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ABSTRACT

Comprehensive theoretical models for the dynamic response of slender cantilevered beams immersed in fluid have been widely reported,
while the distinct behavior of wide cantilevered plates has received comparatively little attention. In this article, we develop an exact analyti-
cal theory for the resonant response of rectangular cantilevered plates of zero length-to-width aspect ratio that are immersed in unbounded
viscous fluids. Unlike the opposite slender limit of large aspect ratio, the hydrodynamic load experienced by zero-aspect-ratio cantilevered
plates is inherently non-local, which can strongly affect the individual mode shapes of the plate. In addition, finite-element-method simula-
tions are reported for two- and three-dimensional cases of zero and finite aspect ratio, respectively. Accuracy of the present theory and that
of Atkinson and Manrique de Lara [J. Sound Vib. 300, 352 (2007)] for small viscosity and zero aspect ratio is assessed using the former sim-
ulations. The latter simulations are used to clarify the regime of validity of the present theory as a function of aspect ratio, along with that of
existing theory for slender (large aspect ratio) beams. The results of this study are expected to be of practical importance to micro- and
nano-electromechanical system design and their applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0120736

I. INTRODUCTION

The dynamics of cantilevered devices are pertinent to a wide
range of applications, including imaging and force spectroscopy
with atomic force microscopy (AFM),1–5 energy harvesting,6 micro-
fluidic sensing,7,8 and mass spectroscopy using micro- and nano-
electromechanical systems (MEMS and NEMS, respectively).9–11 In
many of these applications, a cantilevered structure is immersed in
a fluid environment that strongly affects its dynamic response, rela-
tive to its operation in vacuum. For cantilevers of macroscopic
scale, fluid viscosity typically exerts a negligible effect with hydro-
dynamic loading enhancing the effective inertial mass of the canti-
lever—thereby lowering its resonant frequencies.12–15 In contrast, it
has been shown that the dynamics of microscale cantilevers are sig-
nificantly affected by the viscosity of the surrounding fluid, enhanc-
ing both the inertial load and energy dissipation.3,5,16–18 This
dissipation is often quantified by the quality factor (Q-factor) of
each resonant mode, which is proportional to the ratio of the

maximum elastic energy stored in the structure to dissipation in
one cycle of oscillation.

The hydrodynamic load acting on a slender cantilevered
beam immersed in a fluid is often assumed to depend locally on
the cantilever displacement, an approximation that holds pro-
vided the cantilever length greatly exceeds its width.5,12,18 This
approach provides an accurate framework that has enabled com-
prehensive studies of the dynamics of cantilevered beams in
fluid. Chu12 presented an early and widely used formula for the
resonant frequencies of a slender cantilever beam immersed in an
inviscid fluid, which was validated experimentally.13 Sader18

showed that this inviscid fluid approximation deteriorates as the
cantilever size is reduced—relevant to modern applications in
AFM, MEMS, and NEMS—with fluid viscosity exerting an
increasing effect. He developed a theory that incorporates the
role of viscosity, which was found to be accurate for the first few
flexural resonant modes of practical AFM microcantilevers.19–21

Expanding on the approach of Elmer and Drier,17 van Eysden
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and Sader15 developed analytical formulas that accounted for the
three-dimensional nature of inviscid flows, generated by slender
cantilever beams vibrating in their higher-order flexural and tor-
sional modes. These authors later extended their theory to rigor-
ously account for the effects of fluid viscosity and
compressibility.5,22–24

The above-mentioned locality of the hydrodynamic load for
slender beams deteriorates as the length-to-width aspect ratio of
the cantilevered plate decreases, with the dynamic response of
wide cantilevered plates differing markedly from their slender
counterparts. Moreover, non-conventional transverse modes can
be excited by low aspect ratio plate-type resonators in liquid,25

with a recent numerical study reporting a distinct displacement
spectrum for these modes.26 Despite the behavioral shift as the
aspect ratio is reduced and the existence of moderate-to-low
aspect ratio cantilevers in practice, analytical results for wide can-
tilevered plates are scant. Notably Lindholm et al.,13 drawing on
the work of Pabst27 from 1930, proposed empirical correction
factors to the (infinite aspect ratio) formula of Chu,12 to accom-
modate cantilevered plates of finite and smaller aspect ratio. The
resulting theory produced a reasonable agreement with measure-
ments at the time.

In a more recent advance, Atkinson and Manrique de Lara28

theoretically studied the limit of zero aspect ratio, i.e., a two-
dimensional cantilevered plate that is infinitely wide relative to its
length and immersed in an inviscid fluid, where it was reported
that the corresponding hydrodynamic pressure depends non-
locally on the entire deflected mode shape. Shen et al.29 expanded
on this previous study and explored the effect of varying the
clamping condition—which exerts a strong effect on the dynamic
response due to non-locality of the flow—and provided simple
formulas for flexural resonant frequencies. These zero-aspect-ratio
formulas were connected with corresponding literature results for
large (infinite) aspect ratio, producing general formulas for arbi-
trary aspect ratio that display excellent agreement with indepen-
dent direct numerical simulations. This highlighted deficiencies in
the empirical aspect-ratio correction formulas of Lindholm
et al.13 (based on Pabst27), which are erroneously independent of
the clamp condition. The theoretical models mentioned in this
and the preceding paragraphs consider the hydrodynamic flow to
be inviscid and are, thus, generally restricted to cantilevered plates
of macroscopic size.

In this article, we expand on the study of Shen et al.29 to
rigorously include the effects of fluid viscosity, which is directly
relevant to applications involving small cantilevered plates used
in AFM, MEMS, and NEMS. The theoretical development ini-
tially focuses on cantilevered plates of zero aspect ratio.
Formulas are given for both the resonant frequencies and
Q-factors of flexural modes. We also report high-accuracy
finite-element-method simulations of the fluid-structure interac-
tion, for zero and finite aspect ratio, to benchmark the developed
theory. These results highlight the validity of the developed
theory for zero aspect ratio and arbitrary mode number. In con-
trast, the small viscosity theory of Atkinson and Manrique de
Lara28 is found to be relatively inaccurate for the numerical
range studied; a potential reason of which is discussed. A com-
parison is also made to the existing theory for large aspect

ratio.18,30 These comparisons to finite-element-method simula-
tions show that the zero and large aspect ratio theories can be
used together to characterize the resonant response for cantile-
vered plates of arbitrary aspect ratio.

