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In this paper, we explore the possibility of building a quantum memory that is robust to thermal noise
using large N matrix quantum mechanics models. First, we investigate the gauged SUðNÞmatrix harmonic
oscillator and different ways to encode quantum information in it. By calculating the mutual information
between the system and a reference which purifies the encoded information, we identify a transition
temperature, Tc, below which the encoded quantum information is protected from thermal noise for a
memory time scaling as N2. Conversely, for temperatures higher than Tc, the information is quickly
destroyed by thermal noise. Second, we relax the requirement of gauge invariance and study a matrix
harmonic oscillator model with only global symmetry. Finally, we further relax even the symmetry
requirement and propose a model that consists of a large number N2 of qubits, with interactions derived
from an approximate SUðNÞ symmetry. In both ungauged models, we find that the effects of gauging can
be mimicked using an energy penalty to give a similar result for the memory time. The final qubit model
also has the potential to be realized in the laboratory.
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I. INTRODUCTION

Quantum information is typically fragile when encoun-
tered in familiar physical systems, thus giving rise to the
intuition that quantum information is inherently hard to
preserve at macroscopic scales, e.g. in large systems or at
long times. The discovery of quantum error correction
showed that this intuition is incomplete: in the right kind of
physical system, quantum information can be retained for
an arbitrarily long time. Maintaining the information is
typically an active process where we keep a vigil for errors
and periodically correct them. An error correcting code
operating in this mode forms an active quantum memory.
Some codes may have the additional capability to preserve
the encoded information for a long time naturally, without
any active intervention. A code operating in this mode is
called a passive or self-correcting quantum memory—it is
like a quantum hard drive. In this paper and a forthcoming
companion paper, we search for passive quantummemories
in the context of quantum gauge theories and models
inspired by them.
Why gauge theories? For one thing, some of the most

important currently known codes can be viewed as gauge
theories. For example, the toric code can be viewed as a Z2

lattice gauge theory with dynamical electric charges in the
extreme deconfined limit. More generally, deconfined
lattice discrete gauge theories are associated with a high

degree of quantum entanglement and topological order, both
ofwhich are linkedwith quantumerror correction [1–3]. One
feature of topological order is a robustness of the ground
space to perturbations of the Hamiltonian, which is sugges-
tive of the potential for passive error correction. And while
the two-dimensional toric code does not form a passive
memory [4], a four-dimensional analog does [5]. Moreover,
phases of matter exhibiting topological order associated with
a discrete non-Abelian group can be used for fault tolerant
quantum computation, a fact that also hints at a degree of
intrinsic protection [6].
From another perspective, quantum error correction

has been linked with quantum gravity in the context of
holographic duality, also known as the AdS=CFT corre-
spondence [7]. The best understood examples of the
correspondence involve continuous non-Abelian gauge
theories with large gauge groups, thus providing another
connection between non-Abelian gauge symmetry and
quantum error correction. In this context, one also finds
that the boundary conformal field theory with SUðNÞ
gauge symmetry can possess a low temperature confined
phase which is qualitatively distinct from the generic high
temperature physics in the deconfined phase. This boun-
dary confinement-deconfinement phase transition is dual to
the Hawking-Page transition [8] between a thermal AdS
geometry and a AdS black hole geometry in the bulk [9].
It was suggested in [10] that when treating the low energy
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sector of AdS=CFT as an approximate quantum error-
correcting code under the influence of thermal errors, the
encoded information living in the bulk thermal AdS
geometry can be disturbed by the scattering of thermal
particles with probability Oð1=N2Þ. However, in the high
temperature phase, the encoded information is scrambled
by the black hole, thus inducing a large logical error. In the
large N limit, the distinct phases correspond to the
existence of a threshold, such that logical information
remains robust in the low temperature phase where the
errors occur less frequently.1 Therefore, it is natural to
explore whether this type of robustness also extends to
other theories with such gauge symmetries.
With these motivations, we have undertaken an inves-

tigation of quantum error correction in non-Abelian gauge
theories with large gauge groups. We focus here on SUðNÞ
groups with N taken large. This large N limit is like a
thermodynamic limit, and we expect that passive error
correction can only emerge in such a thermodynamic
limit. We define and study quantum codes in a variety
of models, including models inspired by gauge theories but
where we relax the gauge constraint. We are seeking to
answer two key questions: (1) are there potentially useful
lab-constructible quantum memories built from gauge
theories or derived models and (2) can naturally occurring
systems, e.g. QCD or a hypothetical holographic dual to
quantum gravity in our Universe, naturally preserve quan-
tum information for a long time? This paper focuses on
quantum mechanical systems with large gauge groups,
while the companion paper [12] will consider quantum
field theories with large gauge groups.
The key results of the present paper are as follows. First,

we discuss broadly how a property called large N factori-
zation is related to an approximate version of the Knill-
Laflamme error correction condition [13,14]. Assuming a
code space with the right properties can be defined and
coupled to a thermal bath satisfying reasonable assump-
tions, we then prove a theorem establishing the existence of
a memory lifetime which scales polynomially with N. We
then consider a sequence of models of increasing generality
and show how the conditions of the main theorem can be
satisfied. For a certain fully gauged model, we find that the
conditions of the theorem are immediately satisfied; for
models where we do not gauge the symmetry or even make
the symmetry approximate, an energy penalty scaling like
logN is needed to meet the conditions of the main theorem.
While here we focus on the construction of such quantum

memories and their memory times, there are other aspects
of the model that are relevant for practical implementation,
such as whether quantum information information can be
efficiently encoded, recovered, and processed. We will
leave these discussions for future work.
In the remainder of the introduction, we first review the

basic notions for readers without the necessary background
in quantum codes or quantum gauge theories. We then give
a high level overview of our results. We also note that a few
prior works have considered the role of large N factoriza-
tion and/or gauge symmetry in defining quantum error
correcting codes [15,16]. There is also a large literature on
passive quantum memories from a variety of approaches
[2,5,17,18]. See also [19] for a more comprehensive review.

