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Cosine Modulated 

Filter Banks

8.0 INTRODUCTION

In Chap. 5 and 6 we considered M channel maximally decimated analy­
sis/synthesis systems, and studied various errors, as well as techniques to 
eliminate these. In particular, we studied the concept of perfect reconstruc­
tion (PR) in detail, and presented techniques to design FIR PR systems.

In this Chapter we will present filter banks based on cosine modulation. 
In these systems, all the M analysis filters are derived from a prototype filter 
P0(z) by cosine modulation. Two outstanding advantages of these systems 
are:

1. The cost of the analysis bank is equal to that of one filter, plus modu- 
lation overhead. The modulation itself can be done by fast techniques 
such as the fast discrete cosine transform (DCT). See, for example, Yip 
and Rao [1987]. The synthesis filters have the same cost as the analysis 
filters.

2. During the design phase, where we optimize the filter coefficients, the 
number of parameters to be optimized is very small because only the 
prototype has to be optimized.
Two classes of such systems will be studied — approximate reconstruc­

tion systems (pseudo QMF) and perfect reconstruction systems.

A. Cosine Modulated Pseudo QMF Banks (Sec. 8.1-8.3)
Prior to the development of perfect reconstruction systems, several au­

thors have developed techniques for designing approximate reconstruction 
systems. These are called the pseudo QMF systems, introduced by Nuss- 
baumer [1981] and developed further by Rothweiler [1983], Chu [1985], Mas- 
son and Picel [1985], and Cox [1986]. In these systems the analysis and 
synthesis filters Hk(z) and Fk(z) are chosen so that only "adjacent-channel 
aliasing" (to be explained below) is canceled, and the distortion function
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T(z) is only approximately a delay. Such approximate systems, called pseudo 
QMF banks, are acceptable in some practical applications.
B. Cosine Modulated Perfect Reconstruction Systems (Sec. 8.5)

More recently, cosine modulated systems with the perfect reconstruction 
property have been developed independently by Malvar [1990b and 1991], 
Ramstad [1991], and Koilpillai and Vaidyanathan [1991a and 1992]. These 
are paraunitary systems. They retain all the simplicity and economy of the 
pseudo QMF system, and yet have the perfect reconstruction property. In 
Sec. 8.4 we study some properties of cosine modulation matrices. These 
are then used in Sec. 8.5 to derive cosine modulated perfect reconstruction 
systems. These two sections can be studied independently of the pseudo QMF 
derivations, with Sections 8.1-8.3 serving only as references.

8.1 THE PSEUDO QMF BANK
In this section we present the theory of pseudo QMF banks. In Sec. 8.2 
and 8.3 we will outline design procedures and structures for these. Readers 
interested only in perfect reconstruction systems can go directly to Sec. 8.4 
(and use sections 8.1-8.3 only as a reference).

8.1.1 Generation of M Real Coefficient Analysis Filters
In Sec. 4.3.2 we saw how a set of M filters can be derived from one prototype 
filter by use of the structure of Fig. 4.3-5(a). In that structure, the filters 
Eℓ(z) represent the Type 1 polyphase components of the prototype filter 
H0(z), and the filters Hk(z) are related to H0(z) as Hk(z) = H0(zWkM), 
where WM = e-j2π/M. This means that the frequency responses Hk(ejω) 
are uniformly shifted versions of the prototype, as demonstrated in Fig. 4.3- 
5(b). Since hk(n) is obtained by exponential modulation of h0(n), (that is, 
hk(n) = h0(n)ej2πkn/M), the coefficients hk(n) are in general complex even 
if h0(n) is real. This means that the output of Hk(z) could be a complex 
signal even if the input x(n) is real.

We now derive a class of filters with real coefficients, by using cosine 
modulation rather than exponential modulation. This can be done by first 
obtaining 2M complex filters using exponential modulation, and then com­
bining appropriate pairs of filters.

Consider Fig. 8.1-1 which is a modification of Fig. 4.3-5(a) (replace M 
with 2M). This is a uniform-DFT analysis bank, with the 2M filters related 
as

354 Chap. 8. Cosine modulated filter banks

(8.1.1)

In this section, unsubscripted W stands for W2M, that is,

(8.1.2)

Also, W is the 2M × 2M DFT matrix.



P0(z) is called the prototype filter. Throughout this chapter, its impulse 
response p0(n) is real so that ∣P0(ejω)∣ is symmetric with respect to ω = 0. 
This filter is typically lowpass, with cutoff frequency π∕2M [Fig. 8.1-2(a)]. 
The polyphase components of P0(z) are Gk(z), 0 ≤ k ≤ 2M - 1.

From (8.1.1) we have

Figure 8.1-1 Generation of 2M uniformly shifted filters from prototype P0(z). 
Here Gm(z), 0 ≤ m ≤ 2M - 1, are the polyphase components of P0(z).

Figure 8.1-2 (a) Magnitude response of the prototype P0(z), and (b) Magnitude 
responses of shifted versions.
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(8.1.3)

that is, the response Pk(ejω) is the right-shifted version of P0(ejω) by an 
amount kπ∕M [Fig. 8.1-2(b)]. From the figure we see that the responses 
∣Pk(ejω)∣ and ∣P2M-k(ejω)∣ are images of each other with respect to zero- 
frequency, so that they are suitable candidates to be combined, to get a real 
coefficient filter. The typical passband width of such a 'combined filter' is 
equal to 2π∕M, which is twice that of P0(z) (which is not combined with 
any other filter).



In order to make all the filter bandwidths equal after combining pairs, we 
use a right-shifted version of the original set of 2M responses [Fig. 8.1-3(a)], 
the amount of right-shift being π∕2M. This is accomplished by replacing z 
with zW0.5 as indicated in Fig. 8.1-3(b). (The quantity z2M is replaced 
with - z2M since WM = WM2M = — 1.) The complex filters Qk(z) are given 
in terms of the prototype P0(z) by

(8.1.4)

The magnitude responses of Qk(z) and Q2M-1-k(z) are now images of each 
other with respect to zero-frequency, that is, ∣Qk(ejω)∣ = |Q2M-1-k(e-jω)|. 
The impulse response coefficients of Qk(z) and Q2M-1-k(z) are conjugates 
of each other, that is,

Figure 8.1-3 Shifting the responses by π∕2M, by replacing z with zW1/2.

Figure 8.1-4 Magnitude response of the kth analysis filter Hk(z). Synthesis 
filter Fk(z) is chosen to have similar magnitude response. See text.
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Definition of the Real Coefficient Analysis Filters

Here ck and ak are unit-magnitude constants, whose purpose will be clarified 
soon. (Actually, we could have done away with ck by absorbing it in ak, but 
the above form is more convenient for discussion.) Fig. 8.1-4 summarizes 
the situation.

We will assume the prototype to be of the form
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Define
(8.1.5)

and
(8.1.6)

We then generate the M analysis filters as follows:

(8.1.7)

(8.1.8)

that is, Nth order FIR. All analysis filters are then FIR with order ≤ N, 
that is,

(8.1.9)

Since the coefficients of P0(z) are real, the coefficients of Vk(z) and Uk(z) 
are conjugates of each other. So hk(n) are real.