II. THEORY FOR ZERO-ASPECT-RATIO CANTILEVERED
PLATES

We begin by explicating the principal assumptions of the
present analysis. A cantilevered plate of rectangular plan view
geometry with length L, width b, and thickness h is studied.
The plate thickness is infinitesimally small relative to both its
width and length, i.e., h=b, h=L ! 0. In this section, we consider
the zero-aspect-ratio limit only, i.e., b=L ! 0; this restriction is
relaxed in later sections. While Shen et al.29 studied a variety of
clamp conditions, here we focus only on the so-called “line
clamp.” Namely, one edge of the plate of width, b, is clamped
into a thin rigid cylinder (much narrower than the cantilever
length) that is restrained from rotating, while the other plate
edge is free to oscillate at angular frequency, ω. A schematic
illustration of this configuration is given in Fig. 1. A Cartesian
coordinate system is used such that the undeflected cantilevered
plate lies in the x–y plane, with the clamped end at x ¼ �L=2
and the free end at x ¼ L=2; its origin is at the center-of-mass
of the plate.

As for slender cantilevered beams considered by Sader,18 only
the flexural modes of oscillation are studied here. Specifically, the
cantilever displacement is independent of the y-coordinate. The
vibration amplitude of the cantilevered plate is assumed to be infin-
itesimally small relative to all plate dimensions. As such, plate
deformation obeys the small defection theory of thin plates,31 and
the flow generated by such a mechanical structure is governed by
the linearized Navier–Stokes equations.32 The viscous fluid sur-
rounding the cantilevered plate is unbounded and considered to be
incompressible, i.e., all wave effects in the fluid are ignored, which
is a valid approximation provided the mode number is not too
large.24

FIG. 1. Schematic illustration of a rectangular cantilevered plate with a “line
clamp,” i.e., a rigid rod whose thickness is far smaller than the plate length. The
Cartesian coordinate system used in the analysis is as indicated, with its origin
at the center-of-mass of the plate.
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A. Governing equations

For a thin elastic plate of zero aspect ratio, i.e., L=b ! 0,
its dynamic deflection function, w(x, t), in the z-direction, is
governed by31

D
@4w
@x4

þ ρch
@2w
@t2

¼ P, (1)

where D ; Eh3=(12[1� ν2]) is the flexural rigidity of the plate, E
is its Young’s modulus, ν is its Poisson’s ratio, ρc is its mass
density, t is time, and P is the applied force per unit area in the
z-direction; see Fig. 1 for the Cartesian coordinate system. The
associated boundary conditions are

w � L
2
, t

� �
¼ @w

@x

����
x¼�L

2

¼ @2w
@x2

����
x¼L

2

¼ @3w
@x3

����
x¼L

2

¼ 0: (2)

Motion of the plate drives a two-dimensional flow, in the
(x, z)-plane, in the viscous fluid that surrounds it. This flow is gov-
erned by the linearized incompressible Navier–Stokes equations,32

∇ � u ¼ 0, ρ
@u
@t

¼ �∇ pþ μ∇2u, (3)

where u(x, z, t) is the velocity field, p(x, z, t) is the hydrodynamic
pressure field, ρ is the fluid density, and μ is the shear viscosity of
the fluid. Its associated boundary conditions are no-slip at the plate
surface with vanishing flow far from the plate. Moreover, the force
per unit area, P, experienced by the plate is related to the hydrody-
namic pressure, p, by

P(x, t) ¼ p(x, 0�, t)� p(x, 0þ, t) ¼ �2 p(x, 0þ, t), (4)

by symmetry of the flow. This closes the problem with the above
equations defining a coupled fluid–structure interaction problem
for the cantilevered plate immersed in an unbounded viscous
fluid.

Due to linearity of the governing equations, we utilize the
time ansatz,

X(t) ¼ �X(ω)e�iωt , ω [ C, (5)

for all dependent variables, where X(t) is a generic function of time
and i is the imaginary unit. Complex-valued frequencies, ω, are
used to account for conservative (real) and dissipative (imaginary)
effects. The superfluous bar symbol in Eq. (5) will be omitted,
henceforth, for simplicity, with all time-dependent variables refer-
ring to their frequency-domain forms.

Next, we non-dimensionalize the governing equations. The
cantilever displacement is scaled by the oscillation amplitude at its
free end, a ; w(L=2); the spatial coordinates are scaled by the can-
tilever length, L; time is scaled by ω�1; the fluid velocity is scaled
by aω; and the hydrodynamic pressure is scaled by the inertial

scale, aρω2L. Equations (1) and (2) then become

d4w
dx4

�Ω2w ¼ ΛΩ2P, (6a)

w � 1
2

� �
¼ w0 � 1

2

� �
¼ w00 1

2

� �
¼ w000 1

2

� �
¼ 0 (6b)

where

Ω ; ωL2
ffiffiffiffiffiffiffi
ρch
D

r
, Λ ;

ρL
ρch

, (7)

are (i) the dimensionless oscillation frequency [scaled by a natural
plate frequency; see Eq. (13)] and (ii) the added mass parameter
that specifies the strength of the hydrodynamic load (scaled by
the inertial load of the plate), respectively. Similarly, Eq. (3)
becomes

∇ � u ¼ 0, �iu ¼ �∇ pþ 1
β
∇2u, (8)

with the oscillatory Reynolds number,

β ;
ρωL2

μ
: (9)

Henceforth, all variables refer to their dimensionless frequency-
domain forms, unless otherwise specified.

1. Basis modes for the cantilevered plate

The eigenvalue problem corresponding to Eq. (6a) is

d4Φn

dx4
� C4

nΦn ¼ 0, (10)

with identical boundary conditions to Eq. (6b), where Φn is the nth
eigenmode,18

Φn(x) ¼ cos Cn x þ 1
2

� �� �
� cosh Cn x þ 1

2

� �� �
þ cosCn þ coshCn

sinCn þ sinhCn

� sinh Cn x þ 1
2

� �� �
� sin Cn x þ 1

2

� �� �� 	
, ð11Þ

whose eigenvalue, Cn, is given by the nth positive root of

cosCn coshCn ¼ �1: (12)

These eigenmodes form a complete and orthonormal basis set, i.e.,Ð 1
2

�1
2
ΦjΦkdx ¼ δ jk, where δ jk is the Kronecker delta function. They

are used in Sec. II B 1 to generally represent the deflection function,
w, in the presence of fluid loading.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 133, 034501 (2023); doi: 10.1063/5.0120736 133, 034501-3

Published under an exclusive license by AIP Publishing

 09 O
ctober 2023 17:49:51

https://aip.scitation.org/journal/jap


The basis function, Φn, corresponds to the nth resonant mode
of the cantilevered plate in the absence of fluid, i.e., in vacuum,
whose (dimensional) resonant frequency is

ωvac,n ¼ C2
n

L2

ffiffiffiffiffiffiffi
D
ρch

s
: (13)

B. Two-dimensional flow field of the surrounding
fluid

Next, we calculate the non-local hydrodynamic load experi-
enced by the zero-aspect-ratio cantilevered plate immersed in a
viscous fluid; due to the two-dimensional nature of the flow in
the (x, z)-plane, this load is independent of the y-coordinate.