A. Background on quantum codes

In this subsection, we review the key concepts of
quantum error correction needed for our discussion. This
section is aimed at readers with a more high energy
background.
Mathematically, a quantum error correcting code is a

subspace, the logical space C, of a larger physical Hilbert
space H. Errors are modeled by a quantum process E and
error correction is given by another process R such that

RðEðρÞÞ ¼ ρ ∀ ρ ∈ C: ð1Þ

If the error channel is viewed as probabilistically applying
errors from a set fEag, then one way to formulate the
necessary condition for the existence of an error correction
process is the Knill-Laflamme (KL) condition,

hijE†
aEbjji ¼ cabδij; ð2Þ

where jii and jji are any two elements of a basis for C. The
intuition behind KL is that errors are unable to cause
transitions between distinct states in the code. We can also
relax these exact equalities to obtain instead an approxi-
mate quantum code.
In practice, such a code is instantiated within a concrete

physical substrate, with H being some model of the
physical space of states of the substrate. For example, a
code (C) might be implemented as a subspace of the full
energy levels (H) of a superconducting circuit (substrate).
In some cases, the code space might correspond to the
ground space of some Hamiltonian for the substrate, but
this is not required in general.
A code is used as follows. Information is first encoded

using some encoding operation. This operation might
correspond to a quantum circuit which takes a fixed initial
state in H and produces the desired code state in C. After
encoding, the code is subject to errors, corresponding to
one application of the error channel E. Then the recovery
procedure R is applied to recover the initially encoded
information. The condition above guarantees success

1Note that unlike the tensor network constructions [11] where
one changes the system size by increasing the number of layers,
which roughly corresponds to changing the IR cutoff in the bulk
or the UV cutoff on the boundary theory when it is put on a
lattice, the size of the physical system in [10] is altered by N of
the SUðNÞ symmetry while keeping the number of “boundary
sites” fixed. Heuristically, the physical Hilbert space can be taken
as placing OðN2Þ qudits on each boundary site.
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provided the encoding prepares a state in C. Finally, the
information can be read out by a decoding operation. Note
the distinction between recovery, which repairs the infor-
mation but keeps it encoded, and decoding, which reverses
the encoding map when applied to an error free state.2

To make these ideas more concrete, we can consider the
simple goal of information storage for a period of time (as
opposed to any active computation on the encoded data).
We think of the code during the error part of the protocol as
sitting idle in the presence of an undesirable environment.
The effect of the environment is what produces errors in the
code, so the channel E implicitly contains information
about the nature of the environment and how long the code
is exposed to the environment. We denote such an error
channel by Et, where t corresponds to the time for which the
code is exposed to the environment. Correspondingly,
the recovery operation R may depend on t and indeed
on the whole structure of Et.
In this paper we consider the environment to be a thermal

reservoir at some temperature T. There is still freedom in
determining exactly how the reservoir couples to the
system, but from an effective theory perspective we should
expect all allowed couplings to be present with some
strength. In this context, the need for active error correction
can be phrased like this. Given a code C, the code requires
active error correction if, as t → ∞, there is no R that can
correct Et. In other words, a code requires active error
correction if, given enough time, the error channel will
eventually degrade the information beyond the ability of
any physically conceivable recovery operation to repair.
More generally, we can define a memory time tmem as the

time beyond which Et degrades the information beyond any
hope of recovery. Of course, this time depends on the code
and the error model, but it also depends on what recovery
operations we can conceivably perform and on how well we
want to be able to recover the information (e.g. the degree
of approximation in our approximate code). A perfect
passive memory is one for which tmem ¼ ∞. Typically, we
can only hope for this sort of behavior in a thermodynamic
limit, so we should really view a passive memory as a
sequence of codes indexed by the physical size n for which
limn→∞ tmemðnÞ ¼ ∞. Even more practically, what really
matters is how tmem scales with n and other parameters of
the code.
For the purpose of potentially implementing a quantum

memory in the lab, we may also want to impose some
additional rules of the game. One variant of such rules are
called the Caltech rules [20,21]. For example, we might
obtain a long memory time by sending the energy cost of
errors to infinity “by hand,” but this could be considered

“cheating” unless there is a good physical reason for this
large energy penalty. The idea is that we indeed want to
effectively forbid errors, but this should happen naturally
without sending any microscopic energy scale to infinity.
Of course, if one does have a system where errors are
particularly costly, then it might form a good enough
passive memory in the sense that tmem is long enough
for practical purposes. To give another example, to be able
to construct codes in physical three-dimensional space, we
might want some restrictions on the kinds of codes we
consider, e.g. trying to avoid the need for too many long-
range interactions [21]. We note that all the models we
consider here do have nonlocal interactions between the
large N degrees of freedom.3

B. Background on quantum gauge theories

In this subsection, we review the key concepts of
quantum gauge theories needed for our discussion. This
section is aimed at readers with a more quantum informa-
tion background.
At the most basic level, a gauge theory is defined by

giving a gauge group G and a set of degrees of freedom
transforming under G with the requirement that all physical
states and operators are invariant under G. This invariance
condition is known as Gauss’ law, in honor of its roots in
electromagnetism. An immediate question is why onewould
use such a redundant description at all? Experience shows
that one can always use a gauge-invariant description of the
states and operators, but such a description often hides
important underlying features of the physics. For example,
looplike operators known as Wilson lines provide a class of
gauge invariant observables in quantum field theories with
gauge fields, but the extended nature of these operators can
obscure aspects of locality in the theory. In special cases, one
can even have an equivalence between a local gauge theory
and another local theory with no explicit gauge structure, for
example, the duality between the 3D statistical Ising model
and 3D Z2 gauge theory.
We study such gauge theories in large part because they

form a crucial part of our description of nature. The quantum
theory of electromagnetism is a gauge theory where the
gauge group is related to the Abelian Lie group Uð1Þ. The
more general Standard Model is also a gauge theory with a
non-Abelian gauge group of the form SUð3Þ × SUð2Þ×
Uð1Þ. Gauge theories also arise in condensedmatter systems,
for example, when describing so-called spin liquid phases,

2Note that, somewhat confusingly, decoding in the context of
active error correction can also refer to applying some suitably
chosen operations to the state based on syndrome measurements.
This process typically leave the information encoded, which
corresponds to our recovery operation in our current definition.