8.1.2 Alias Cancelation
Recall the intricacies of alias cancelation (Sec. 5.4.2). The decimated 
output of Hk(z) gives rise to the alias components Hk(zWℓM)X(zWℓM), 
[i.e., frequency-shifted versions of Hk(z)X(z)]. The synthesis filter Fk(z), 
whose passband coincides with that of Hk(z), retains the unshifted version 
Hk(z)X(z), and also permits a small leakage of the shifted versions. When 
we add the outputs of all M synthesis filters, these leakages should "some- 
how" be canceled.

Remembering that the passbands of Fk(z) should coincide with those 
of Hk(z), we generate Fk(z) as

(8.1.10)

where bk are unit-magnitude constants. (The choice of ak, bk and ck will 
soon be settled.)

In general, the output of Fk(z) has the components Hk(zWℓM)X(zWℓM) 
for all values of ℓ, i.e., 0 ≤ ℓ ≤ M — 1. However, if the stopband attenuation



of Fk(z) is sufficiently high, only some of these components are of practical 
significance. The other components, though not exactly equal to zero, will 
be ignored, giving rise to the term “approximate alias cancelation.”

Figure 8.1-5 shows some of the shifted versions Uk(zWℓM) and Vk(zWℓM). 
Notice that, the response of Uk(zWM) does not overlap with that of Uk(z). 
However, the responses of Uk(zW-kM) and Uk(zW-(k+1)M) overlap with the re­
sponse of Vk(z). Similarly, the responses of Vk(zWkM) and Vk(zW(k+1)M) have 
overlap with that of Uk(z). This means that the alias-components X(zWℓM), 
which are significant at the output of Fk(z), correspond to

Figure 8.1-5 Demonstration of alias components which overlap with main 
synthesis filter response ∣Fk(ejω)∣.

Constraint on ak and bk to Cancel Aliasing
Here, then, is the fundamental principle behind the approximate alias 

cancelation scheme: since the outputs of Fk(z) as well as Fk-1(z) have the 
common alias components X(zW±kM), we try to choose Fk-1(z) and Fk(z) 
such that this component is canceled when these outputs are added. In fact, 
such cancelation can be accomplished just by appropriately constraining ak 
and bk, as we show next.
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(8.1.11)

Similarly, at the output of Fk-1(z), the significant alias components are for

(8.1.12)

Note that negative values of ℓ should be interpreted modulo M. For example, 
ℓ = -1 is equivalent to ℓ = M — 1.



The negative-frequency part of Fk(z), [i.e., b*kVk(z)] has the following 
significant alias components:

(8.1.13)

(8.1.14)

(8.1.15)

(8.1.17)

By considering the signal at the output of the positive frequency component 
bkUk(z) of Fk(z), we again obtain the same condition for alias cancelation. 
More specific choice of ak and bk will be given soon.

8.1.3 Eliminating Phase Distortion
Having canceled aliasing, we now turn to the distortion function T(z). From 
Sec. 5.4.2 we know that T(z) can always be expressed as

(8.1.18)

The QMF bank is free from phase distortion if T(z) has linear phase. We 
can ensure this if the synthesis filters are chosen according to the mirror 
image condition
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and the negative-frequency part of Fk-1(z) has

The alias component X(zW-kM) can therefore be eliminated if

By using the definitions for Uk(z) and Vk(z), and the condition ∣ck∣ =
∣ck-1∣ = 1, we can rewrite (8.1.15) entirely in terms of Vi(z)'s as

(8.1.16)

This condition can be satisfied by constraining ai and bi such that

(8.1.19a)
or equivalently as

(8.1.19b)



In this case (8.1.18) becomes

which shows that T(z) has linear phase.
We know that Hk(z) and Fk(z) are already related in some way because 

of their definitions in terms of the same set of components Uk(z) and Vk(z). 
By careful choice of the constants ak, bk, ck, we can satisfy the additional 
relation (8.1.19) as well. We do this in two steps as follows.
Choice of ck to Ensure Linear Phase of Uk(z) and Vk(z)

The phase response of P0(z) has not entered our discussion so far. We 
will now restrict P0(z) to be a linear phase filter with symmetric p0(n), that 
is, p0(n) = p0(N — n), so that
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(8.1.20)

Clearly

(8.1.21)

(8.1.22)

[Antisymmetric p0(n) would be inconsistent, since P0(z) is lowpass.] We 
then have

(8.1.23)
where PR(ω) is real-valued (Sec. 2.4.2). We will choose ck so that the 
complex-coefficient filters Uk(z) and Vk(z) have same (linear) phase as P0(z). 
(This will make it easier to determine the appropriate choice of ak and bk 
later.) From (8.1.5) we have

(8.1.24)

If we choose
(8.1.25)

then

(8.1.26)

Since PR(ω) is real, Uk(z) is a linear phase filter with phase response φ(ω) = 
-ωN∕2. Thus the phase responses of the modulated filters Uk(z) are identical 
to that of the prototype P0(cjω). Same is true of Vk(z), with ck chosen as 
above.



Choice of bk to Ensure the Relation Fk(z) = z-NHk(z-1)
The linear phase nature of Uk(z) and Vk(z) permits us to write

Figure 8.1-6 Demonstration of overlap of V0(ejω) with U0(ejω), and overlap of 
VM-1(ejω) with UM-1(ejω).

(8.1.31)
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(8.1.27)
analogous to (8.1.22). By using these relations in (8.1.7) we can verify

(8.1.28)
If we now choose

(8.1.29)
then the RHS of (8.1.28) reduces to Fk(z) [defined as in (8.1.10)]. This 
proves that the mirror image condition (8.1.19b) can indeed be satisfied by 
enforcing the constraint bk = a*k. The distortion T(z) now takes the form 
(8.1.20), and hence has linear phase.

Choice of ak
It only remains to choose ak. The alias cancelation constraint (8.1.17) 

can be simplified by using the further relation (8.1.29) to obtain a2k = -a2k-1, 
that is,

(8.1.30)
This can be used to determine all ak's, provided a0 is somehow determined. 
To make this final choice, we note that the components Uk(z) and Vk(z) do 
not overlap significantly except when k = 0 or M — 1 (Fig. 8.1-6). So the 
expression (8.1.18) can be simplified into

by using the condition akbk = aka*k = 1. The cross-terms U0(z)V0(z) and 
UM-1(z)VM-1(z) can create significant distortions around the frequencies 
ω = 0 and ω = π, respectively. By constraining a0 and aM-1 such that

(8.1.32)



we can eliminate these cross-terms, yielding

Based on these considerations we choose

(8.1.33)

(8.1.34)

This implies ak = (-1)kjak-1, satisfying (8.1.30). Evidently (8.1.32) is also 
satisfied. We also choose bk and ck as stated above. All constants are now 
determined.
Summary

1. The condition for alias cancelation is given by akb*k = —ak-1b*k-1.
2. The choice ck = W(k+0.5)N/2 (where W = e-jπ/M) ensures that Uk(z) 

and Vk(z) have the same (linear) phase response as the propotype P0(z). 
(This is a convenience which simplifies further design rules.)