1. Basis flow expansion

To construct the flow field produced by the moving
cantilevered plate, we employ the approach of van Eysden and
Sader.22 This utilizes the three-dimensional basis flow generated
above an infinite solid surface executing normal harmonic
oscillations in both x and y-directions at a frequency of ω, as
per Eq. (5). The (dimensionless) displacement function of this
surface is

Z(x, y) ¼ eiλxeiκy , (14)

where λ and κ are wave numbers in x- and y-directions,
respectively. The corresponding solution to Eq. (8) for this basis
flow is reported in Ref. 22, where the κ ! 0 limit is taken to
obtain the required two-dimensional base flow in the
(x, z)-plane. The velocity and pressure fields produced by the
cantilevered plate can then be determined from this basis flow
using the principle of linear superposition. First, the
z-component of the velocity field, uz , and the pressure field, p,
are constructed, giving

uz(x, z)¼�i lim
κ!0

ð1
0
[χ(λ jκ, β)cos(λx)þψ(λ jκ, β)sin(λx)]

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ κ2

p
e�z

ffiffiffiffiffiffiffiffiffiffi
λ2þκ2

p
� λ2 þ κ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ κ2 � iβ
p e�z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2þκ2�iβ

p !
dλ,

(15a)

p(x, z)¼� lim
κ!0

ð1
0
[χ(λ jκ, β)cos(λx)

þψ(λ jκ, β)sin(λx)]e�z
ffiffiffiffiffiffiffiffiffiffi
κ2þλ2

p
dλ, (15b)

where the kernel functions, χ(λ jκ, β) and ψ(λ jκ, β), are to be
determined from the boundary conditions; y-independence of
this two-dimensional flow is imposed by the limit, κ ! 0.

Boundary conditions are specified at the plate surface, z ¼ 0,22

by

uz(x, 0) ¼ �iw, jxj � 1
2
, (16a)

p(x, 0) ¼ 0, jxj . 1
2
, (16b)

with the flow vanishing far from the plate. As foreshadowed in
Sec. II A 1, the deflection function of the cantilevered plate, w,
under hydrodynamic loading can be constructed using the general
expansion,

w(x) ¼
XN
k¼1

akΦk(x), (17)

where the coefficients, ak, are to be determined from the fluid–
structure interaction, and the number of terms, N , is to be
increased systematically to achieve convergence.

2. Evaluation of kernel functions

Substituting Eqs. (15) and (17) into Eq. (16) gives

lim
κ!0

ð1
0
χk(λ jκ, β)cos(λx)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ κ2

p
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ κ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ κ2 � iβ

p
 !

dλ ¼ Φkeven(x) ð18aÞ

lim
κ!0

ð1
0
ψk(λ jκ, β)sin(λx)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ κ2

p
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ κ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ κ2 � iβ

p
 !

dλ ¼ Φkodd(x) ð18bÞ

for jxj � 1=2, and

ð1
0
χk(λ jκ, β)cos(λx)dλ ¼

ð1
0
ψk(λ jκ, β)sin(λx) dλ ¼ 0, jxj. 1

2
,

(19)

where we have introduced the even and odd components of the
eigenmodes,

Φkeven(x) ;
1
2
Φk(x)þΦk(� x)½ �,

Φkodd(x);
1
2
Φk(x)�Φk(� x)½ �:

(20)

The two sets of decomposed kernel functions, χk(λ jκ, β) and
ψk(λ jκ, β), are defined in accordance to Eq. (17),
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χ(λ jκ, β) ¼
XN
k¼1

akχk(λ jκ, β),

ψ(λ jκ, β) ¼
XN
k¼1

akψk(λ jκ, β):
(21)

To evaluate χk and ψk, we use the ansatz,
17,22

χk(λ jκ, β) ¼
XM
m¼1

bm,kJ2m�2
λ

2

� �
,

ψk(λ jκ, β) ¼
XM
m¼1

cm,kJ2m�1
λ

2

� �
,

(22)

where M is the series truncation number and Jν is the Bessel func-
tion of the first kind of order ν, whereas bm,k and cm,k are coeffi-
cients to be determined from Eq. (18) that implicitly depend on the
oscillatory Reynolds number, β. Equation (22) ensures satisfaction
of Eq. (19),33 and the pressure distribution exhibits the required
square root singularities at the plate edges, jxj ¼ 1=2. This behavior
is readily observed by substituting Eq. (22) into Eq. (15b), yielding
the following expression for the pressure on the upper surface of
the plate,

p(x, 0þ) ¼ �
XN
k¼1

akHk(x), (23)

with

Hk(x) ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2

p
XM
m¼1

bm,kT2m�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2

p
 �
þ 2cm,k x U2m�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2

p
 �h i
, (24)

where Tm and Um are Chebyshev polynomials of the first and
second kinds of order m, respectively; the dependence on the oscil-
latory Reynolds number, β, is implicit through the coefficients, bm,k

and cm,k.
Note that this singular behavior in the pressure at the plate

edges, jxj ¼ 1=2, does not occur for the inviscid flow (where the
pressure is zero at jxj ¼ 1=2). Thus, an alternate ansatz to Eq. (22)
is needed for the inviscid solution. An exact solution for the invis-
cid flow that uses the above approach with such an alternate ansatz
is given in Appendix A; it provides a different, but equivalent, solu-
tion to that reported in Ref. 29.

Substituting Eq. (22) into Eq. (18) and the expanding the
resulting equations in power series in x generates the following
systems of linear equations for the coefficients bm,k and cm,k,

XM
m¼1

Bq,mbm,k ¼ (�1)q�1 d
2q�2

dx2q�2
Φkeven(x)

����
x¼0

, (25a)

XM
m¼1

Cq,mcm,k ¼ (�1)q�1 d
2q�1

dx2q�1
Φkodd(x)

����
x¼0

, (25b)

where q ¼ 1, 2, . . . , M, and k ¼ 1, 2, . . . , N [see Eq. (21)]; the
coefficients, Bq,m and Cq,m, are improper integrals that can be speci-
fied in terms of Meijer G-functions,

Bq,m ¼ � 42q�1ffiffiffi
π

p lim
κ!0

G2,1
1,3

κ2

16

3
2

0, qþm� 1, q�mþ 1

����
� �

� 24q�1ffiffiffi
π

p G2,1
1,3

�iβ
16

1
2

0, qþm� 1, q�mþ 1

����
� �

, (26a)

Cq,m ¼ � 42qffiffiffi
π

p lim
κ!0

G2,1
1,3

κ2

16

3
2

0, qþm, q�mþ 1

����
� �

� 24qþ1ffiffiffi
π

p G2,1
1,3

�iβ
16

1
2

0, qþm, q�mþ 1

����
� �

: (26b)

A derivation of these results is given in Appendix B. The limits in
Eq. (26) can be evaluated to give

Bq,m ¼ 24q�1 Γ(mþ q� 1)
Γ(m� q)

� 1ffiffiffi
π

p G2,1
1,3

�iβ
16

1
2

0, qþm� 1, q�mþ 1

����
� �� �

, (27a)

Cq,m ¼ 24qþ1 Γ(mþ q)
Γ(m� q)

� 1ffiffiffi
π

p G2,1
1,3

�iβ
16

1
2

0, qþm, q�mþ 1

����
� �� �

, (27b)
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where Γ here refers to the Gamma function (not the hydrodynamic
function).