3Note that it is somewhat ambiguous what constitutes the local
degrees of freedom in the largeN gauged oscillator model as they
are not simply tensor product of qubits. We show in later sections
that there is a construction where two such gauged oscillators are
spatially local with respect to each other. However, each one
contains a large N degrees of freedom even though there is no
sense in which they occupy an extended region in space. It is in
this sense that these degrees of freedom are related to each other
nonlocally.
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and, as we mentioned above, they also have interesting error
correction properties.
Apart from the motivations from known models of high-

energy particle physics and condensed matter systems,
another motivation to consider gauge theories comes from
quantum gravity. Since the discovery of AdS=CFT, it is
generally believed that certain d-dimensional SUðNÞ gauge
theories with large N admit a dual geometric description in
terms of a (dþ 1)-dimensional theory of gravity. From a
quantum information perspective, this correspondence
provides the possibility of hiding quantum information
deep inside the emergent geometry. This has inspired a
lot of research in the field of holographic quantum error
correcting codes [7], with explicit models such as the
HaPPY code [11], the effective field theory code [22], and
many other related constructions using tensor networks
[23–25]. Current holographic codes often utilize the extra
dimension, such that any local/UVerrors can not access the
information deep inside along the extra radial direction.
However, very little of the error correcting power in these
constructions come directly from the gauge symmetries in
AdS=CFT. In this work, we will focus on a different kind of
protection from the large N gauge symmetries, which can
be related to the small Newton’s constant in these holo-
graphic theories [10,16]. This opens another possibility to
design a new kind of quantum memory.
An interesting structure we exploit in the large N gauge

theory is its sparse density of excitations at low energy. Due
to Gauss’ law, the only allowed excitations of a SUðNÞ
gauge theory on any compact manifold are gluons that
combine into gauge singlets. Therefore, the density of
states is determined by counting the number of gauge
singlets in a given energy level. It is a general feature that
the density of states in such model scales exponentially
with some power of energy and does not depend on N. As
is pointed out in [26], even for a free gauge theory with
large N, the projection to the gauge invariant subspace
induces effective interactions among the gluons, which is
negligible at high energy but dominates at the low energy
regime. In fact, for a weakly coupled SUðNÞ gauge theory,
there is a phase transition analogous to the comfinement/
deconfinement transition in QCD, in the limit of N → ∞.
As we show, this induces a critical temperature, Tc, below
which the quantum information can be long lived but above
which the information is quickly destroyed. In the geo-
metric description, this is believed to be dual to the
Hawking-Page transition and the high temperature phase
can be thought of as a black hole that kills the quantum
information [10].
To zero in on just the effects of gauge symmetry, we

distill only the necessary ingredients from the above gauge
theory intuitions and consider a gauge theory with no
spatial geometry at all. It turns out that even the simplest
(0þ 1)-dimensional gauge theory of harmonic oscillators
is sufficient for our purposes. The inverted harmonic
oscillator has been studied as a dual to a two dimensional

string theory and can be considered as toy model of
holography [27–30]. Here we start from a similar but
noninverted harmonic oscillator model and try to build a
quantum memory from it.

C. Organization and overview of results

The rest of this paper is organized as follows. In Sec. II,
we describe in detail the largeN matrix quantummechanics
model with SUðNÞ gauge symmetry. We then discuss how
it may be construed as an approximate error correcting code
and define various bath models we will use for the rest of
the paper. We then discuss the mutual information diag-
nostic for memory time and distill the core conclusions of
our work in the form of Theorem 1. It shows that if a large
N system has a sparse low energy spectrum, couples to the
bath uniformly, and is an approximate QECC, then it has a
memory time polynomial in N at low enough temperatures.
In the ensuing sections, we deploy this theorem to various
quantum memory constructions.
In Sec. III, we study two concrete examples of quantum

memories built from two gauged harmonic oscillator
models coupled to a thermal reservoir. The memory time-
scales as N2 in both models. For the first model, the N2 life
time persists even at high temperature, but the model
requires nonlocal logical operations. We then construct a
local model which has a N2 memory time in the low
temperature phase, but requires a large coupling of strength
∼ logN between the gauged oscillators. At zero temper-
ature limit T → 0, the first model has a constant N2 life
time, while the second model has a divergent life time that
scales as N2e

ω
T , where ω is some energy scale of this model.