3. The further constraint bk = a*k forces the relation Fk(z) = z-NHk(z-1). 
This in turn leads to the linear phase form (8.1.20) for T(z).

4. The constraint ak = (-1)kjak-1, together with bk = a*k ensures that 
the above alias cancelation condition is satisfied. Consistent with this 
constraint on ak, we choose ak = ejθk, θk = (-1)kπ∕4. This also en- 
sures (8.1.32) so that T(z) is further simplified to (8.1.33) (i.e., the two 
cross-terms given by U0(z)V0(z) and UM-1(z)VM-1(z), which can cause 
amplitude distortion around ω = 0 and π, are eliminated).

5. Summarizing, the M analysis filters are given by (8.1.37) (see below), 
with θk = (—1)kπ∕4. With the synthesis filters chosen as in (8.1.19a), we 
have approximate alias cancelation and complete elimination of phase 
distortion. Amplitude distortion still remains, and should be minimized 
as shown in the next section. Notice finally that all the analysis and 
synthesis filters have real coefficients.

8.1.4 Closed Form Expressions for the Filters
We now find expressions for the analysis filters hk(n). The first term in 
(8.1.7) is

so that its impulse response coefficients are

(8.1.36)
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The coefficients of the second term in (8.1.7) are obtained by conjugating 
this. So hk(n) equals two times the real part of the first term, that is,
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(8.1.37)

(since p0(n) is real). The synthesis filters fk(n) are obtained by replacing ak 
with bk. Since bk = a*k, this is equivalent to replacing θk with -θk, that is,

(8.1.38)

We can obtain this same fk(n) by using the mirror image relation (8.1.19), 
which we imposed in the above derivation. The analysis and synthesis filters, 
in general, do not have linear phase (even though the prototype P0(z) has 
linear phase). The distortion function T(z), however, has linear phase.

As all the analysis and synthesis filters are related to the prototype 
p0(n) by cosine modulation, the only design freedom for the QMF bank is in 
the choice of p0(n). This design issue will be addressed in the next section.

8.2 DESIGN OF THE PSEUDO QMF BANK
In the previous section we considered the pseudo QMF bank, and eliminated 
phase distortion and (approximately) eliminated aliasing. It only remains 
to reduce amplitude distortion. Recall that amplitude distortion arises if 
∣T(ejω)∣ is not exactly flat. The prototype P0(z) should now be designed in 
such a way that ∣T(ejω)∣ is acceptably flat.

8.2.1 Reducing Amplitude Distortion
We begin by pointing out some subtleties about the behavior of the distortion 
function T(z).
Unit-Circle Zeros of T(z)

We know that it is undesirable for T(z) to have zeros on the unit circle, 
as this would imply severe amplitude distortion. From the expression (8.1.21) 
we see that T(ejω0) is nonzero unless all the M filters satisfy Hk(ejω0) = 0. 
This unfortunate situation will not arise, unless the passband width of the 
prototpe P0(ejω) is unreasonably narrow.

Periodicity of ∣T(ejω)∣
Consider the linear phase prototype (8.1.23). From Sec. 2.4.2 we know 

that P2R(ω) has period 2π for any N. Define F(ejω) = Ρ2R(ω) and G(z) = 
F(zW0.5). We can then express (8.1.33) as

(8.2.1)



by using the simplified expression for Uk(z) [i.e. eqn. (8.1.26)] and the fact 
that vk(n) = u*k(n). With G(z) = Σg(n)z-n, the summation in the above 
equation simplifies to

showing that the variable z appears only in powers such as z2M. This shows 
that T(z) has the form

for some FIR f(z). In particular, therefore, ∣T(ejω)∣ has period 2π∕2M.
Origin of Amplitude Distortion

Consider the expression (8.1.33). If ω is a frequency belonging to pass- 
band of some filter Uk(z), then T(ejω) ≈ U2k(ejω)∕M. This shows that 
∣T(ejω)∣ is nearly the same at all frequencies which belong to the passbands 
of Uk(z)'s (or Vk(z)'s). However, if ω is at the transition between Uk(ejω) 
and Uk+1(ejω) [see Fig. 8.2-1(a)], then

Substituting from (8.1.26), this reduces to

(8.2.5)

Figure 8.2-1 (a) OverIapping responses ∣Uk(ejω)∣ and ∣Uk+1(ejω)∣, and (b) two
possible behaviors of ∣U2k(ejω) + U2k+1(ejω)∣, explaining the origin of amplitude to 
distortion.
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(8.2.2)

(8.2.3)

(8.2.4)



Typical behaviors of this quantity are illustrated in Fig. 8.2-1(b). Assuming 
the prototype P0(z) to have ‘good’ stopband attenuation, this quantity is 
significant only in the frequency interval

(The choice of e > 0 depends on the acceptable transition bandwidth.) So 
we optimize the coefficients p0(n) of P0(z) to minimize

Sec. 8.2 Design of pseudo QMF banks 365

It can exhibit a ‘bump’ or ‘dip’ around the transition frequency (k + 1)π∕M. 
This is the source of amplitude distortion, that is, nonflatness of ∣T(ejω)∣.
An Objective Function Representing the Flatness Requirement

Notice that the quantity in paranthesis in (8.2.5) is nothing but a 
frequency-shifted version of

(8.2.6)

It follows that if we force this to be sufficiently ‘flat,’ then ∣T(ejω)∣ will be 
“sufficiently flat” for all frequencies. This can be accomplished during the 
design of the prototype p0(n) by including a term in the objective function, 
to reflect the nonflatness of (8.2.6). Such an objective function is given by

(8.2.7)

The above limits of integration are justified because ∣T(ejω)∣ has period π∕M 
as shown above.

8.2.2 Design of the Prototype Filter
The prototype P0(z) is a real coefficient linear phase FIR lowpass filter with 
cutoff π∕2M [Fig. 8.1-2(a)]. By designing it to have good stopband attenu- 
ation, we improve the attenuation characteristics of all the filters Hk(z) and 
Fk(z). Our choice of constants ak,bk,ck above already ensures that aliasing 
and phase distortion are eliminated. By designing P0(z) such that (8.2.7) is 
small, one can reduce the amplitude distortion as well.

An appropriate measure of stopband attenuation of P0(z) is given by

(8.2.8)

(8.2.9)

where α is a tradeoff parameter with 0 < α < 1. Standard nonlinear opti- 
mization packages [Press, et al, 1989] can be used for this.



Design example 8.2.1: Pseudo QMF Bank

TABLE 8.2.1 Design example 8.2.1. Im­
pulse response of the FIR prorotype filter 
for pseudo QMF design.

n Po(n)

0 -2.9592103 e-03
1 -4.0188527 e-03
2 -4.9104756 e-03
3 -5.4331753 e-03
4 -5.3730961 e-03
5 -4.5222385 e-03
6 -2.6990818 e-03
7 2.3096829 e-04
8 4.3373153 e-03
9 9.6099830 e-03

10 1.5951440 e-02
11 2.3175400 e-02
12 3.1013020 e-02
13 3.9127130 e-02
14 4.7132594 e-02
15 5.4622061 e-02
16 6.1194772 e-02
17 6.6485873 e-02
18 7.0193888 e-02
19 7.2103807 e-02

We now show details of an 8-channel system (M = 8), with prototype 
filter order N = 39. The coefficients of the prototye P0(z), designed as de- 
scribed above, are shown in Table 8.2.1. (Only the first half is shown due to 
linear phase). Fig. 8.2-2 shows the prototype magnitude response ∣P0(ejω)∣, 
whereas Fig. 8.2-3 shows the magnitude responses of the analysis filters. 
Adjacent filter responses intersect approximately at the 3 dB level. This is 
consistent with the expression
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because, at the transition between two filters, only two of the M terms in 
the above summation are significant, and these are required to add up to 
unity.