Solving the independent linear systems in Eq. (25) for the
coefficients, bm,k and cm,k, substituting those solutions into Eq. (22)
and subsequently into Eqs. (15) and (21), gives the required results
for the velocity and pressure fields.

C. Frequency response of the cantilevered plate

It follows from Eqs. (4), (6a), (7), (13), and (23) that the reso-
nant response of the nth mode of the cantilevered plate is charac-
terized by two dimensionless parameters,

�βn ¼
ρωvac,nL2

μ
, Λ ¼ ρL

ρch
, (28)

where �βn is the normalized Reynolds number of mode n, specifying
the relative magnitude of inertial to viscous forces in the fluid; and
Λ is the ratio of fluid-to-solid inertia defined in Eq. (7), which dic-
tates the relative strength of fluid loading.

Substituting Eqs. (4) and (17) into Eq. (6a), while using
Eq. (10) and the orthonormality of Φj, gives

XN
k¼1

ak
C4
k

C4
n
� Ω2

n

� �
δ jk � 2Ω2

nΛ

ð1
2

�1
2

Φ jHk dx

" #
¼ 0, (29)

for n, j ¼ 1, 2, . . . , N , and

Ωn ;
ωn

ωvac,n
, (30)

where ωn is the (dimensional) complex resonant frequency in fluid
of mode n. Note that the oscillatory Reynolds number, β, is recov-
ered from the expression, β ; Ωn

�βn.
The eigenvalue problem in Eq. (29) is to be solved for a spe-

cific normalized Reynolds number, �βn, and added mass parameter,
Λ. The resulting coefficients, ak, specify the deflection function of
the nth mode of the cantilevered plate in fluid and its hydrody-
namic pressure distribution via Eqs. (17) and (23), respectively.

The required (real-valued) angular resonant frequency, ωR,n,
and corresponding quality factor, Qn, of mode n are then given by34

ωR,n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
r,n þ ω2

i,n

q
, Qn ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
r,n þ ω2

i,n

q
2ωi,n

, (31)

where ωr,n and ωi,n are the real and imaginary parts of ωn, respec-
tively. These formulas specify the frequency response of the cantile-
vered plate. They are derived under the assumption of small
dissipation, i.e., Qn � 1, where the hydrodynamic load of each
mode is insensitive to frequency.

D. Hydrodynamic function

The effect of fluid loading on the frequency response of canti-
levered beams and plates is often characterized by the (complex-

valued) hydrodynamic function, Γ ¼ Γr þ iΓi,
5,18 such that

ωR,n

ωvac,n
¼ 1þ πρb

4ρch
Γr(ωR,n, n)

� ��1
2

, Qn ¼
4ρch
πρb þ Γr(ωR,n, n)

Γi(ωR,n, n)
:

(32)

In the large aspect ratio limit, L=b � 1, explicit expressions
for Γ ¼ Γlarge are reported in Refs. 5 and 18; the effect of finite
plate thickness is discussed in Ref. 30. For the opposite limit of
small aspect ratio, L=b � 1, it follows from Eq. (29) that

Γ ¼ Γsmall ;
4L
πb

αsmall,
L
b
� 1, (33)

where αsmall is an order one function, henceforth termed the
“rescaled hydrodynamic function,” that depends on the added
mass parameter, Λ. The superscripts “small” and “large” are used
to delineate different regimes in aspect ratio, L=b.

Numerically, the real and imaginary parts of αsmall for each
mode number, n, are computed using Eqs. (30)–(33), giving

αsmall
r ¼ jΩnj�2 � 1

Λ
, αsmall

i ¼ � 2 Im{Ωn}

Λ jΩnj3
, (34)

where Ωn is obtained by solving the eigenvalue problem, Eq. (29).
Additionally, in the large mode number limit, n � 1,5,17,22

Γ ;
4L
πb

α ¼ 8L
πCnb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
n � iβ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
n � iβ

p � Cn
, n � L

b
, (35)

regardless of the aspect ratio, L=b, where α is defined in an identi-
cal manner to αsmall in Eq. (33). A comparison of Eq. (35) to the
solution for arbitrary mode number in Eq. (34), is given in Sec. SM
1 of the supplementary material.

In the next section, we present numerical results arising from
implementation of the zero-aspect-ratio theory developed above.
This theory is validated using high accuracy finite-element-method
simulations of the fluid-structure problem, and a detailed compari-
son with the small viscosity theory of Atkinson and Manrique de
Lara28 is reported.

III. NUMERICAL RESULTS FOR ZERO ASPECT RATIO

The theory in Sec. II C is implemented in mathematica. The
number of terms, M, in Eq. (22) and the number of eigenmodes, N ,
in Eq. (17)—that are required to achieve convergence greater than
99.9% in Ωn—increase systematically with Reynolds number, β, and
mode number, n, respectively. We find that N ¼ 10 and M ¼ 20,
together with a tolerance of 10�7 for computing jΩnj from Eq. (29),
gives the required accuracy for n � 8 and β , 3000. Implementation
at larger values of β is limited by computational constraints.

A. Rescaled hydrodynamic function

The effects of fluid loading on a cantilevered plate of zero
aspect ratio are described by the rescaled hydrodynamic function,
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αsmall; see Eq. (33). Accurate numerical values for the fundamental
mode, i.e., n ¼ 1, over a wide range of the normalized Reynolds
number, �βn, and added mass parameter, Λ, are reported in Table I.
These results are compared to the small-Λ asymptotic formula for
αsmall in Appendix C. Numerical results for the next two higher-
order modes, i.e., n ¼ 2, 3, are provided in Sec. SM 2 of the
supplementary material. Numerical solutions are populated only
for parameters that produce a large quality factor, i.e, Qn . 1, to
ensure validity of the theory in Sec. II C.