In Sec. IV, we consider what happens if the gauge
constraint is not imposed exactly, but only as an energetic
cost in the Hamiltonian. A large number of nonsinglet
excitations now modify the physics, but the information
retention time can be still be quadratic in N if the energy
scale of nonsinglet excitations is large.
Finally, in Sec. V, we ask to what extent does robustness

depend on the symmetry being exact and the Hilbert
space of quantum systems being infinite dimensional.
On the practical level, we want the quantum memories
to be implementable on finite dimensional quantum sys-
tems like qubits or qudits. To this end, we consider an even
more relaxed situation where the SUðNÞ symmetry itself is
not only ungauged but also approximate. We then build
a quantum memory consisting of N2 number of physical
qudits that interact nonlocally with each other. Quali-
tatively, this model behaves similarly to the one in
Sec. IV in the low energy sector, except small correction
terms that suppressed to order at most ∼ logN=N. We find
that if we require the total energy of the interaction scales as
logN and a reasonable pattern of coupling strengths, then
Theorem 1 again holds to guarantee a N2 memory time.
The zero temperature limit of life times for the last two
models also diverge as N2e

ω
T .
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II. MATRIX MODEL AND SET UP

A. Matrix quantum mechanics

We wish to study a gauged matrix model of harmonic
oscillators. First, recall the classical Lagrangian of a single
harmonic oscillator,

L ¼ 1

2
ðẋ2 − ω2x2Þ: ð3Þ

The canonical momentum is p ¼ ∂L
∂ẋ ¼ ẋ, in terms of which

we also have the Hamiltonian description,

H ¼ 1

2
ðp2 þ ω2x2Þ: ð4Þ

The system is quantized in the usual way by setting
½x; p� ¼ iℏ.
A generalization can be made by promoting the variable

xðtÞ to an N × N matrix XðtÞ and promoting products of
variables to matrix multiplication. We hasten to emphasize
that this N × N matrix structure does not refer to a quantum
Hilbert space; rather it is a way of organizing N2 variables
into a single unit. Then one gets an action for a matrix
harmonic oscillator,

L ¼ 1

2
Tr½ð∂tXÞ2 − ω2X2�: ð5Þ

Again, let us emphasize that the trace is not a quantum
Hilbert space trace but rather a sum over the matrix degrees
of freedom. The diagonal elements of X are real variables,
while the off-diagonal components are complex variables
coming in conjugate pairs.
The momentum conjugate to Xi

j is P
j
i ¼ Ẋj

i . We quantize
the theory by specifying canonical commutators for all
pairs of conjugate variables. If we extend quantum
Hermitian conjugation to include a transpose of the
matrix degrees of freedom, then the quantum variable X
is Hermitian. In terms of its matrix elements Xi

j, Hermiticity

implies that Xi
i are quantum Hermitian while Xi

j and X
j
i are

quantum Hermitian conjugates, ðXi
jÞ† ¼ Xj

i . Note that X
i
j is

not quantum Hermitian when i ≠ j, but the above formula
is still correct.
After quantization, it is convenient to work in terms of

creation and annihilation operators,

aij ¼
ffiffiffiffi
ω

2

r
ðXi

j þ iPi
jÞ;

a†ji ¼ 1ffiffiffiffiffiffi
2ω

p ðXj
i − iPj

iÞ; ð6Þ

which satisfy

½aij; a†kl � ¼ δilδ
k
j : ð7Þ

The Hamiltonian written in terms of a and a†s takes the
simple form

H ¼ ωTrða†aÞ ð8Þ

after subtracting the zero-point energy. There is a unique
vacuum state j0i satisfying

aijj0i ¼ 0; ∀ i; j: ð9Þ

Acting creation operators on this vacuum then generates all
the Fock states that span the Hilbert space.
Looking back at the Lagrangian in Eq. (5), we see that

it has a symmetry under unitary transformations XðtÞ →
UXðtÞU†, with U ∈ UðNÞ. (This is why we consider
complex off-diagonal entries in X.) This can be made into
a local symmetry UðtÞ, meaning a symmetry where UðtÞ
can be different at each different time, as follows. We add a
matrix gauge field AðtÞ and promote the time derivative to a
covariant derivative, defined as

DtX ¼ ∂tX − ½A; X�; ð10Þ

with AðtÞ transforming as AðtÞ → UðtÞAðtÞUðtÞ† −
iUðtÞ∂tUðtÞ†. One can check that the covariant deriva-
tive transforms in the same way as XðtÞ, which is
DtX → UðtÞDtXUðtÞ†. Therefore, the Lagrangian is
invariant under this transformation. We call this symmetry
with respect to the time-dependent transformation the
gauge symmetry.
The model equipped with such a symmetry can be

regarded as a redundant description of a physical system
whose Hilbert space is defined to include only gauge-
invariant states. Indeed, in this model, AðtÞ can be view as a
Lagrange multiplier. Fixing a gauge A ¼ 0, and integrating
out A in the path integral representation gives the Gauss law
constraint:

G ¼ ½X; Ẋ� ¼ 0: ð11Þ

This condition is implemented by requiring that physical
states jψi be annihilated by G, Gjψi ¼ 0.
One can see that the states satisfying this constraint are

the symmetry singlets, generated by traces of operators
acting on the vacuum,

jψi ¼ Trða†n1ÞTrða†n2Þ � � �Trða†nkÞj0i: ð12Þ

These states, after being normalized, span a subspace of
the ungauged matrix model’s Hilbert space. They are also
eigenstates of the Hamiltonian (8) such that

Hjψi ¼ ω
Xk
i¼1

nijψi: ð13Þ
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B. Physical states and the Knill-Laflamme condition

We now describe in broad terms how the properties of
these gauge-singlet states can be leveraged to generate
approximate codes obeying an approximate version of the
KL condition. First some terminology. If a gauge invariant
operator contains only a single trace, it is called single trace
operator. Operators with multiple traces are called multi-
trace. Using the commutation relation, Eq. (7), one can
derive a useful commutator rule for single trace operators,
with n1;2, m1;2 being Oð1Þ number,

