGeomEnc(src_idx,dst_idx,xt ,Nbasis = 15) Alg. S7
4: fedge←MLP(concat(fosum, fseq, fgeom))
5: if xtemplate is not None then
6: fedge← fedge +LinearNoBias(RelGeomEnc(src_idx,dst_idx,xtemplate,Nbasis = 15)) Alg. S7
7: end if
8: return fedge

Algorithm S7 Computing the relative geometrical encodings for a single residue-residue edge

def RelGeomEnc(src_idx,dst_idx,x,Nbasis,D0 = 10.0Å)
1: {xN,xCα ,xC}← Get protein backbone (N, Cα , C) coordinates from x
2: tsrc,Rsrc = rigidFrom3Points((xN)src_idx,(xCα)src_idx,(xC)src_idx) Alg. S4
3: tdst,Rdst = rigidFrom3Points((xN)dst_idx,(xCα)dst_idx,(xC)dst_idx) Alg. S4
4: d = ∥tsrc− tdst∥
5: fdist = RBFNbasis(d/D0)

6: fdirs = R⊤src · (tdst− tsrc)/(d +1.0Å)
7: fdird = R⊤dst · (tsrc− tdst)/(d +1.0Å)
8: fori = flatten(R⊤src ·Rdst)
9: fgeom = concat(fdist, fdirs, fdird, fori) fgeom ∈ RNbasis+15

10: return fgeom

F The CPM network architecture
The neural network architecture of a single contact prediction module (CPM) block is summarized in Figure S1; for all models
reported in this work, we use a stack of NCPM = 6 blocks to construct the network (i.e., CPMForward in Algorithm S1).

Before the CPM forward pass, all frame node representations are concatenated with a 64-bit random Fourier encoding of
the diffusion time RBF(τ) which is embedded by a standard MLP. The last step sampled block-adjacency matrix l̃ is encoded
by a LinearNoBias layer; the block-adjacency encodings are then added to the edge representations between patch-wise protein
nodes and selected ligand nodes fSF ∈ RNP∗NL×cP .
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Figure S2. Network architecture of a single block in the equivariant structure diffusion module (ESDM). Arrows indicate
information flow directions, and "+" indicates an element-wise tensor summation.

The first 2 CPM blocks are executed on the protein sub-graph only (i.e., BB, BS, and SS edges as defined in Table S6), and
the remaining 4 CPM blocks are executed on the entire residue-scale graph (i.e., BB, BS, BF, SS, SF, and FF edges as defined
in Table S6).

The asymptotic computational complexity of CPMForward is O
(
NCPM · (Nres · (kNN +NL)+(NP +NL)

3)
)
.

G The ESDM network architecture
The Equivariant Structure Denoising Module (ESDM) of the NeuralPLexer network predicts denoised three-dimensional
structures Ẑ0 using the noise input coordinates Zt and graph representations of the binding complex. The neural network
architecture of a single ESDM block is summarized in Figure S2; for all models reported in this work, we use a stack of
NESDM = 4 blocks to construct the network (i.e., ESDMForward in Algorithm S1).

Before the ESDM forward pass, all atomic node representations are concatenated with a 64-bit random Fourier encoding
of the diffusion time RBF(τ) which is embedded by a standard MLP. The forward pass expressions of trainable modules
PointSetAttentionwithEdgeBias, LocalUpdateUsingChannelWiseGating, LocalUpdateUsingReferenceRotation, PredictDrift
are defined as:

Algorithm S8 PointSetAttentionwithEdgeBias

def PointSetAttentionwithEdgeBias(fs, fv, fe, t, c = 64) fs ∈ RNnodes×c, fv ∈ RNnodes×3×c, fe ∈ RNedges×c, t ∈ RNnodes×3

1: fQ, fK, fV = LinearNoBias(fs) fQ, fK, fV ∈ RNnodes×nheads×chead

2: tQ, tK, tV = t/Dpoints +LinearNoBias(fv) tQ, tK, tV ∈ RNnodes×nheads×cpoint×3,Dpoints = 10Å
3: b = LinearNoBias(fe) b ∈ RNedges×cheads