To explore these results, Fig. 2 gives the real and imaginary
components of αsmall as a function of Λ and �βn for the first two
modes, n ¼ 1, 2. The effect of fluid viscosity, characterized by the
normalized Reynolds number, �βn, is similar to that reported for
large aspect ratio beams.5,18,22 Namely, increasing �βn reduces the
viscous penetration depth, δ � 1=

ffiffiffi
β

p
—the length scale for vorticity

diffusion—which produces a monotonic decrease in both real and
imaginary components of αsmall, i.e., both inertial and viscous
effects are diminished. However, the effect of varying the strength
of fluid loading, Λ, is markedly different for zero and large aspect
ratio plates, which we discuss next.

While the hydrodynamic function, Γlarge, in the large aspect
ratio limit is not affected by the fluid loading strength at fixed oscilla-
tion frequency, i.e., constant β, the same is not true of the rescaled
hydrodynamic function, αsmall, for zero aspect ratio. The underlying
mechanism for this difference in behavior is that (i) the hydrodynamic

load for large aspect ratio depends locally on the spatial position, x,
while (ii) for zero aspect ratio, this load exhibits a non-local depen-
dence on this position. This non-local dependence can result in modi-
fication of the resonant mode shapes of the cantilevered plate as the
strength of fluid loading varies, altering the hydrodynamic function;
this effect on the mode shapes is discussed in Sec. III B. For large
aspect ratios, locality of the hydrodynamic load produces resonant
mode shapes that are independent of fluid loading.5,18

In addition to this mode shape change, the hydrodynamic load
in a viscous fluid depends on β due to frequency dependence of the
viscous penetration depth. Increasing the strength of fluid loading,
Λ, enhances the inertial load experienced by the cantilevered plate,
which lowers its resonant frequency—increasing the viscous penetra-
tion depth and thus the dimensionless hydrodynamic pressure. This
is illustrated in Fig. 3, which shows that the dimensionless pressure
distribution, P(x), is enhanced by increasing the strength of fluid
loading, Λ. Figure 3 also shows that the pressure distribution
approaches the inviscid limit as �βn increases, except near the
clamped and free ends of the plate, i.e., x ¼ �1=2 and 1=2, respec-
tively, where square root singularities exist; see Eq. (23).

Figure 2, thus, demonstrates that the effect of mode shape
change is most prevalent in the rescaled hydrodynamic function
at small Λ and high �βn. For example, see the viscous result for
�β2 ¼ 1000 in Fig. 2(b) that follows the decreasing trend of the invis-
cid result with increasing Λ (affected by mode shape change only).29

TABLE I. Rescaled hydrodynamic function, αsmall, for the fundamental mode, n = 1, as a function of normalized Reynolds number �β1, and added mass parameter, Λ. (a) Real
component and (b) imaginary component.

log 10Λ

log10 �β1 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

(a) 3 0.722 949 0.723 016 0.723 256 0.723 946 0.726 085 0.732 440 0.749 075 0.784 680 0.846 398 0.941 224 1.082 65
2.5 0.828 391 0.828 535 0.828 988 0.830 410 0.834 803 0.847 764 0.881 908 0.955 773 1.086 87 1.298 39 1.641 44
2 1.006 37 1.006 70 1.007 73 1.010 98 1.021 04 1.050 90 1.130 62 1.307 39 1.637 54 2.231 41
1.5 1.309 13 1.309 98 1.312 66 1.321 10 1.347 41 1.427 20 1.650 66 2.188 97
1 1.829 09 1.831 60 1.839 54 1.864 77 1.945 58 2.210 27 3.094 74
0.5 2.741 61 2.750 15 2.777 46 2.866 72 3.180 88 4.569 03
0 4.408 51 4.441 92 4.551 97 4.950 40 7.023 55

−0.5 7.644 06 7.792 70 8.340 20 11.4357
−1 14.4300 15.2192 20.0151
−1.5 29.9801 37.5995
−2 74.8036

(b) 3 0.144 042 0.144 122 0.144 348 0.144 970 0.147 005 0.153 003 0.169 122 0.205 328 0.272 284 0.383 021 0.562 562
2.5 0.258 542 0.258 695 0.259 179 0.260 699 0.265 412 0.279 462 0.317 500 0.404 308 0.570 720 0.865 278 1.394 05
2 0.487 117 0.487 524 0.488 808 0.492 847 0.505 406 0.543 174 0.647 446 0.894 246 1.400 18 2.407 64
1.5 0.982 045 0.983 291 0.987 229 0.999 649 1.038 60 1.158 52 1.507 38 2.408 54
1 2.155 91 2.160 34 2.174 38 2.218 99 2.362 27 2.834 45 4.436 64
0.5 5.187 00 5.205 15 5.263 06 5.451 23 6.101 11 8.828 67
0 13.5424 13.6272 13.9032 14.8650 19.3368

−0.5 37.6400 38.0912 39.6571 47.0937
−1 109.343 112.153 125.276
−1.5 328.623 353.502
−2 1034.19
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The effect of viscosity on the rescaled hydrodynamic function domi-
nates the opposite limit of large Λ and small �βn, inducing an increase
in the rescaled hydrodynamic function (for reasons discussed in the
previous paragraph). Note that the n ¼ 1 mode shape is insensitive
to fluid loading relative to the higher order modes; see Fig. 4.

B. Normalized deflection functions

Figure 4 illustrates the effect of hydrodynamic loading on the
deflection function (mode shape), w(x), of a cantilevered sheet of
zero aspect ratio, for modes n ¼ 1, 2 and 3. Results are given as a
function of the added mass parameter, Λ, and normalized Reynolds
number, �βn. These data show that the deflection function of the fun-
damental mode (n ¼ 1), normalized by jw(1=2)j, is relatively insen-
sitive to fluid loading in comparison to the higher order modes,

n ¼ 2 and 3. Increasing the effects of viscosity (i.e., decreasing �βn)
or the strength of fluid loading (i.e., increasing Λ) is observed to
enhance the effect of the fluid surrounding the cantilevered plate.