Figure 8.2-2 Design example 8.2.1. Pseudo QMF design. Magnitude response 
of the FIR linear phase prototype P0(z). Filter order N = 39.

Peak distortions Ea and Epp. Let us now look at various distor- 
tions. Recall that (5.4.7) represents the gain for the ℓth alias component 
X(zWℓ), ℓ > 0. Fig. 8.2-4 shows a plot of
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(8.2.10)

which demonstrates that each of the terms ∣Aℓ(ejω)∣ is very small for all ω. 
This shows that aliasing has been reduced satisfactorily. The quantity Ea, 
which is the maximum value of (8.2.10) over all ω, is the worst possible peak 
aliasing distortion.

Next, Fig. 8.2-5 shows a plot of M∣T(ejω)∣. This is very close to unity 
for all ω, verifying that amplitude distortion has been reduced satisfactorily. 
As argued earlier, ∣T(ejω)∣ is seen to have period 2π∕2M — π∕8. By design, 
T(z) has linear phase, so we need not worry about phase distortion. The 
maximum peak to peak ripple of M∣T(ejω)∣, denoted Epp, is usually taken 
to be a measure of worst possible amplitude distortion.

From (8.1.20) we see that T(z) has order 78, i.e., T(z) = Σ78n=0 t(n)z-n. 
Because of the form (8.2.3), only a subset of the coefficients t(n) are nonzero. 
The coefficients Mt(n) are shown in Table 8.2.2, which also verifies the linear 
phase nature of T(z). In fact, we see that T(z) is nearly a delay.



Figure 8.2-3 Design example 8.2.1. Pseudo QMF design. Magnitude responses 
of the analysis filters. (a) H0(z) only, and (b) all eight filters. Filter order N = 39; 
number of channels M = 8.
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Figure 8.2-4 Design example 8.2.1. Plot of aliasing error in pseudo QMF design. 
The quantity (8.2.10) is shown above.

TABLE 8.2.2 Design example 8.2.1.
Set of nonzero coefficients of MT(z) where 
T(z) is the distortion function for the pseudo 
QMF design.

n Mt(n)

7 0.0022752
23 0.0008191
39 0.9988325
55 0.0008191
71 0.0022752
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Figure 8.2-5 Design example 8.2.1. Plot of amplitude distortion function in 
pseudo QMF bank.

8.3 EFFICIENT POLYPHASE STRUCTURES

With the constants ak, bk and ck constrained as summarized at the end of 
Sec. 8.1.3, we can rewrite the expression for the analysis filters as
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(8.3.1)

with 0 ≤ k ≤ M — 1. Here

(8.3.2)

Since the coefficients of Q2M-1-k(z) are conjugates of those of Qk(z), hk(n) 
are real as intended. As the filters Qk(z) can be represented by the structure 
of Fig. 8.1-3, we can implement the M analysis filters as in Fig. 8.3-1(a). 
From this figure we can write

(8.3.3)

where

(8.3.4)



Figure 8.3-1 (a) PoIyphase implementation of the M-channel cosine modu­
lated analysis bank, (b) simplified drawing, where T is a real matrix, and (c) 
corresponding synthesis bank. Here K = N — 2M + 1.
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The elements tkn simplify to

(8.3.5)

where θk = (—1)kπ∕4. Equation (8.3.3) permits us to draw the analysis bank 
as in Fig. 8.3-1(b), where T is M × 2M with elements tkn. Note that the 
coefficients tkn are precisely the elements which modulate p0(n) in (8.1.37) to 
obtain hk(n). The M cosine modualted filters Hk(z) are therefore obtained 
by implementing the polyphase components Gn(-z2M) which come from the 
single prototype P0(z), and then using the cosine modulation matrix T.

In terms of matrix notation, the analysis bank vector h(z) defined in 
(5.4.1) becomes

where

(8.3.7)

To obtain the structure for the synthesis bank we use the relation Fk(z) = 
z-NHk(z-1), and write the synthesis filter vector f(z) in terms of the anal- 
ysis filter vector h(z) as
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(8.3.6)

(8.3.8)
This system can be implemented as shown in Fig. 8.3-1(c), where the quan- 
tity K = N - 2M + 1.

In practice, we have decimators following the analysis filters, and ex- 
panders preceding the synthesis filters (Fig. 5.4.1). These devices can be 
moved by employing the noble identities (Fig. 4.2.3) to obtain more effi- 
cient polyphase structures. Figure 8.3-2 shows this scheme for the analysis 
bank, where the filters Gn(-z2) operate at the lowest possible rate. Similar 
arrangement can be obtained for the synthesis bank.

Figure 8.3-2 Improved polyphase implementation of the pseudo QMF analysis 
bank, with decimators moved “all the way to the left.”



Implementation Using the Discrete Cosine Transform (DCT)
A special case of interest arises when the filter length N + 1 is restricted 

to be N + 1 = 2mM for some integer m. In this case, the polyphase struc- 
ture can be redrawn in such a way that the main computational load is 
represented by a M × M matrix called the discrete cosine transform (DCT). 
Moreover, this matrix can be implemented using fast transform techniques 
[Yip and Rao, 1987]. Details of this special case are developed in the next 
few sections, where we also show how to modify the results of the present 
section to achieve perfect reconstruction in cosine modulated QMF banks.
Computational Complexity of Pseudo QMF Systems

We can implement the analysis bank as in Fig. 8.3-1(b), where Gk(z) are 
the 2M polyphase components of P0(z). The total number of multiplications 
and additions required for these components is nearly equal to the order 
N of the filter P0(z). So the complexity of the analysis bank is equal to 
about N multipliers and adders, plus the overhead required to implement 
the modulation matrix. The exact cost of this overhead depends on the value 
of M and the details of the fast DCT. Assuming this cost is negligible for 
simplicity, the complexity of the analysis bank is about N/M MPUs (and 
the same number of APUs). Recall from Sec. 6.7 that, for this same filter 
order N if N >> M, the perfect reconstruction system is only about two 
times more expensive.

8.4 DEEPER PROPERTIES OF COSINE MATRICES

The cosine modulation matrix T which appears in the pseudo QMF struc- 
ture of Fig. 8.3-2 satisfies some very useful mathematical properties. These 
properties, while not obvious, are important in the design of perfect recon­
struction cosine modulated filter banks, as we see in Sec. 8.5. The purpose 
of this section is to state and prove these properties.