# Computing attention weights on all edges of the graph
4: zi j =

1√
chead

(f⊤Q,i · fK,j)+bi j−
wi j√

18chead
∥tQ,i− tK, j∥2

2 z ∈ RNedges×nheads

5: ααα i j = Softmax j∈{i}(zi j)
6: f′s← ∑ j∈{i}ααα i j⊙ fV
7: f′v← (∑ j∈{i}ααα i j⊙ tV)− t/Dpoints
8: f′e←MLP(zi j)+ fe
9: return f′s, f′v, f′e
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The expression for computing attention weights z is adapted from Invariant Point Attention (IPA) [S6].

Algorithm S9 LocalUpdateUsingChannelWiseGating

def LocalUpdateUsingChannelWiseGating(fs, fv) fs ∈ RNnodes×c, fv ∈ RNnodes×3×c

1: floc = concat(fs,∥fv∥2) floc ∈ RNnodes×2c

2: f′s, fgate←MLP(floc) fgate ∈ RNnodes×1×c

3: f′v← LinearNoBias(fv)⊙ fgate Channel-wise product (broadcasting along xyz)
4: return f′s, f′v

As only linear layers and vector scaling operations are used to update the vector representations fv, (S9) is E(3)-equivariant.

Algorithm S10 LocalUpdateUsingReferenceRotation

def LocalUpdateUsingReferenceRotation(fs, fv,R) fs ∈ RNnodes×c, fv ∈ RNnodes×3×c,R ∈ SO(3)Nnodes

1: (fvloc)i = (Ri)
T · (fv)i i ∈ {1, · · · ,Nnodes}

2: floc = concat(fs, fvloc,∥fv∥2) floc ∈ RNnodes×5c

3: f′s, fvloc←MLP(floc)
4: (f′v)i← Ri · (fvloc)i i ∈ {1, · · · ,Nnodes}
5: return f′s, f′v

Since the third row of R is a pseudovector as described in rigidFrom3Points, the determinant of the rotation matrix R is
unchanged under parity inversion transformations i : x 7→ −x and thus the intermediate quantity fvloc is SE(3)-invariant but in
general not invariant under parity inversion i. This property ensures that ESDM-predicted coordinates can capture the correct
chiral symmetry-breaking behaviors in molecular 3D conformation distributions.

Algorithm S11 PredictDrift
def PredictDrift(fs, fv) fs ∈ RNnodes×c, fv ∈ RNnodes×3×c

1: oscale← Softplus(MLP(fs)) oscale ∈ RNnodes×1

2: ∆t← LinearNoBias(fv)⊙oscale ∆t ∈ RNnodes×3

3: return ∆t

The predicted drift vectors ∆t are added to the atomic coordinates from the last ESDM block; after NESDM blocks, the final
coordinate outputs are taken as the predicted denoised structure Ẑ0 to infer the score function.

H Confidence estimation heads
The predicted lDDT (pLDDT) head of NeuralPLexer uses the same architecture as ESDM (Sec. G) with an independent set
of parameters. Once a structure Z0 is generated from the main network, Z0 and an empty block contact map is passed to the
pre-trained CPM network to generate the residue-scale graph embeddings to the pLDDT head (Algorithm S1, lines 41-44).

The output protein residue representations and ligand atom representations from the plDDT head are passed to a 6-layer
MLP to predict the histograms of distance error distributions between generated and reference structures, that is, for each query
protein residue centroid or ligand atom i, we fit the histogram of distance deviations |∥(Z0)i− (Z0) j∥−∥(Zref)i− (Zref) j∥| for
all target point j within 15.0 Å of the query point in the reference structure Zref. For such histograms, we use distance deviation
bins with left boundaries of [0.0,0.5,1.0,2.0,4.0,8.0,16.0]Å. The pLDDT score of each protein residue or ligand atom is then
computed based on the respective predicted histogram densities:

pLDDT [i] ..= 1.0∗ p0−0.5[i]+0.75∗ p0.5−1.0[i]+0.5∗ p1.0−2.0[i]+0.25∗ p2.0−4.0[i]. (S29)
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Table S7. Model training details. All training runs were performed on 6 NVIDIA-Tesla-V100-SXM2-32GB GPUs with a total
batch size of 6, data parallelism, and automatic mixed precision (AMP) training. CA: Cosine Annealing. EMA: Exponential
Moving Average.