C. Viscous theory of Atkinson and Manrique de Lara28

Atkinson and Manrique de Lara28 developed a theory for the
fluid-structure interaction of a zero-aspect-ratio cantilevered plate
immersed in an invsicid fluid and proposed a correction to account
for the effect of small viscosity, i.e., β � 1. Specifically, they
assumed that the hydrodynamic pressure load, P(x), experienced
by the cantilevered plate could be expanded in powers of 1=

ffiffiffi
β

p
,

which was solved using the Wiener–Hopf method. For the present
problem, this approach gives [see Sec. SM 3 of the supplementary
material for its derivation]

FIG. 2. Real and imaginary parts of the rescaled hydrodynamic functions, αsmall , for the first two resonant modes as a function of the added mass parameter, Λ. (a) and
(c) are the real, αsmall

r , and imaginary, αsmall
i , parts respectively, for n ¼ 1; (b) and (d) for n ¼ 2. Results are given for normalized Reynolds number,

�βn ¼ 10, 100, and 1000, for both modes. In (a) and (b), αsmall
r is also compared to the inviscid results (dashed curves), corresponding to �βn ! 1.
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P(x) ¼ Pinv(x)þ
ffiffiffi
2
β

r
(1þ i)

D0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2x

p þ D1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x

p
� �

, (36)

where29

Pinv(x)¼�2
π

ð1
2

�1
2

w(ξ) log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�2x)(1þ2ξ)

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�2ξ)(1þ2x)

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�2x)(1þ2ξ)

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�2ξ)(1þ2x)

p
����

����dξ
(37)

and

D0 ¼ 2
π

ð1
2

�1
2

w(ξ)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ξ
1þ 2ξ

s
dξ, D1 ¼ 2

π

ð1
2

�1
2

w(ξ)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ξ
1� 2ξ

s
dξ:

(38)

The resonant frequencies and quality factors of the cantile-
vered plate follow analogously from the analysis in Sec. II C.

FIG. 3. Dimensionless pressure distribution, P(x)—according to Eqs. (4) and (23)—experienced by the cantilevered plate for the first two modes, n ¼ 1, 2. The mode
shapes, w(x), are scaled such that jw(1=2)j ¼ 1. (a) and (b) Real part of the pressure for increasing normalized Reynolds number �βn ¼ 25, 158, and 1000, at a constant
added mass parameter, Λ ¼ 10. Dashed lines are the inviscid solution (β ! 1). (c) and (d) Magnitude of P(x) at constant �βn ¼ 1000, for increasing
Λ ¼ 0:01, 1, and 100, corresponding to light, medium, and heavy fluid load conditions, respectively.
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D. Comparison to finite-element-method simulations

The finite element (FE) method is implemented using the
eigenfrequency solver of the commercial software, COMSOL
Multiphysics, to generate independent and high accuracy numerical
solutions. Deformation of the cantilevered plate is modeled using
Navier’s equation for an elastic solid, while motion of the sur-
rounding fluid is specified by Eq. (8). The usual conditions of stress
and velocity continuity are imposed at the interface between the
fluid and solid domains. The plate thickness is systemically reduced
to recover the thin plate assumption of the theoretical model in
Sec. II; a thickness-to-length ratio of 0.01 is used for the results that
follow. The FE mesh and fluid domain boundary are systematically
refined to achieve the unbounded flow domain assumption, while
reaching a convergence of at least 99.9% in the resonant frequencies
and 99% in the quality factors.

Figure 5 shows a comparison of the complementary theories
of Sec. II and Atkinson and Manrique de Lara28 to independent

numerical results of the two-dimensional FE method; data are
shown for the fundamental mode, n ¼ 1. Results are given as a
function of the normalized Reynolds number, �β1, for an added
mass parameter of Λ ¼ 0:001 and 1, corresponding to light fluid
loading (e.g., for a gas) and heavy fluid loading (e.g., for a liquid),
respectively. In all cases, the present theory in Sec. II precisely
matches the independent results of the FE method, whereas the
theory of Atkinson and Manrique de Lara28 significantly underesti-
mates the FE results. This difference is likely due to invalidity of
the thin boundary layer assumption used in Ref. 28 near the plate
edges at jxj ¼ 1=2, where a local Stokes flow can induce
non-algebraic corrections to the large-β asymptotic solution of
Sec. III C. This is consistent with the observation that the Atkinson
and Manrique de Lara theory does approach the present theory
and FE method results as �β1 increases, albeit slowly. Computational
limitations restrict our ability to make a comparison at larger
values of �β1.

FIG. 4. Mode shapes of a cantilevered plate of zero aspect ratio, for n ¼ 1, 2, and 3, showing the effect of fluid immersion. Magnitude of deflection functions, jwj, for (a)–
(c) normalized Reynolds numbers, �βn ¼ 100, 1000, and 1 (inviscid flow) at fixed added mass parameter Λ ¼ 10, and (d)–( f ) increasing added mass parameter,
Λ ¼ 0, 1, and 100 at fixed �βn ¼ 1000. Mode shapes are normalized to unity at the free end of the cantilevered plate, x ¼ 1=2.
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IV. NUMERICAL RESULTS FOR ARBITRARY ASPECT
RATIO

In this section, the FE method simulations are extended to the
three-dimensional case of a cantilevered plate of finite aspect ratio,
L=b, oscillating in its flexural modes. Again, a thickness-to-length
ratio of h=L ¼ 0:01 is used throughout, and the FE mesh and flow
domain are systematically refined to achieve identical convergence
to that of two-dimensional simulations. Numerical results are com-
puted for aspect ratios ranging from L=b ¼ 0:1–20 by fixing the
cantilever length and reducing its width. This leads to a systematic
degradation of the thin plate assumption as the aspect ratio
increases, with a thickness-to-width ratio of h=b ¼ 0:2 for the

largest aspect ratio. These numerical results are used to benchmark
the range of validity of the small (zero) aspect ratio theory in
Sec. II. Comparison is also made with the large (infinite) aspect
ratio theory of Sader,18 where the hydrodynamic function for finite
thickness-to-width ratio reported in Table 1 of Brumley et al.30 is
used in Eq. (32).

Figure 6 gives corresponding results for the resonant fre-
quency, ωR,n, and quality factor, Qn, of the first two modes, n ¼ 1
and 2, as a function of the plate aspect ratio, L=b. The added mass
parameter used in Fig. 6 is varied to span the values typically
encountered in practice,5,18 i.e., Λ ¼ 0:01, 0:1, and 1, representing
light, medium, and heavy fluid loading. Results are presented for
fixed �βn, which aligns with the fixed cantilever length, L, used in

FIG. 5. Real and imaginary parts of the rescaled hydrodynamic function, αsmall—denoted by subscripts r and i—for the fundamental mode (n ¼ 1), as a function of the
normalized Reynolds number, �β1. Present theory of Sec. II (solid lines); theory of Atkinson and Manrique de Lara28(dashed lines); and independent two-dimensional FE
method simulations (open circles). (a) and (c) Light fluid loading, Λ ¼ 0:001 (e.g., for a gas); (b) and (d) heavy fluid loading, Λ ¼ 1 (e.g., for a liquid).
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simulations, mimicking experiments conducted under a similar sce-
nario where the plate thickness, length, material, and fluid proper-
ties are fixed and the plate width is varied.

The asymptotic theories for small and large aspect ratios,
mentioned above, accurately predict the FE numerical results in
their respective regimes and to an aspect ratio of approximately
one. The discrepancy between the large aspect ratio asymptotic
theory and the FE method in Fig. 6(a) is due to the quality factor
being approximately one [Fig. 6(c)], which is the threshold of valid-
ity for the eigenfrequency analysis; see discussion following
Eq. (31) and Sec. III A.34 The decrease in quality factor with
increasing aspect ratio, L=b, observed in Figs. 6(c) and 6(d), is due
to the width, b, being reduced at fixed length, L, in FE method
simulations.