½Trðan1a†m1Þ;Trðan2a†m2Þ�

¼ ðn1m2−n2m1ÞTrðan1þn2−1a†m1þm2−1ÞþO

�
1

N2

�
: ð14Þ

Using these rules, overlaps of states generated by acting
multitrace operators on the ground state can be obtained to
leading order in large N. For example, the squared norm of
the state Trða†Þj0i is

h0jTrðanÞTrða†nÞj0i ¼ h0j½TrðanÞ;Trða†nÞ�j0i

¼ nNn þO

�
1

N2

�
: ð15Þ

We also find that states with the same energy are almost
orthogonal, with overlaps suppressed by a power of N. For
example,

h0jTrða
mÞTrðan−mÞ
N

m
2

Trða†nÞ
N

n
2

j0i ¼ O

�
1

N

�
: ð16Þ

Moreover, one can show that a factorization property
holds for products of single trace operators. As an example,
given four single trace operators with vanishing expectation
value, Oi, Oj, Ok, and Ol, we have

h0jOiOkO
†
l O

†
j j0i ∼ h0jOiO

†
j j0ih0jOkO

†
l j0i

þ h0jOiO
†
l j0ih0jOkO

†
j j0i þO

�
1

N2

�
;

h0jOiOkO
†
j j0i ∼O

�
1

N

�
: ð17Þ

If we could find a way to classify Oi and Oj as logical
operators and Ok and Ol as errors, then this equation
would be interpreted as an approximate version of the
Knill-Laflamme condition (aKL). While one may deviate
from KL in many forms, the approximate KL condition we
consider in this work could be written as

hijE†
aEbjji ¼ fabδij þ

gijab
N2

;

hijEajji ¼
eija
N

: ð18Þ

In the above formulas, we are imagining that Ea and Eb
are some general nonidentity error operators. In general, we
expect them to be any gauge invariant operators that satisfy
some constraints, depending on how we couple the model
to a thermal environment. We will give concrete examples
in Sec. III, and explicitly calculate the functions f, g, and e.
These examples will show such large N matrix quantum
mechanics models can used to construct approximate
quantum error correcting codes [14].
For later use, we also briefly discuss the counting of

gauge invariant operators. If we have only one matrix
harmonic oscillator, the general invariant states are in the
form of Eq. (12). At energy level nω, the number of distinct
states (which are also approximately orthogonal) is equal to
the number of partitions of integer pðnÞ. For example, at
level n ¼ 3. The three partitions are

3 ¼ 3þ 0;

3 ¼ 2þ 1;

3 ¼ 1þ 1þ 1: ð19Þ

Correspondingly, we have three gauge invariant states at
energy 3ω, which are

Trða†3Þj0i; Trða†2ÞTrða†Þj0i; Trða†Þ3j0i: ð20Þ

In general, we can have arbitrary k ≤ n number of matrix
harmonic oscillators, each carrying energy that is an integer
multiple of ω. We label the individual matrix operator by its
subindex, a1; a2; a3;…. The counting becomes more com-
plicated with multiple oscillators, so let us focus on the
states generated by single trace operators. At energy level
nω, these states can be written as

TrðPfa†n11 a†n22 � � �a†nkk gÞj0i; ð21Þ

with n ¼ P
i ni. The state j0i is tensor product of k ground

states of each oscillator. We use the symbol P to denote a
particular permutation of all the operators inside the
bracket. By counting how many different ways of splitting
n and the number of permutations, one can show that the
number of these single trace operators asymptotically
scales as kn when n is large enough. For simplicity, in
the concrete models that will be discussed in the following
sections, we consider no more than two matrix modes.

C. Bath model

We have seen that if errors and logical operators can be
chosen properly, then an approximate Knill-Laflamme
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condition holds. Based on this, we expect that a single
error operator can only corrupt the logical information at
order 1

N2. At the same time, gauge invariance constrains the
number of possible errors that may occur in the form of
excitations. Since the density of states for the gauged
oscillator grows with energy but is independent of N below
some critical value,wemay expect such a system to serve as a
good quantum memory even at finite temperature. To show
this explicitly, we couple the proposed quantummemory to a
thermal reservoir and calculate the memory time tmem.
We make the standard assumption that the bath is

Markovian and couples to the system locally. More
specifically, we model the bath as collection of bosonic
modes bl, e.g. a collection of oscillators, with the following
thermal spectral function [31],

TrðρBbkðνÞb†l ð−νÞÞ ¼ δkl

���� ν

1 − e−βν

���� ≔ δklγð−νÞ: ð22Þ

Physically, this means that the probability of having a given
error that adds energy ϵ ¼ −ν to the system is suppressed
by a thermal factor γðϵÞ.
We will discuss three scenarios for the structure of the

bath. In particular, there is a degree of ambiguity in what
constitutes a generic physical bath for these systems, so we
consider a number of models of varying levels of generality.
Case 1: Consider two matrix harmonic oscillators, a1 and

a2, separated by a large distance in space. The reason for
introducing two such oscillators will become clear in the
next section. We model this setup by assuming that these
oscillators couple to the thermal bath independently with
order one coupling constants. This means we assume that
thermal errors can include any multitrace operators provide
they are uncorrelated between a1 and a2. By uncorrelated
error, we mean that the modes a1 and a2 can not appear
inside the same trace; instead errors must be of the form

EL;R ¼
Y

ðr1;r2Þ ∈ L;ðs1;s2Þ ∈ R

×
∶TrðPfa†r11 ar21 gÞ∶∶TrðPfa†s12 as22 gÞ∶

N
r1þr2þs1þs2

2

; ð23Þ

withL andR being some sets of integer 2-tuples. The symbol
P denotes the sum over all distinct arrangements
of the creation and annihilation operators inside the bracket.
The symbol ∶∶means normal ordering and theN-dependent
normalization is to ensure that the single trace operator of
each a, a† arrangement has order one norm [see Eq. (15)]. In
terms of these errors, the thermal Hamiltonian is

Hthermal ¼
X
L;R

λL;RbL;REL;R þ H:c:; ð24Þ

where H.c. stands for Hermitian conjugate. We will discuss
this case in more detail in Sec. III A.