Task type End-to-end structure prediction Rigid-backbone docking Binding site recovery

Model ID A.0 A.1 B C

Initial parameters Random A.0 A.0 A.1

Training dataset
PL2019-74k

(DNA/RNA unremoved)
PL2019-74k PDBBind2020(<2019) PDBBind2020(<2019)

Data sampling scheme see text see text N/A N/A
is_rigid_receptor no no yes yes (cropped binding site)
train_plddt_head no yes yes no
Freeze MHT parameters no yes yes yes
Initial learning rate 3 ·10−4 1 ·10−4 2 ·10−4 2 ·10−4

Learning rate schedule CA, 4 restarts CA CA, 6 restarts CA, 4 restarts
Dropout rate 0.1 0.01 0.01 0.01
Template masking rate 0.2 0.2 0.2 0.2
Use EMA no yes yes no
pcontact 0.25 0.1 0.1 0.1
λFAPE 0.5 0.2 0.2 0.2
λdRMSD 0.5 1.0 1.0 1.0
λviol 10−3 linear increase, 0 to 0.1 linear increase, 0 to 0.1 0.1
Num. epochs 75 + 250 + 250 + 224 332 36 + 4 + 8 + 16 + 32 + 60 7 + 14 + 28 + 56
Training time 10 days 20 hours 5 days 8 hours 7 days 16 hours 3 days 12 hours

I Model training details
In Algorithm S12 we summarize the general procedure for training the NeuralPLexer main network and confidence estimation
heads. Bern(p) denotes a Bernoulli distribution of a 0-1 boolean variable X with Pr(X = 1) = p. bucketize_onehot(·,vbins))
denotes a one-hot encoding operation using left bin boundaries defined in a vector vbins. LCE(·, ·) denotes a standard cross
entropy loss between two discrete distributions: LCE(p,q) ..=−∑

Nbins
i=1 log pi ·qi.

FAPE denotes the frame-aligned point error introduced in Ref. [S6] for which we used all Nres +Nframe backbone and ligand
frames for relative point coordinate alignment; FAPEscaled is a modified variant of FAPE to encourage learning the overall
molecular chirality, where we scaled all aligned point coordinates by its vector norm and removed the clamping term.

dRMSDX denotes the distance-based RMSD introduced in Ref. [S16] computed for all atoms in a selected set X ; we
denote X = global for all atoms in the protein-ligand complex, X = site for all atoms within 8.0 Å of the binding ligands,
X = pli for all pairs between protein residue centroids and ligand atoms, and X = weighted for all pairs for which the
residue-residue distance deviation between the reference structure xref and the template structure xtemplate is greater than 2.0 Å.

The distance-geometry loss Ldistgeom is defined as

Ldistgeom(Ẑ,Z) = meanA ∑
i, j∈{A}

|∥Zi−Z j∥−∥Ẑi− Ẑ j∥| ·1∥Zi−Z j∥<2.8Å (S30)

where 1 denotes a 0-1 indicator function, all coordinates are in the Angstrom unit, index A runs over all residues and ligand
molecules in the structure, and i, j ∈ {A} indicates all atom pairs in the residue or ligand A.

The steric clash loss Lclash is defined as

Lclash(Ẑ,Z) = ∑
i, j

max(σi j−|∥Ẑi− Ẑ j∥|,0) ·1∥Zi−Z j∥>1.2σi j . (S31)

where σi j =
1
2 (σi +σ j) is the average VdW radius of atom i and atom j.

The NeuralPLexer main network (including the MHT (51.6M), CPM (8.3M), ESDM (5.0M), and projection layers) has
65.8×106 trainable parameters in total, while the pLDDT head has 5.0×106 parameters in addition.