Figure 7 gives results analogous to Fig. 6, but where the canti-
lever length is first reduced, then its width varied to adjust the
aspect ratio (still at a fixed thickness-to-length ratio of 0.01), which
increases �βn; results are given only for Λ ¼ 0:1 and n ¼ 1 for sim-
plicity. Again, a good agreement is observed between the
zero-aspect-ratio theory of Sec. II and FE method results, even up
to an aspect ratio of approximately one; similar agreement is
observed for the large aspect ratio theory of Refs. 18 and 30.
Together with Fig. 6, these results demonstrate that the
zero-aspect-ratio theory reported in this study accurately captures
the true dynamics of a cantilevered plate of small aspect ratio, as its
size and dimensions are varied. It is also generally observed that
reducing the aspect ratio L=b enhances the Q-factors up to a limit-
ing value, confirming recent numerical findings of Gesing et al.26

FIG. 6. (a) and (b) Change in resonant frequency, ωR,n, relative to the frequency in vacuum, ωvac,n; and (c) and (d) quality factor, Qn; for the first two modes, n ¼ 1 and
2, as a function of aspect ratio, L=b. The rescaled Reynolds number is fixed at �β1 ¼ 100, while the added mass parameter is varied, Λ ¼ 0:01, 0:1, and 1. FE method
results (open circles); zero-aspect-ratio theory of Sec. II (solid lines); and large (infinite) aspect ratio theory of Refs. 18 and 30 (dashed lines).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 133, 034501 (2023); doi: 10.1063/5.0120736 133, 034501-12

Published under an exclusive license by AIP Publishing

 09 O
ctober 2023 17:49:51

https://aip.scitation.org/journal/jap


V. CONCLUSIONS

An exact analytical theory has been developed for the dynamic
response of a cantilevered plate of zero aspect ratio that is immersed
in a viscous fluid. The cantilevered plate was line clamped, and its res-
onant flexural oscillations were considered. The present theory was
compared to that of Atkinson and Manrique de Lara,28 developed in
the small viscosity limit, where significant differences were observed.
The relative accuracy of these complementary theories was clarified
using high accuracy two-dimensional FE method simulations of this
fluid-structure interaction, which were found to coincide with the
present theory. The origin of the discrepancy between these theories is
likely due to the thin viscous-penetration-depth assumption used in
Ref. 28, which cannot hold near the (sharp) edges of the plate.

FE method simulations were also performed for cantilevered
plates of finite aspect ratio. These three-dimensional simulations were
used to assess the range of validity of the present theory, as a function
of aspect ratio. It was observed that the present theory for zero aspect
ratio exhibits good accuracy as the aspect ratio is varied, up to a value
of approximately one. Similar behavior was found for the existing
large aspect ratio theory,18,30 as has been reported previously.19 This
shows that the dynamic response of cantilevers of finite aspect ratio
can be well estimated by combining theories for zero and large aspect
ratio. The findings of this study are expected to be of practical value in
cantilever sensor design and application.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional numerical
results and derivation of Eq. (36).
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APPENDIX A: ALTERNATE SOLUTION FOR THE
INVISCID FLOW

In this Appendix, we report an alternate solution to that of
Ref. 29 for the resonant frequencies of a zero-aspect-ratio cantile-
vered plate immersed in an inviscid fluid. This solution is based on
the approach used for the viscous solution in Secs. II B 1 and II B 2,
employing a slight modification to the ansatz in Eq. (22).

In the inviscid limit, β ! 1, Eq. (15) gives the two-
dimensional potential flow field and pressure distribution generated
by the cantilevered plate,

uz ¼ �i
ð1
0
λ χ(λ)cos(λx)þ ψ(λ)sin(λx)½ �e�λz dλ, (A1a)

FIG. 7. (a) and (b) Change in resonant frequency, ωR,n, relative to the frequency in vacuum, ωvac,n; and (c) and (d) quality factor, Qn; for the first mode, n ¼ 1, as a func-
tion of aspect ratio, L=b. The added mass parameter is fixed at Λ ¼ 0:1 and results given for �β1 ¼ 100, 200, and 500. FE method results (open circles); zero-aspect-ratio
theory of Sec. II (solid lines); and large (infinite) aspect ratio theory of Refs. 18 and 30 (dashed lines).
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p ¼ �
ð1
0
χ(λ)cos(λx)þ ψ(λ)sin(λx)½ �e�zλ dλ, (A1b)

where χ and ψ are again to be determined from the boundary con-
ditions in Eq. (16). In analogy with Eqs. (18) and (19), a pair of
kernels, χk(λ) and ψk(λ), are defined such that

ð1
0
λ χkcos(λx) dλ ¼ Φeven

k (x),
ð1
0
λψksin(λx) dλ ¼ Φodd

k (x) ,

(A2)

for jxj � 1=2, and

ð1
0
χkcos(λx) dλ ¼

ð1
0
ψksin(λx) dλ ¼ 0, jxj . 1

2
, (A3)

with the complete kernels following from Eq. (21).
Unlike the viscous solution, the pressure distribution vanishes

at the edges of the plate. This necessitates use of a different ansatz
for χk(λ) and ψk(λ) to satisfy Eq. (A3),15,17 namely,

χk(λ) ¼
XM
m¼1

bm,k
J2m�1

λ
2

� 
λ

, ψk(λ) ¼
XM
m¼1

cm,k
J2m λ

2

� 
λ

: (A4)

The pressure distribution along the upper surface of the plate is
determined using Eq. (A1b), giving

p(x, 0þ) ¼ �
XN
n¼1

akHk(x), (A5)

where

Hk(x) ¼
XM
m¼1

bm,k

T2m�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2

p
 �
2m� 1

þ cm,k

xU2m�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2

p
 �
m

2
4

3
5:

(A6)

To determine the coefficients bm,k and cm,k, Eqs. (A2)
and (A4) produce

XM
m¼1

bm,k

2T2m�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2

p
 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2

p ¼ Φeven
k (x),

XM
m¼1

cm,k

4xU2m�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2

p
 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2

p ¼ Φodd
k (x),

(A7)

where bm,k and cm,k are specified by the orthogonal property of
Chebyshev polynomials, giving

bm,k ¼ 2
π

ð1
2

�1
2

Φeven
k (x)T2m�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2

p
 �
dx, (A8a)

cm,k ¼ 4
π

ð1
2

�1
2

xΦodd
k (x)U2m�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2

p
 �
dx: (A8b)

The resonant frequencies are solved by substituting pressure distri-
bution, Eq. (A5), into the plate deflection equation, Eq. (1), giving
the required eigenvalue equation,

XN
k¼1

ak
C4
k

C4
n
� Ω2

n

� �
δ jk � 2Ω2

nΛ

ð1
2

�1
2

Φ jHk dx

" #
¼ 0, (A9)

where n, j ¼ 1, 2, . . . , N .