Case 2: We assume the coupling with the bath modes bl
are through single-trace operators, with order one coupling
constants λls. We still consider modes a1 and a2 from
two different matrix oscillators. The thermal coupling
Hamiltonian is in the form of

Hthermal ¼
X
fnkg

λfnkgbfnkg
∶TrðPfa†n11 a†n22 an31 an42 gÞ∶

N

P
4

k¼1
nk

2

þ H:c:

ð25Þ
At first sight, it appears that coupling only to single-trace
operators is a strong assumption, because in general we
should allow all gauge invariant operators to couple with the
bath. However, this is still general enough since single-trace
errors accumulate into multi-trace errors as time increases.
We will discuss this scenario in more detail in Sec. III B.
Case 3: We consider the most general coupling to the

thermal bath where each of the N2 harmonic oscillator
modes can couple to the bath independently without
requiring the coupling terms be gauge invariant. In addi-
tion, we assume that the coupling constant decays expo-
nentially with the number of creation and annihilation
operators involved. This is a reasonable assumption
because the correlated errors that involves more operators
occur with smaller probability. We explain this in detail in
Sec. IV, where we consider the ungauged model.

D. Mutual information diagnostic

Given the assumptions on the bath described above, the
time evolution of our system can be described by a
Lindblad equation after tracing out the bath,

ρ̇ðtÞ ¼ −i½H; ρðtÞ� þ
X
a

λaðνaÞEaρðtÞE†
a

−
1

2

X
a

λaðνaÞfE†
aEa; ρðtÞg; ð26Þ

where λaðνaÞ ¼ λaγðνaÞ, is the coupling constant multi-
plied with thermal factor. νa is the energy of excitation, and
the fEag depend on the interaction Hamiltonian.
The generic expectation is that the above system dynam-

ics will lead to rapid information loss within the system. We
wish to show that this is not the case for the right kind of
code constructed from the matrix degrees of freedom. To
quantitatively measure the memory time, we entangle the
encoded d-dimensional system with a reference R. The
initial state is thus

1ffiffiffi
d

p
Xd
i¼1

jiĩi ≔ 1ffiffiffi
d

p
Xd
i¼1

jiiSjiiR;

ρ0 ¼
1

d

Xd
i;j¼1

jiĩihjj̃j; ð27Þ

and the correlation between the reference is maximal.
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The goal is then to understand how the system-reference
correlation evolves with time. The state evolves under the
Lindblad dynamics into

ρðtÞ ¼ eLtρ0;

where LO ¼
X
k

λkEkOE†
k −

X
k

λk
2
fE†

kEk;Og: ð28Þ

In terms of the system and reference reduced density
matrices ρSðtÞ ¼ TrR½ρðtÞ� and ρRðtÞ ¼ TrS½ρðtÞ�, we may
quantify the correlation using the mutual information,

IðS∶RÞðtÞ ¼ SðρSðtÞÞ þ SðρRðtÞÞ − SðρðtÞÞ: ð29Þ
When the mutual information is maximal, I ¼ 2 ln d, we
say that the quantum information is stored in the quantum
memory. However, as IðS∶RÞ decays, the information of
the encoded qubit leaves the memory and dissipates into the
environment. For the sake of simplicity, we will focus on
quantum memory constructions that store a single encoded
qubit in the ensuing sections, so d ¼ 2.
We now tie together all the ingredients above in a

theorem. In general, different couplings with the bath
can induce different errors on the system. However, as
long as such errors are not too numerous and can be
suppressed by the code, i.e. satisfying the aKL condition,
then the following theorem guarantees the memory time of
the quantum information is relatively long. To be precise,
this theorem shows that the mutual information diagnostic
decays polynomially with t at a rate suppressed by 1

N2,
which implies that the memory time can scale polynomially
with N.
Theorem 1. Consider a system whose low energy states

form an approximate quantum error correcting code that
encodes a logical qudit S and a set of physical errors E
induced by the system-bath coupling (cf. Sec. II C).
Provided the following conditions are satisfied,

(i) (Sparse spectrum) There exists an energy ϵ0 below
which the effective number of errors4 in E with
energy ϵ ≤ ϵ0 is independent of N and bounded by
expðμϵÞ for some μ > 0,

(ii) (Uniform coupling) The thermal Hamiltonian that
couples each E ∈ E to an independent bath operator
has coupling constant no larger than Oð1Þ,

(iii) (Approximate error correction) ∀Ea; Eb ∈ E, the
approximate Knill-Laflamme condition [Eq. (18)] is
satisfied,

then the mutual information IðS; RÞ defined in Eq. (29) is
given by

IðS∶RÞðtÞ ¼ 2 ln d − K

�
t
N2

�
; ð30Þ

where KðxÞ is a polynomial function of x, for temper-
ature T < 1

μ.
Proof.—The proof is given in Appendix A. ▪
In the following sections, we will construct different

systems coupled via different bath models, as outlined in
Sec. II C, and prove that they satisfy the assumptions in the
theorem, such as the approximate Knill-Laflamme con-
dition (aKL) for a corresponding set of error operators and
logical states.
Remark: Note that the above theorem does not require the

code subspace to be the ground space of the system.
Therefore, the N2 scaling of memory time holds generally
for these models no matter how the code subspace is chosen
as long as the requisite conditions are satisfied. Intuitively,
this is because the transition rate between states are 1=N2

suppressed. However, as excited states can still slowly decay
into lower energy states at the same rate, their memory times
need not be longer by lowering the temperature.
On the other hand, for quantum memories where we also

choose the code subspace to be the ground space, the
memory lifetime can be further extended by a multiplica-
tive factor expðω=TÞ, which is related to the effect of
thermal suppression. This renders the total low temperature
memory time to be of OðN2 expðω=TÞÞ for some energy
scale ω as we see in some of the examples below.