In Table S7 we summarize the training procedure and hyperparameters for all models reported in this study. During the
training of model A.0, we randomly subsampled 5% of the entire PL2019-74k dataset at each epoch using a relative weight of
the inverse-square-root of the UniRef50 cluster index occurrence frequency of the training protein chain. During the training of
model A.1, we subsampled 5% of the PL2019-74k dataset at each epoch with an additional relative sampling weight of (a) (1+
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Algorithm S12 NeuralPLexer Training

Require: {s}, {G}, reference structure Zref, is_rigid_receptor, train_plddt_head, loss weights pcontact,λFAPE,λdRMSD,λviol
1: for i ∈ {1, · · · ,Ntraining_iter} do
2: if is_rigid_receptor then
3: xtemplate← xref
4: else
5: use_template∼ Bern(0.5)
6: if use_template then
7: xtemplate← Retrieve a random structure from all AF2 predictions and PL2019-74k structures of {s}
8: else
9: xtemplate← None

10: end if
11: end if
12: if not (train_plddt_head and (i | 10)) then
13: Compute MHT embeddings for all input ligand molecular graphs in {G} and standard amino acids Algorithm S2
14: NP←min(Nres,96), NL ∼ {floorRound(

√
Nframes), · · · ,33,32}

15: is_prior_training∼ Bern(pcontact)
16: if is_prior_training then
17: τ ← 1.0, k ∼ {0, · · · ,NL−1}
18: else
19: τ ∼ Uniform(0,1), k← NL
20: end if
21: t← DiffusionTimeSchedule(τ) Equation (8)
22: zt ← Perturb the structure using the forward SDE transition kernel qt:0(·|Zref) Equation (9)
23: residue_graph,atomic_graph← Generate the residue-scale and atomic-scale graph based on Zt Section E
24: D,L← Compute ground-truth distance and contact map based on Zref Equation (3), D,L ∈ RNres×NL

25: l̃← 0
26: for r ∈ {1, · · · ,k} do
27: Lr← SumIntoPatches(L)⊙ [1−maxcolumn−wise(l̃)] Lr ∈ RNP×NL

28: lr = OneHot(ir, jr); (ir, jr)∼ CategoricalNP×NL
(Lr) lr ∈ {0,1}NP×NL

29: l̃← l̃+ lr l̃ ∈ {0,1}NP×NL

30: end for
31: residue_graph← CPMForward(residue_graph, l̃,τ) Section F
32: P̂ = LinearNoBias(MLP(GetEdgesBF(residue_graph_k))) P̂ ∈ RNres×NL×Nbins ,Nbins = 32
33: graph_rep← Collate(residue_graph,atomic_graph,cross_scale_graph) Table S6
34: Ẑ0← ESDMForward(Zt ;graph_rep,τ) Section G

# Distogram and contact prediction losses
35: Ldgram = meanA,J LCE(P̂AJ ,bucketize_onehot(DAJ ,vbins))
36: Lcmap = LCE(DistogramToContactMap(P̂),L)

# Invariant denoising structure prediction losses
37: LFAPE = FAPE(Ẑ0,Zref)+FAPEscaled(Ẑ0,Zref)
38: LdRMSD = dRMSDglobal(Ẑ0,Zref)+dRMSDsite(Ẑ0,Zref)+dRMSDpli(Ẑ0,Zref)+dRMSDweighted(x̂0,xref;xtemplate)

39: λ (t) =

√
σ(t)2+σ2

data
σ(t)·σdata

, σ(t) = σ
√

t Loss weighting adapted from Ref. [S15], σ = 12.25Å,σdata = 5.0Å
# Distance-geometry and clash regularizers