APPENDIX B: IMPROPER INTEGRALS EXPRESSED AS
MEIJER G-FUNCTIONS

Meijer G-functions were used in Ref. 22 to specify the flow
generated by an oscillating plate. The derivation of such functions
is clarified in this Appendix.

Equation (26) originates from two improper integrals,

Bq,m ¼ lim
κ!0

ð1
0
λ2q�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ κ2

p
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ κ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ κ2 � iβ

p
 !

J2m�2
λ

2

� �
dλ,

(B1a)

Cq,m ¼ lim
κ!0

ð1
0
λ2q�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ κ2

p
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ κ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ κ2 � iβ

p
 !

J2m�1
λ

2

� �
dλ:

(B1b)

The modern definition of the G-function is given in Ref. 35 in
terms of a complex contour integral. This is an extension upon
general hypergeometric functions to include most of the known
functions as special cases.36–38 In particular, the following identities
from Ref. 37 are needed to evaluate Eq. (B1),

(1þ x)α ¼ 1
Γ(�α)

G1,1
1,1 x

α þ 1

0

����
� �

, (B2a)

xμJν(x) ¼ 2μG1,0
0,2

x2

4
1
2
(μþ ν),

1
2
(μ� ν)

����
� �

, (B2b)

where Γ is the Gamma function here (not the hydrodynamic func-
tion) and Jν is the Bessel function of the first kind of order ν. A
remarkable property, that makes G-functions important in algorith-
mic definite integral evaluation, is that the family of G-functions is
closed under a wide range of operations.35 Here, we use the absorp-
tion closure under a multiplication by power-laws,

xμGm,n
p,q x

ap
bq

����
� �

¼ Gm,n
p,q x

ap þ μ1p
bq þ μ1q

����
� �

, (B3)

where ap and bq are sequences of numbers of length p and q,
respectively, while 1p is a sequence of ones of length p. We also use

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 133, 034501 (2023); doi: 10.1063/5.0120736 133, 034501-14

Published under an exclusive license by AIP Publishing

 09 O
ctober 2023 17:49:51

https://aip.scitation.org/journal/jap


the following closure under integral convolution:ð1
0
Gm,n

p,q ηx
ap
bq

����
� �

Gμ,ν
σ,τ ωx

cσ
dτ

����
� �

dx

¼ 1
η
Gnþμ,mþν
qþσ,pþτ

ω

η

�b1, . . . , � bm, cσ , � bmþ1, . . . , � bq
�a1, . . . , � an, dτ , � anþ1, . . . , � ap

����
� �

¼ 1
ω
Gmþν,nþμ

pþτ,qþσ
η

ω

a1, . . . , an, �dτ , anþ1, . . . , ap
b1, . . . , bm, �cσ , bmþ1, . . . , bq

����
� �

:

(B4)

The convergence of such integrals is discussed in Refs. 35 and 36.
These closures facilitate the analytic evaluation of the improper
integrals in Eq. (B1), as follows.

For Bq,m, the integral of interest can be decomposed as

Bq,m ¼ lim
κ!0

(i1 þ i2 þ i3), (B5)

where

i1 ¼
ð1
0
λ2q�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ λ2

p
J2m�2

λ

2

� �
dλ, (B6a)

i2 ¼ �κ2
ð1
0

λ2q�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ λ2 � iβ

p J2m�2
λ

2

� �
dλ, (B6b)

i3 ¼ �
ð1
0

λ2qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ λ2 � iβ

p J2m�2
λ

2

� �
dλ: (B6c)

Using Eq. (B2), each of the integrands in i1,2,3 is expressible as the
product of two G-functions; hence, the convolution formula, Eq. (B4),
and the absorption formula, Eq. (B3), give the required results,

i1 ¼ � 42q�1ffiffiffi
π

p G2,1
1,3

κ2

16

3
2

0, qþm� 1, q�mþ 1

����
� �

, (B7a)

i2 ¼ � 24q�5κ2ffiffiffi
π

p G2,1
1,3

κ2 � iβ
16

1
2

0, qþm� 2, q�m

����
� �

, (B7b)

i3 ¼ � 24q�1ffiffiffi
π

p G2,1
1,3

κ2 � iβ
16

1
2

0, qþm� 1, q�mþ 1

����
� �

: (B7c)

Equation (26b) follows directly under transforms, m ↦ mþ 1
2 and

q ↦ qþ 1
2.

APPENDIX C: SMALL STRENGTH OF THE FLUID
LOADING LIMIT

In this Appendix, we derive an asymptotic formula for the
rescaled hydrodynamic function, αsmall, of the fundamental mode
(n ¼ 1), in the small strength of the fluid loading limit, i.e., Λ � 1.

To leading order in small Λ, the mode shape of the cantile-
vered plate in fluid, w(x), can be replaced by the mode shape in
vacuum, i.e., w(x) ↦ Φ(x), i.e., ak ¼ 0 for all k 	 2 in Eqs. (17)
and (23), with Eq. (29) becoming

Ω2
1 ¼ 1þ 2Λ

ð1
2

�1
2

Φ1(x)H1(xjβ) dx
 !�1

, (C1)

where β ¼ Ω1
�β1. Expanding Eq. (C1) in the small parameter, Λ,

gives

Ω1 ¼ 1� Λ

ð1
2

�1
2

Φ1(x)H1(xjβ ¼ �β1) dx þ o(Λ), (C2)

where the series representation of H1(x) in Eq. (24) can now be
evaluated explicitly using Eq. (25) for a given β ¼ �β1. Hence, it
follows from Eq. (34) that

αsmall ¼ 2
ð1

2

�1
2

Φ1(x)H1(xjβ ¼ �β1) dx þ o(1), (C3)

which is independent of Λ. This theoretical prediction is borne out
in the full numerical solution plotted in Fig. 2, where αsmall
asymptotes to a constant value as Λ ! 0 for fixed �β1.

Equation (C3) is compared with the full numerical solution,
Eq. (29), in Table II for small and fixed Λ. While Ω1 ! 1 as
Λ ! 0, i.e., in vacuum, its asymptotic rate of convergence decreases
as �β1 is reduced to small values, at fixed nonzero Λ; with Ω1 ! 0
as �β1 ! 0 for any small but finite Λ, as per Eq. (C1). This property
is borne out in Table II where excellent agreement is observed,
except for the smallest values of �β1.
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