III. FULLY GAUGED MODEL

A. Nonlocal model

As the first example, consider two gauged harmonic
oscillators a1 and a2 with SUðNÞ gauge symmetry, separa-
ted by a large distance. Their interaction is weak, and each
couples to the thermal reservoir locally and independently.5

The Hamiltonian takes the following form:

H ¼ ωTrða†1a1Þ þ ωTrða†2a2Þ þ
X
L;R

λL;RbL;REL;R þ H:c:;

ð31Þ

where EL;Rs are the possible errors acting on this model,
and λL;Rs are Oð1Þ coupling constants.
The general gauge invariant states are given in Eq. (21)

with k ¼ 2. However, since we assume that these modes
only couple to the thermal bath locally, the set of possible
error operators is a proper subset of all physical operators.
These errors are uncorrelated in the sense that each error
operator contains only a single trace either the mode a1
or the mode a2, but never both. Given two sets of integer
2-tuples L and R, we can define the errors as

4These are errors that contribute nontrivially in the Lindblad
equation.

5More realistically, thermal noise can have finite correlation. In
such cases, we assume that the distance separating the two
oscillators is much larger than the correlation length so our
assumptions remain good approximations.
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EL;R ¼ ∶
Y

ðr1;r2Þ ∈ L;ðs1;s2Þ ∈ R

TrðPfa†r11 ar21 gÞTrðPfa†s12 as22 gÞ
N

r1þr2þs1þs2
2

∶;

ð32Þ

where the symbol P denotes the sum over all distinct
arrangements of the ai; a

†
i operators.6 In general,

Pfa†r1ar2g admits ðr1 þ r2Þ!=r1!r2! terms of distinct
arrangements. Each operator is brought to normal ordering,
and divided by some power of N to make sure that these
operators have Oð1Þ norm.

1. Logical states

Given this set of error operators, we can construct logical
states that are protected against them. In general, we may
choose the logical states to be

jIi ≔
Y

ðm;nÞ ∈ I

Trða†m1 a†n2 Þ
N

mþn
2

j0i12; ð33Þ

with m, n ≥ 1 and belonging to some set I of integer
2-tuples. The state j0i12 is the tensor product of the vacuum
states of the two oscillators. For simplicity, let us focus
on a code subspace spanned by two states and treat it as a
logical qubit7:

j1̃i ¼ Trða†21 a†22 Þ
N2

j0i12;

j2̃i ¼ Trða†1a†2Þ2ffiffiffi
2

p
N2

j0i12: ð34Þ

They are not orthogonal states, since h1̃j2̃i ¼
ffiffi
2

p
N þ

Oð 1
N3Þ. However, it is straightforward to identify an

orthonormal basis j↑̃i and j↓̃i, defined as

j↑̃i ¼ j1̃i

j↓̃i ¼ j2̃i − h2̃j1̃ij1̃iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2̃j1̃i2

q : ð35Þ

2. Errors and aKL

Because we assume errors are gauge invariant, they are
expressible as single or multitrace operators [see Eq. (32)].
For the purpose of invoking Theorem 1, it suffices to check
that aKL holds for these errors,

hĩjE†
L0;R0EL;Rjj̃i ¼ fL0R0;LRδij þ

gijL0R0;LR

N2
þO

�
1

N4

�
;

hĩjEL;Rjj̃i ¼
eijL0R0;LR

N
þO

�
1

N3

�
: ð36Þ

To build up some intuition, let us first examine a few
instructive examples before we arrive at the more general
relation (36). To start, one can check that the operator
Trða†

1
a1Þ

N has the logical states as eigenstates,

Trða†1a1Þ
N

jĩi ¼ 2

N
jĩi: ð37Þ

Therefore, it is a logical identity operator. We can similarly
check that the Hamiltonian that generates the system
dynamics is proportional to the logical identity, which is
necessary for a memory.
Next, let us examine a class of single-trace errors of the

form En ¼ Trða†n
1
Þffiffi

n
p

N
n
2
. As a potential bit flip error, we check the

transition amplitude,

h↓̃jE†
mEnj↑̃i ¼ O

�
1

N3

�
: ð38Þ

The bit flip error only carries n dependence at order Oð 1
N3Þ.

Similarly, the phase errors are also suppressed,

h↑̃jE†
mEnj↑̃i ¼ δnm

�
1þ 3n

N2
þO

�
1

N4

��
;

h↓̃jE†
mEnj↓̃i ¼ δnm

�
1þ 2n

N2
þO

�
1

N4

��
: ð39Þ

Note that the leading order terms of these equations
come from factorized two point functions h0jE†

mEnj0ihĩjj̃i,
and they represent the nonconnected contribution to the
four point correlator. The subleading corrections are from
the connected part, shown diagrammatically in Fig. 1. It is
this part that induces phase and bit-flip errors between
the two logical states. In a similar way, one can check
that the aKL condition holds for other single-trace errors.

FIG. 1. The inner product can be viewed as scattering between
two particles. (1, 0) represents the logical state j↑̃i. The connected
part is suppressed by 1

N2.

6For example, a†2a2 and a†aa†a are counted as two distinct
arrangements.