40: Ldistgeom,Lclash← Compute structure violation losses See Equations (S30)-(S31)
41: L ← 0.1 · (Ldgram +Lcmap)+λ (t)λFAPE ·LFAPE +λ (t)λdRMSD ·LdRMSD +λ (t)λviol · (Ldistgeom +0.1 ·Lclash)
42: L ← is_prior_training · (Ldgram +Lcmap)+(1−0.9 · is_prior_training) ·L
43: else
44: # Confidence estimation losses
45: Z0,(pLDD_gram,_,_)← NeuralPLexerInference({s},{G},1,Nsteps = 10,use_template,True) Alg. S1
46: LDD_gram← Compute reference distance deviation histograms between Z0 and Zref See Section H text
47: L ←meanA∈{s}LCE(pLDD_gramA,LDD_gramA)+meanJ∈{G}LCE(pLDD_gramJ ,LDD_gramJ)
48: end if
49: Computing gradients w.r.t. L and update model parameters
50: end for
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0.5∗exp(1.0∗BackboneRMSD(xref,xtemplate))) for AF2 templates and (b) (1+0.3∗exp(1.1∗BackboneRMSD(xref,xtemplate)))
for experimental templates, multiplied to the sampling weights used for training model A.0. All PDBBind fine-tuning runs
(models B and C) were executed with standard data shuffling and no subsampling.

J Computational details
For results reported in blind protein-ligand docking and binding site recovery tasks, we used a diffusion model sampling setting
of Nstep = 25 integrator steps; for all end-to-end structure prediction results, we used Nstep = 100 integrator steps.

The AlphaFold2 structures used for binding site structure recovery (Figure 3) and for templates in end-to-end structure
prediction (Figure 4-5) are predicted using ColabFold [S17] using default recycling and AMBER relaxation settings, and
without templates in order to best reflect the prediction fidelity of AlphaFold2 on new targets. The input sequences for all
protein chains are obtained from https://www.ebi.ac.uk/pdbe/api/pdb/entry/molecules/ to avoid issues
related to unresolved residues and to represent a realistic testing scenario where the protein backbone models are obtained from
the full sequence.

In Figure 3b, EquiBind [S18] is launched with the default configuration file, and for each protein-ligand pair 16 ligand
conformations are generated using different random RDKit [S19] input conformers. For the GPU times reported in Table 1,
NeuralPLexer model inferences are performed on a single NVIDIA RTX A5000 GPU; to facilitate a direct comparison with
existing methods, we normalized the inference GPU time by the ratio between the average per-pose wall-clock time of running
DiffDock [S20] under the same hardware configuration and the time reported in Ref. [S20].

RosettaLigand [S21] runs are launched with a configuration modified from the standard protocol to enable sufficient
relaxation of the receptor conformation. We set the receptor Calpha constraint parameter to 100.0 to enable a fully flexible
receptor; the ligand coordinates are initialized using the aligned-ground-truth conformation as obtained by TM-Align [S22],
with randomized torsion angles using the BCL [S23] library as described in the standard protocol. We set the docking box width
to 4.0Å and remove the ligand center perturbation step to ensure the ligand search space during the low-resolution docking
stage is constrained to the binding site location. We set the number of docking cycles of the high-resolution docking stage to 64
to converge the receptor structure during backbone relaxation; for each protein-ligand pair in the test set, generating 32 ligand
poses took on average 150 minutes on a single Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz CPU.

The symmetry-corrected heavy-atom RMSD for ligand structure comparison is computed using the obrms function in
OpenBabel [S24]. A standard 6-12 Lennard-Jones energy functional form is used for computing the clash rate statistics; the
L-J energy and VdW radius parameters are obtained from the UFF parameter file retrieved from https://github.com/
kbsezginel/lammps-data-file/blob/master/uff-parameters.csv.

K Additional discussions
K.1 Background and related works
We note that in the past decades, several schemes have been proposed to remedy issues regarding sampling protein con-
formational changes and slow motions. Those include methods based on molecular dynamics simulation and enhanced
sampling techniques [S25–S28], molecular docking guided by template-based modeling [S29–S31] and iterative refinement
protocols [S32–S35], as well as recently proposed modifications to structure prediction networks [S36–S39]. However, such
methods often require case-specific expert interventions or constraints from experimental data, and are still not a unified
framework to systematically predict binding complex structures at a proteome scale. Moreover, the applicability of existing
deep-learning-based algorithms to ligand-binding proteins is limited by their single structure regression-based formulations,
especially for non-endogenous small molecule binding for which the ligand identity cannot be inferred from protein motifs.