8.4.1 The DCT and DST matrices

We first introduce the discrete cosine transform (DCT) matrix C, and the 
the discrete sine transform (DST) matrix S. These will play a crucial role 
in the theory as well as fast implementation of the cosine-modulated perfect 
reconstruction systems to be studied in Sec. 8.5.

The discrete cosine transform has been known since the early seventies 
[Ahmed, et al., 1974]. Four types of DCT and DST matrices have been 
documented in the literature [Yip and Rao, 1987]. Of these only Type 4 
matrices are relevant to our discussion. These are M × M matrices with 
elements

(8.4.1)
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We omit the adjective 'Type 4' in all further discussions. Evidently C and 
S are real. They satisfy the following properties.

1. Symmetry, that is, CT = C, and ST = S.
2. C and S are related as

and J is the reversal (or anti-diagonal) matrix defined in Appendix A 
(Sec. A.2). In words, if we renumber the nth column of S as the 
(M — 1 — n)th column (for each n), and insert a minus sign on all 
elements of every odd numbered row, the result is the C matrix. We 
can also rewrite (8.4.2) as S = ΓCJ, since Γ-1 = Γ and J-1 = J.

3. C and S are orthonormal, that is, CTC = STS = I. By combining with 
symmetry, we have C2 = S2 = I so that C-1 = C and S-1 = S.

Proofs
The first property is obvious. A proof of the second property is requested 

in Problem 8.6. We will now prove the third property. It is sufficient to prove 
orthonormality of C. Orthonormality of S then follows from S = ΓCJ.

Orthonormality of C. Consider Fig. 8.4-1 which is a system with 
2M inputs and M outputs. Here, W is the 2M × 2M DFT matrix, W = 
e-j2π/2M, and βn = W-(n+0.5)/2. This system has a M×2M transfer matrix, 
which we denote as V. This matrix has elements

In other words, except for the scale factor √2M, the first M columns of V 
are the same as those of C. (The × denotes an M × M matrix whose details 
are not relevant here.) By using the structure of Fig. 8.4-1 one verifies that
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(8.4.2)

where

(8.4.3)

So we can write
(8.4.4)

(8.4.5)



where Λβ and Λω are diagonal matrices of sizes 2M × 2M and M × M 
respectively, with diagonal elements

(8.4.6)

and U is the left 2M × M submatrix of W*. By using the fact that

In Problem 8.7 we verify that the first term above is 2MI and the second 
term is zero. This proves that CTC = I. ▽ ▽ ▽

8.4.2 Cosine Modulation Expressed Using DCT and DST
Consider the cosine modulation matrix T in the pseudo QMF structure of 
Fig. 8.3-2. We now show how this can be expressed in terms of the DCT 
and DST matrices. Recall that T is M × 2M with elements tkn as in (8.3.5), 
where N is the order of the prototype filter.

We consider only the special case where the filter length N + 1 and the 
number of channels M are related as

(8.4.8)

for some integer m. Let us partition T as

(8.4.9)
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we can verify

Figure 8.4-1 Pertaining to the proof that the DCT matrix is orthonormal.



where A0 and A1 are M × Μ. We will show that these matrices can be 
expressed in terms of the DCT and DST matrices as follows:

Here Λc and Λs are M × M diagonal matrices with diagonal elements

Notice that for fixed m, one of these two diagonal matrices is null, and the 
other has diagonal elements ±1. Using the above expressions for A0 and A1 
we will also show that they satisfy

(8.4.13)

Readers interested only in the consequences of these relations can skip the 
following proof, and proceed to Sec. 8.5.
Proof of the Relations (8.4.10)-(8.4.15)

For N = 2mM — 1, the elements tkn in (8.3.5) become

(8.4.16)

where

(8.4.19)

The elements of A1 are found by replacing n with n + M in (8.4.16), and 
simplifying. Thus
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(8.4.10)

(8.4.11)

(8.4.12)

(8.4.14)
(8.4.15)

(8.4.17)
and

(8.4.18)

The elements of the M × M matrix A0 are therefore

(8.4.20)



The quantities cos φk and sin φk can be simplified into

Using the diagonal matrices Λc and Λs we can then express

(8.4.22)

Depending on the value of m, this expression can be simplified further. If 
m is even then Λs = 0 and [Λc]kk = ±1. If m is odd, then the opposite 
situation prevails. This leads to the simplified relations claimed in (8.4.10) 
and (8.4.11).

if m is even, we find from (8.4.10)

(8.4.23)

The three properties of C and S listed at the beginning of Sec. 8.4.1 imply, 
in particular, C2 = S2 = I, and CΓS = SΓC = J. As a result the above 
relations reduce to (8.4.13)-(8.4.15) indeed. For odd m the proof can be 
carried out similarly. ▽ ▽ ▽

8.5 COSINE MODULATED PERFECT RECONSTRUCTION SYSTEMS
By using the results of the previous sections, it is now very easy to ob- 
tain a maximally decimated FIR perfect reconstruction system in which the 
analysis filters are related by cosine modulation [as in (8.1.37)], and the syn- 
thesis filters are as in (8.1.19a). This observation was made independently 
by Malvar [1990b], Ramstad [1991] and Koilpillai and Vaidyanathan, [1991 
and 1992]. Among all FIR perfect reconstruction systems known today for 
arbitrary filter lengths, this system is perhaps the simplest (both in terms of 
design and implementation complexities). It inherits all the simplicity and 
elegance of the cosine modulated pseudo QMF system and yet offers per­
fect reconstruction property. We now proceed to derive this. Historically, a 
special case of this result for N = 2M — 1 was first reported [Princen and 
Bradley, 1986], [Malvar and Staelin, 1989], and is related to the concept of 
lapped orthogonal transforms (LOT, Sec. 6.6). The result of this section
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(8.4.21)

(8.4.24)
(8.4.25)



can be considered to be a generalization of the LOT, and is presented in 
Malvar [1990b] in that light. Our presentation here is based on Koilpillai 
and Vaidyanathan [1991a, 1992].
Expression for the Polyphase Matrix E(z)

For the cosine modulated system the analysis bank has the structure 
shown in Fig. 8.3-1(b), where Gk(z) are the 2M polyphase components of 
the prototype P0(z) (see Fig. 8.1-1). Thus,

(8.5.1)

where e(z) is the delay chain vector [eqn. (5.4.1)] and gi(z) are diagonal 
matrices with

Comparing with h(z) = E(zM)e(z), we identify the polyphase matrix E(z) 
of the analysis bank as

(8.5.3)

Using the partition T = [ A0 A1 ] as before, we have

(8.5.4)

8.5.1 Forcing E(z) to be Paraunitary when N + 1 = 2mM
From Chapter 6 we know that we can achieve perfect reconstruction by 
constraining E(z) to be paraunitary (i.e., E(z)E(z) = dI) and taking the 
synthesis filter coefficients to be the time reversed conjugates as in (6.2.6). 
Recall that the paraunitary property is the same as losslessness, since we 
are discussing only causal FIR systems. The main result is summarized as 
follows:

♠ Theorem 8.5.1. Let the prototype P0(z) be a real-coefficient FIR 
filter with length N + 1 = 2mM for some integer m. Assume p0(n) = p0(N - 
n) (linear phase constraint). Let Gk(z), 0 ≤ k ≤ 2M — 1, be the 2M 
polyphase components of P0(z). Suppose the M analysis filters Hk(z) are 
generated by cosine modulation as in (8.1.37) with θk = (—1)kπ∕4. Then 

378 Chap. 8. Cosine modulated filter banks

(8.5.2)



the M × M polyphase component matrix E(z) is paraunitary if, and only if, 
Gk(z) satisfy the pairwise power complementary conditions

(8.5.6)

(8.5.7)

Since N + 1 = 2mM, each polyphase component Gk(z) has length m, that is, 
order m — 1. The relation p0(n) = p0(N-n) imposes the following constraint 
on these polyphase components (Problem 8.8):

(Recall from Appendix A (Sec. A.2) that JDJ has the effect of reversing 
the order of the diagonal entries of a diagonal matrix D.) If this relation is 
used in (8.5.7), the second term vanishes, and
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(8.5.5)

for some α > 0. ◊
Proof. From (8.5.4) we have

Since A0 and A1 satisfy (8.4.13)-(8.4.15), this becomes

(8.5.8a)

In other words the diagonal matrices g0(z) and g1(z) are related as

(8.5.8b)

(8.5.9)

It is now clear that E(z) is paraunitary if, and only if,

(8.5.10)

This condition is equivalent to saying that the polyphase components Gk(z) 
and GM+k(z) are power complementary, that is, that (8.5.5) holds. ▽▽ ▽

Remark. The cosine modulated pseudo QMF system developed in Sec. 
8.1 and 8.2 satisfies the relation (8.1.19a). Furthermore if the filters are
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well-designed as described in Sec. 8.2, the system is almost like a perfect 
reconstruction system (as demonstrated by Design example 8.2.1). This 
suggests, in view of Theorem 6.2.1, that E(z) is “almost paraunitary”. This 
leads us to expect that E(z)E(z) is “almost a diagonal matrix,” and the 
diagonal elements are "almost constant.” This, indeed, has been verified 
with the help of several design examples. This also shows that, if we force the 
matrix E(z) to be paraunitary apriori, that is, before optimizing the filter 
coefficients, then the resulting filters are almost the same as the pseudo 
QMF filters, except that they satisfy the perfect reconstruction property 
“perfectly”!

8.5.2 The Design Procedure

We know that all the analysis filter responses are controlled by the prototype 
response ∣P0(ejω)∣. As in Sec. 8.2.2 we have to optimize the coefficients of 
P0(z) to minimize an objective function. For pseudo QMF design we mini- 
mized a linear combination of φ1 and φ2 [defined in (8.2.7) and (8.2.8)]. But 
in the present case, it is sufficient to minimize only the stopband energy φ2. 
The quantity φ1 which represents the degree of nonflatness of ∣T(ejω)∣ is au- 
tomatically zero, because of the perfect reconstruction property guaranteed 
by paraunitariness of E(z).

Instead of minimizing the stopband energy φ2, it is also possible to 
minimize the maximum magnitude of ∣P0(ejω)∣ in its stopband region. Either 
of these minimizations can be done using standard optimization routines 
[Press, et al., 1989], [IMSL, 1987].

Imposing Paraunitary Constraint Using Two-Channel Lattice

During optimization it is however necessary to impose the paraunitary 
constraint on E(z), which we have shown to be equivalent to the power com­
plementary constraint (8.5.5). Now the power complementary property is 
equivalent to the condition that the FIR vector [Gk(z) GM+k(z) ] be paraunitary. 
In a manner similar to Sec. 6.4, this paraunitary vector can be implemented 
with the cascaded lattice structure of Fig. 8.5-1. (This will be proved in 
Sec. 14.3.2). Conversely, the transfer functions Gk(z) and GM+k(z) in this 
structure remain power complementary [i.e., satisfies (8.5.5) with α = 1] 
regardless of the values of the angular parameters θk,ℓ. This follows because 
the matrices Rk,ℓ are unitary; see Sec. 6.1.2.

The cosine modulated analysis bank, shown earlier in Fig. 8.3-2., now 
takes the appearance shown in Fig. 8.5-2. We now optimize the angles 
θk,ℓ so as to minimize φ2. During optimization, each lattice section remains 
paraunitary regardless of the values of θk,ℓ so that the pair (Gk(z), GM+k(z)) 
remains power complementary (i.e., satisfies (8.5.5) with α = 1). Thus, at 
the end of optimization, the matrix E(z) remains paraunitary, guaranteeing 
perfect reconstruction.



Figure 8.5-1 (a) Representation of the power complementary pair of functions
[Gk(z), GM+k(z)] using a lossless lattice. (b) Details of Rk,ℓ. Here ck,ℓ = cosθk,ℓ 
and sk,ℓ = sinθk,ℓ.

Figure 8.5-2 Implementation of cosine modulated PR analysis filter bank. 
Each polyphase component pair [Gk(-z2), GM+k(-z2)] is implemented by a two- 
channel lossless lattice.

Sec. 8.5 Cosine modulated perfect reconstruction systems 381



Number of parameters to be optimized. In view of the linear- 
phase relation (8.5.8a), only M/2 lattice sections [(M - 1)∕2 for odd M; see 
below] need to be optimized. For example, let M = 17. Since 2M = 34, there 
are 34 polyphase components Gk(z). The pair [G0(z), G17(z)] is generated 
using one lattice structure, the pair [G1(z), G18(z)] using another lattice 
structure, and so on. Thus the first eight lattice structures generate the 
sixteen polyphase components

(8.5.15)

Thus, K is completely determined. Moreover α does not affect frequency re- 
sponses except for a scale factor. Thus, the only parameters to be optimized 
are the parameters θk,ℓ of the eight lattice structures.

More generally, the number of parameters to be optimized is nearly 
equal to mM/2 ≈ N∕4, which is half the number required for the pseudo 
QMF approach! This technique for design of perfect reconstruction systems 
is, therefore, simpler than the pseudo QMF design, and dramatically simpler 
than the (more general) perfect reconstruction design described in Sec. 6.5.

Hierarchial property. If we wish to increase the prototype length, we 
have to do it in integer multiples of 2M (because of the constraint N + 1 =
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(8.5.11)

From these we can find the sixteen polyphase components

(8.5.12)

by use of the linear phase constraint (8.5.8a). There are two more compo- 
nents G8(z) and G25(z) to be determined. But the linear phase constraint 
implies

(8.5.13)

so that (8.5.5) reduces to

(8.5.14)

Thus we have to choose G8(z) = √0.5αz-K and G25(z) = √0.5αz(m-1-K).
For odd M, we can generalize this discussion and show (Problem 8.9) 

that

Using the fact that P0(z) is a lowpass filter with cutoff π∕2M [Fig. 8.1-2(a)], 
it can be shown (Problem 8.9) that the only acceptable choice of K is given 
by



2mM). This can be done as shown in Fig. 8.5-3, where one new section is 
added to each lattice structure. This hierarchial approach can be used in 
the design process, to recursively intialize the parameters to be optimized. 
Thus we optimize the angles θk,ℓ for small m, and then use these as initial 
values with m replaced by m + 1. (The newly introduced parameters θk,m 
have to be initialized rather arbitrarily.) ‡

Obtaining the analysis and synthesis filters. Once the prototype 
coefficients p0(n) are obtained as above, the M analysis filters are found 
from (8.1.37). The synthesis filters are then obtained as fk(n) = hk(N — n). 
In general these do not have linear phase, even though P0(z) does.