NeuralPLexer is a deep generative model with a model architecture deeply informed by biophysical inductive biases. As
supported by our empirical results, we claim that the integration of these inductive biases into the deep neural network, which
combines both auto-regressive and diffusion-generative modeling, is a key to accurately predicting protein-ligand complex
structures at scale. This is aligned with two essential factors that dictate ligand binding: (a) the determination of the global
contextual information related to ligand function, such as selectivity to orthosteric or allosteric sites, and (b) the process of
resolving energetically favorable inter-atomic structures based on sub-nanometer-scale physical interactions.

K.2 Future extension of the method
Although the current presentation of NeuralPLexer is trained solely on structural data, we identify a weak statistical correlation
between the model-assigned confidence scores and experimental binding affinities (Supplementary Information, K.5) suggesting
that the model has learned representations related to binding strength. Therefore, we hypothesize that fine-tuning the model
for affinity prediction in a supervised manner may yield better performance compared to standard approaches. Furthermore,
comprehensively analyzing the compound dependence of model confidence estimations (such as ligand pLDDT) against
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empirical and physical measures including force fields and docking score functions, with potential calibrations, may yield
improved workflows for compound prioritization and virtual screening. We consider those as promising directions for future
studies.

Moreover, refining the model on data such as high-resolution nuclear magnetic resonance (NMR) and molecular dynamics
data can enable it to capture protein structure under physiological conditions beyond the distribution of crystal-like structures.
A related promising direction to improve the methodology is to incorporate highly accessible auxiliary data related to protein-
compound interactions such as binding affinities [S40] and high-throughput mass spectrometry signals [S41], given that the
incorporation of large-scale protein sequencing data in the form of MSAs has already been demonstrated a crucial component
to achieve transferable protein structure prediction [S6, S42, S43]. We also anticipate that NeuralPLexer can be directly applied
to accelerate various physical simulation studies on protein-ligand interactions, such as guiding the design and optimization of
collective variables in enhanced-sampling molecular dynamics simulations [S26].

K.3 Q-factor analysis
Apart from standard Cα-based metrics such as TM-score, we introduce a weighted version of the Q-factor from Best and
Hummer [S44] based on the inter-residue native contacts that are not conserved between two distinct-state reference structures
(Methods, Structure accuracy metrics). As shown in Figure 4f, we observe a stark differentiation between NeuralPLexer
(average Q-factor=0.608) and the ligand-free baseline model (average Q-factor=0.501), while 16% of the predicted structures
are found to qualitatively improve against AF2 models (average Q-factor=0.538) by 0.1 or more. These results clearly indicate
that NeuralPLexer is able to selectively sample ligand-free and ligand-bound protein states on targets that are challenging
to predict using state-of-the-art methods. The prediction accuracy as measured by Q-factor is also consistent among targets
with different sequence similarities to the training dataset (Figure 4f), suggesting that the model is able to generalize beyond
targets for which structures of close homologs are available. In addition to the overall prediction accuracy, we find that the
NeuralPLexer-assigned pLDDT score can effectively identify more accurately predicted structures for such ligand-binding
proteins, as manifested by a more marked improvement from AF2 (average TM-score=0.927) to NeuralPLexer (average
TM-score=0.942) when evaluated on the subset at which model is most confident (protein pLDDT > 0.8).

K.4 Template dependency of generated structures
Using the test dataset of recently determined structures, we plot the TM-scores computed against AF2 template (x-axis) and the
ground-truth structure from PDB (y-axis), for structures generated without template (red) and with the template input (blue).
As shown in Figure S3a, the predictions are generally not biased to the AlphaFold2 template structures (blue dots), as an exact
match to the templates would result in a vertical line of TM-score=1.0 with respect to the AF2 structures.

In Figure S3b, we also found that when compared to the predictions for when no template structure input is used, the relative
structure similarity with respect to AF2 structures and the reference structures (as manifested by the TM-score difference
∆TMscore = TMscoretrue−TMscoreAF2) is not substantially shifted.

K.5 Relationship between ligand structure confidence score and binding affinity
In Figures S4-S5, we examine the relationship between the model-assigned confidence score (pLDDT), ligand RMSD relative
to the true structure, and the experimental binding affinity values reported in the PDBBind2020 database [S45]. In Figure S4
we have plotted the experimental binding affinity value for all 363 protein-ligand pairs in the PDBBind2020 test dataset against
the ligand pLDDT score and ligand RMSD, grouped over the experiment type (Ki, Kd, or IC50 assays). For the Ki subset
and the IC50 subset, we observe a weak positive statistical correlation between both (a) ligand pLDDT and (b) ligand RMSD
against the negative log of the binding affinities (Spearman r ≈ 0.2).

Moreover, in Figure S5 we have plotted the ligand pLDDT scores binned over intervals of binding affinities of the
corresponding protein-ligand pairs. We note that for all three assay types, protein-ligand pairs within the lowest affinity and
highest affinity bins are consistently assigned with lower and higher pLDDT scores, repsectively, compared to samples in the
middle of the distribution.

Therefore, we conclude that while the correlation between NeuralPLexer confidence head and binding affinity is not strong
enough to be used for virtual screening, the results do suggest that the model has learned representations related to affinity by
solely training on structures. We note that fine-tuning the model for affinity prediction in a supervised manner may yield better
performance compared to standard ML-based affinity prediction models, and we consider that as a promising direction for
future studies.

K.6 Relationship between ligand and binding site structure prediction accuracy
In the data presented in Figure 4h and Figure 5e, we recognize the absence of a robust correlation between ligand RMSD
and lDDT-BS. However, within both the PocketMiner dataset and the recently determined structures dataset, we note that a
high lDDT-BS is a precondition to achieve a low ligand RMSD, as supported by the vacancy in the lower-left regions of both
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(a) Scatter plots of TM-scores calculated for both the template
structures and the corresponding true structures.

(b) Scatter plots of the relative TM-score differences calculated
for both the template structures and the corresponding true
structures. X-axis: ∆TMscores computed using template-free
NeuralPLexer predictions. Y-axis: ∆TMscores computed using
template-based NeuralPLexer predictions.

Figure S3. Analyzing the dependence of predicted structures on templates.

Figure S4. Scatter plot of the negative log of binding affinity as reported in the PDBBind2020 dataset (y-axis) against (a) the
average ligand pLDDT score of each protein-ligand pair and (b) the minimum ligand RMSD with respect to the true structure
(x-axis), computed over all 363 samples in the holdout test set.

21/24



0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5
p[Ki, Kd, IC50]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

pL
DD

T-
lig

Binding affinity v.s. Ligand pLDDT on PDBBind2020
Ki subset
Kd subset
IC50 subset

Figure S5. Bar charts of the average ligand pLDDT scores grouped over the binding affinity of the corresponding
protein-ligand pair in the PDBBind2020 dataset. Statistics are computed over (a) the subset for which the original affinity data
are Ki values (n=61), (b) the subset for which the original affinity data are Kd values (n=183), and (c) the subset for which the
original affinity data are IC50 values (n=107). Bar heights indicate the mean value for each bin and error bars indicate the
standard error of the mean.

Figure 4h and Figure 5e. Several contributing factors could explain the instances where NeuralPLexer predictions yield high
ligand RMSDs alongside high lDDT-BS scores, including (a) the misidentification of binding sites on correctly predicted target
structures, (b) less ideal accuracy in binding pose generation, or (c) critical deviations in the predicted binding site shape despite
a good overall geometrical accuracy caused by either the misprediction of important residue conformations or sensitivity in the
scoring function to prediction errors, as discussed in Ref. [S46]. Results from Figure 3e-g also suggest that improved metrics
that systematically account for important physical interactions are necessary to evaluate the fidelity of predicted binding sites,
compared to geometrical measurements such as lDDT and RMSD.

We hypothesize that for generative-model-based structure prediction methods minor errors in the predicted binding pockets
may not substantially result in decreased pose accuracy, unlike in traditional docking methods. Systematically delineating
these underlying factors with comparisons to the statistics in traditional docking methods discussed above will facilitate our
understanding of the generalization behavior of generative-model-based structure predictors over different target classes, and
we consider that as a promising future research direction.
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