Figure 8.5-3 Explaining the hierarchial property of lattice-based design. L + 1 
is the number of lattice sections to be optimized.

Design Example 8.5.1: Cosine Modulated PR Systems
Let the number of channels be M = 17. For this choice of M we showed 

above that only eight lattice structures have to be optimized. Suppose the 
prototype filter P0(z) has order N = 101, so that m = 3. The kth lattice 
structure now has three angular parameters
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These 24 parameters are optimized to minimize the peak stopband error 
of P0(z). Figure 8.5-4 shows the magnitude responses of P0(z) and all the

‡ See Koilpillai and Vaidyanathan [1992], for further details about initial­
ization. A computer program, along with documentation, is available upon 
request.



17 analysis filters. Each analysis filter offers a stopband attenuation of 
about 40 dB. The impulse response p0(n) of the optimized prototype P0(z) 
is tabulated in Koilpillai and Vaidyanathan [1992].

Figure 8.5-4 Design Example 8.5-1. Magnitude responses for the 17-channel 
cosine modulated perfect reconstruction system. (a) Prototype of order N = 101 
and (b) the seventeen analysis filters. (© Adopted from 1992 IEEE.)

In this example the number of parameters to be optimized is equal to 24. 
For the same filter length and number of channels, the pseudo QMF system 
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(Sec. 8.2) has 51 parameters to be optimized, whereas the more general 
perfect reconstruction system (Sec. 6.5) has as many as 216 parameters! 
The method described in this section therefore has the fewest parameters, 
resulting in much faster design time. A more thorough comparison is given 
in the next section.

8.5.3 Complexity Comparison

We will now compare three types of M-channel maximally decimated filter 
banks, in terms of design complexity as well as implementation complexity. 
Recall that the filter coefficients are real. The quantity N denotes the order 
of the analysis filters, and M is the number of channels. The three types 
are:

Type 1. The general perfect reconstruction system with paraunitary 
E(z) described in Sec. 6.5, where E(z) was represented as a cascade of 
paraunitary building blocks of the form (6.5.1).

Type 2. The cosine modulated pseudo QMF (approximate reconstruc­
tion) system of Sec. 8.2.

Type 3. The cosine modulated perfect reconstruction (PR) system de- 
rived in this section.

Design Complexity

The number of parameters to be optimized during the design of the 
analysis filters depends on N, M, and the type of filter bank. In Table 8.5.1 
we have listed these, for the three types of filter banks. Table 8.5.2 shows 
this number for various choices of M and N. We see that for fixed N and 
M, the cosine modulated PR system has significantly fewer parameters to 
be optimized than either of the other methods.

Next, in Table 8.5.3 we compare the two cosine modulated systems for 
the specific case where N = 101 and M = 17. To describe this table, first re- 
call that the pseudo QMF system suffers from reconstruction errors, that is, 
residual aliasing and amplitude distortions. In Sec. 8.2.2 we defined quan­
titative measures for the aliasing error Ea and the peak-to-peak amplitude 
distortion Epp. By varying the parameter α in the composite objective func- 
tion (8.2.9), we can obtain a tradeoff between As and these reconstruction 
errors. In Table 8.5.3 we have shown a number of such tradeoffs. (The error 
≈ 10-15 in the PR case is due to machine precision.) For the same N and 
M, the table also shows the attentuation As obtainable for the perfect recon- 
struction system. It is clear that, when we pass from the cosine modulated 
pseudo QMF system to the perfect reconstruction system, we pay a price in 
terms of the stopband attenuation As. This price however is not severe; it is 
less than 5 dB in most practical examples.
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TABLE 8.5.1 The number of real valued parameters to be optimized 
during the design phase, for the three types of FIR M-channel maximally 

decimated QMF banks.

General FIR paraunitary 
perfect reconstruction 
system (section 6.5) 

(Type 1)

Cosine modulated 
pseudo QMF 

(Type 2)

Cosine modulated 
perfect reconstruction 

(Type 3)

(M-1)(N+1-M/M + M/2) (N+1/2) (N+1/2)(M-1/2M), M odd

N + 1 = filter length, M = number of channels

48 33 24
60 41 30

40 38 20
60 54 30

42 51 21
84 87 42

64 165 32
96 195 48

68 184 34
102 216 51

Implementation Complexity
In Sec. 6.7 we summarized the cost of the Type 1 filter bank in terms 

of the number of multiplications and additions per unit time (MPUs and 
APUs). Both Type 2 and Type 3 systems are cosine modulated systems 
with polyphase implementation as in Fig. 8.3-2. If these are implemented 
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like this, the analysis bank requires nearly (N + 1)∕M MPUs and N/M 
APUs in both cases, plus the cost of implementing the modulation matrix. 
This additional cost is independent of the filter order N, and depends only 
on M. Table 8.5.4 is a summary of the implementation costs. Once again, 
the cosine modulated pseudo QMF and PR systems have significantly lower 
complexity than the Type 1 perfect reconstruction system.

TABLE 8.5.3 Comparison of the two cosine modulated systems 
(pseudo QMF versus perfect reconstruction). N = 101 and M — 17.

Prototype Reconstruction
Error (Epp)

Aliasing 
Error (Ea)AS (dB) ωS

Pseudo- 
QMF 
bank

40.65
38.68
38.42

0.0590π
0.0585π
0.0581π

6.790 e-03
2.139 e-04
8.749 e-05

3.794 e-04
3.193 e-04
8.113 e-04

Cosine- 
modulated 
PR bank

35.72 0.0586π 8.216 e-15 1.041 e-15
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TABLE 8.5.4 Computational complexity of the analysis bank for three types of FIR 
M-channel maximally decimated QMF banks. For cosine modulated system, 

cost of modulation must be added to the above numbers.

Complexity

General FIR paraunitary 
perfect reconstruction 
system (section 6.5) 

( Paraunitary cascade 
implementation) 

(Type 1)

Cosine modulated 
pseudo QMF 

(Type 2)

Cosine modulated 
perfect reconstruction 

system 
(Type 3)

MPU

APU

N + 1 = filter length, M = number of channels
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Implementation using the lattice. The cosine modulated PR sys- 
tem can be implemented directly using the lattice structures which generate 
the pairs of polyphase components (Fig. 8.5-1). The schematic for this is 
shown in Fig. 8.5-2. From Chapter 6 we know that the two-channel lattice 
structure can be redrawn with two-multiplier sections (Fig. 6.4-2), by ex- 
tracting some scale factors. If this is done, the complexity of the analysis 
bank (i.e., the number of MPUs and APUs) remains nearly the same as for 
the direct polyphase implementation of Fig. 8.3-2.

8.5.4 Implementing Cosine Modulation with DCT and DST
In Sec. 8.4 we established a relation between the cosine modulation matrix 
T = [ A0 A1 ] and the DCT and DST matrices. These relations are given 
in (8.4.10), (8.4.11), and hold when N + 1 = 2mM. Based on this we can 
redraw the analysis bank entirely in terms of the DCT matrix C. This holds 
for both types of cosine modulated systems, that is, Type 2 (pseudo QMF) 
and Type 3 (perfect reconstruction).
Case When m is Even

The details depend on whether m is even or odd. We assume that m 
is even. (We leave it to the reader to work out the odd m case.) Since 
S = ΓCJ we can rewrite these entirely in terms of C to obtain

(8.5.16)

The set of M analysis filters can be expressed as in (8.5.1), where e(z) is 
the delay chain vector defined in (5.4.1). By using the above A0 and A1 we 
obtain

(8.5.17)
Here gi(z) are the diagonal matrices of polyphase components, defined as in 
(8.5.2). Using (8.5.17) we can draw the analysis bank as in Fig. 8.5-5(a). 
Fig. 8.5-5(b) shows the more explicit structure in terms of Gk(z). (The 
decimators can be moved to the left as we did earlier in Fig. 8.3-2.)

Recall that the synthesis filters are given by fk(n) = hk(N — n). From 
this we obtain the synthesis bank structure of Fig. 8.5-6, which the reader 
is requested to justify in Problem 8.10.

Fast implementation of the DCT. The DCT matrix C in the above 
figures can itself be implemented using fast techniques. A quick way to see 
this is to note that C can be embedded into the matrix V as shown in 
(8.4.4). This matrix can, in turn, be implemented as in Fig. 8.4-1. The 
main cost here is the implementaion of W*, where W is the DFT matrix. 
W* can be implemented efficiently by use of the Fast Fourier Transform 
(FFT) [Oppenheim and Schafer, 1989]. For more efficient and direct 'fast 
DCT algorithms', see Yip and Rao [1987] and references therein.



Figure 8.5-5 The cosine modulated analysis bank in terms of DCT. (a) Using 
matrix notations and (b) using more explicit notations. Here N + 1 = 2mM, and 
m = even.
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Figure 8.5-6 The cosine modulated synthesis bank, when N + 1 = 2mM, with 
m = even.

8.5.5 Advantages of the Cosine Modulated PR System
We now summarize the advantages of the FIR cosine modulated perfect 
reconstruction system.

1. All analysis filters Hk(z) are obtained from a real coefficient prototype 
P0(z), by cosine modulation as in (8.1.37). Only this prototype has to 
be optimized during the design, so that the design complexity is low. 
Due to the paraunitary constraint on the polyphase matrix, the number 
of parameters to be optimized is in fact only about half the number used 
in pseudo QMF design. Tables 8.5.1 and 8.5.2 give quantitative details.

2. With the synthesis filters chosen as fk(n) = hk(N — n), we have per­
fect reconstruction. (In particular the analysis and synthesis filters have 
same order N). The objective function to be minimized during opti- 
mization of the coefficients of P0(z) is therefore very simple, and has to 
reflect only the stopband attenuation of P0(z).

3. If we optimize the lattice coefficients θk,ℓ as in Sec. 8.5.2, then the 
paraunitary constraint is automatically imposed during the design of the 
prototype P0(z). So we can use an unconstrained optimization routine 
to compute θk,ℓ.

4. The implementation complexity for the entire analysis bank is equal to 
the cost of the prototype P0(z) plus the modulation cost (which depends 
on the number of channels M but not on the filter order N). This is 
same as that of the pseudo QMF system.

5. The modulation cost can be reduced by expressing the analysis and 
synthesis banks in terms of the DCT matrix (Figs. 8.5-5 and 8.5-6), for 
which there exist fast implementations.
Summarizing, the system has all the advantages and simplicity of the 

cosine modulated pseudo QMF system of Sec. 8.1, and in addition offers 
perfect reconstruction. The price paid for this is in terms of reduced stop- 
band attenuation of the prototype P0(z), but this is a minor loss in practice 
(Table 8.5.3).

It should be emphasized that, even though the prototype filter has linear 
phase, the cosine modulated analysis filters do not, in general, have linear 
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phase. In fact, if we give up the linear phase property of the prototype, 
there are some advantages [Nguyen, 1992b]. Also see [Mau, 1992] for further 
generalizations.
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PROBLEMS

8.1. In the pseudo QMF system discussed in Sec. 8.1 and 8.2, there is some resid­
ual aliasing distortion, which is measured by the quantity (8.2.10). Suppose we 
construct a new filter bank in which each Fk(z) is interchanged with the cor- 
responding Hk(z). How is the measure (8.2.10) affected? How is the distortion 
function T(z) affected?

8.2. For the pseudo QMF system we can find the synthesis filters either from (8.1.38) 
or from the relation fk(n) = hk(N — n) where hk(n) is as in (8.1.37). Verify 
that these two yield the same synthesis filter coefficients.

8.3. Let Hk(z) be a transfer function of the form
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(P8.3a)

where k0 is a half-integer (i.e., k0 — 0.5 is an integer) and ℓ1 is arbitrary. Show 
that the impulse response of Hk(z) has the form

(P8.3b)

where h(n) is the impulse response of H(z), which is defined by

(P8.3c)

8.4. Suppose we wish to design two-channel real coefficient FIR perfect reconstruc­
tion QMF banks using the method described in Sec. 8.5. Does this cover every 
design that can be generated using the two channel lattice structure of Sec. 
6.4.3?

8.5. Consider the three types of FIR filter banks summarized in Sec. 8.5.3. Suppose 
M = 15 and filter lengths N + 1 = 60.

a) For each type, what is the number of parameters to be optimized during 
the design phase?

b) For each type, what are the number of MPUs and APUs required to im­
plement the analysis bank?

8.6. Show that the DCT matrix C and DST matrix S are related as in (8.4.2).
8.7. Consider the expression inside the brackets in (8.4.7). Show that

(P8.7)

Note. the second equality requires more work.
8.8. Assuming that the prototype satisfies the linear phase condition, p0(n) = 

p0(N — n), establish the relation (8.5.8a) among the 2M polyphase compo­
nents. (Note. N + 1 = 2mM.)



Show further that K satisfies (8.5.15). You can use the fact that P0(z) is a 
linear phase lowpass filter with cutoff π∕2M.

8.10. In the text we saw that the analysis bank represented by (8.5.17) can be im- 
plemented as in Fig. 8.5.5. Let the M synthesis filters be chosen as fk(n) = 
hk(N — n). Then show that the synthesis filter bank can be realized as in Fig. 
8.5-6. Also draw the structure more explicitly in terms of polyphase compo- 
nents (i.e., as we did in Fig. 8.5-5(b) for the analysis bank).

8.11. Let P0(z) be the FIR prototype described in Theorem 8.5.1. Let the polyphase 
components of this prototype satisfy (8.5.5). Show then that P0(z)P0(z) is a 
Nyquist(2M) filter.
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8.9. Let the 2M polyphase components of P0(z) satisfy (8.5.5) as well as (8.5.8a). 
Assuming N + 1 = 2mM and that M is odd, verify that

(P8.9)