7The logical subspace we use is not the lowest energy subspace
of the Hamiltonian, so they have the tendency to decay into lower
energy states. However, the decay rate is suppressed by 1

N2, as
discussed in Appendix B 1.
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We present the more comprehensive calculations in
Appendix B 1.
The conclusion of this analysis is that single-trace

operators can only produce 1=N suppressed errors, thus
giving rise to the aKL. Using the results for single-trace
errors, one can also derive the aKL conditions for any
multitrace errors. As an example,

h↑̃jE†
pE

†
qEmEnj↑̃i ¼ Fðm; n; p; qÞ

þG↑ðm; n; p; qÞ
N2

þO

�
1

N4

�
;

h↓̃jE†
pE

†
qEmEnj↓̃i ¼ Fðm; n; p; qÞ

þG↓ðm; n; p; qÞ
N2

þO

�
1

N4

�
: ð40Þ

The function F is the same in both correlators, so it
represents a correctable error. In contrast, different G
functions appear in the two equations. Their difference,
G↑ −G↓, represents a small uncorrectable error. They both
have simple diagrammatic representation as shown in
Figs. 2 and 3, from which we can read off the function
Fðm; n; p; qÞ. It must take the form

Fðm;n;p;qÞ ¼ ðδpmδqnþ δqmδ
p
nÞþ δpþq

mþn
fðp;q;m;nÞ

N2
; ð41Þ

where the Oð 1
N2Þ term comes from the partly connected

diagram in Fig. 2. Since F does not depend on the logical
information and will not contribute to uncorrectable errors,
it is not pertinent to the subsequent discussion. Therefore,
we will not determine f explicitly.

The function G can be read off from Fig. 3. Using the
results for single-trace errors in Eq. (39), we can show that

G↑ðm; n; p; qÞ ¼ ðδpmδqn þ δqmδ
p
nÞð3nþ 3mÞ;

G↓ðm; n; p; qÞ ¼ ðδpmδqn þ δqmδ
p
nÞð2nþ 2mÞ: ð42Þ

From this explicit form, we see that there is indeed a
difference between the these functions, so the logical states
are connected by multitrace operators, again with 1=N
suppressed amplitudes provided the indices m, n, p, q are
not too large.
Now, although we only explicitly calculated a particu-

lar class of multitrace errors, the algorithm generalizes
directly to more general cases. The analog of the G
function always consists of connected scattering diagram
of logical states and single-trace operators. In other
words, the uncorrectable part of any multitrace error
can be written as a sum over contributions of the single-
trace errors, due to the factorization property of large N
matrix models [Eq. (17)]. Therefore, if the aKL condition
is satisfied for the single-trace operators, it will also hold
for these multitrace errors. Note that if a diagram has four
legs connected, then it must be suppressed by 1

N2. In
special cases we also have three-leg diagrams, where the

error operators involve
Trða†2

1;2Þffiffi
2

p
N

or
Trða†

1;2Þffiffiffi
N

p . For example, the

G function in the correlator h↑̃j Trða21Þffiffi
2

p
N

Trða2
2
Þffiffi

2
p

N

Trða†2
1
Þffiffi

2
p

N

Trða†2
2
Þffiffi

2
p

N
j↑̃i

contains the product of two three-leg diagrams, as shown
in Fig. 4. Each of them is proportional to 1

N, so the term
involving G that depends on the logical state is still
suppressed by 1

N2.

FIG. 2. The first two diagrams are totally disconnected. The third is partly connected and represents the Oð 1
N2Þ term in Fðm; n; p; qÞ.

FIG. 3. The G functions arise from connected diagrams of order Oð 1
N2Þ that involve the state Trða†1Þj0i.
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3. Mutual information diagnostic

Now we couple this quantum memory to a single-qubit
reference system R, and calculate the mutual information
between them [Eq. (29)]. At t ¼ 0, ρ0 is a pure state,

ρ0 ¼
1

2

X2
i;j¼1

jiĩiSRhjj̃j: ð43Þ

The system and reference are maximally entangled, so the
initial mutual information is IðS∶RÞð0Þ ¼ 2 ln 2.
Next we count the effective number of error operators

which will contribute nontrivially to logical errors under the
Lindblad dynamics. Operators that contain more than two
a1 or a2 trivially annihilate the logical states, so we only
need to count the error operators with r2, s2 ≤ 2. The
number of gauge invariant error operators with energy nω
that satisfy this requirement is bounded by n2pðnÞ, where
pðnÞ is the number of integer partitions of n. So the number
of effective errors is subexponential asymptotically.
By construction, the bath model has uniform coupling as

required by condition 2 in Theorem 1. Together with the
aKL condition above, we apply Theorem 1 and conclude
the mutual information decays in the following way,

IðS∶RÞðtÞ ¼ 2 ln 2 − K

�
t
N2

�
; ð44Þ

where KðtÞ is linear in t at early time. More specifically,

when λt ≪ N2,KðtÞ ∼
P

n
nλnt

N2 . It develops a dependence on

higher powers of t at late time λt ∼ N2, where

KðtÞ ∼P
pð
P

n
nλnt

N2 Þp.
Details of the proof for Eq. (44) and more rigorous

results can be found in Appendix A, but here we briefly
sketch the general ideas behind the proof. The dominant
errors in the early time regime are the single trace errors. In
contrast, in the late time regime, the dominant errors are
multitrace. In fact, the average size k of errors, defined as
the number of traces in an error operator, grows linearly
with time. These errors, when acting on logical states, cause
a loss of quantum information proportional to kp

N2p, leading
to the ð t

N2Þp growth behavior at late time.
Note that the rate of information loss here is captured by

the sum over λn, which can be approximated byX
n

nqλn ¼
X
n

nqdne−nβω ∼
X
n

nqþ2pðnÞe−nβω; ð45Þ

where q ¼ 1, and dn is the number of distinct states at the
nth level. In this model, dn ∼ n2pðnÞ, which grows sub-
exponentially with n. As the sum is always finite, it follows
that the memory time scales like tmem ∼ N2. From the above
discussion, we conclude that this model serves as a good
passive quantum memory.
Now we discuss the zero temperature limit. Since the

thermal fluctuation is suppressed, the relevant error oper-
ators are only those which lower the energy when acting on

logical states. In this model, they are Trða1;2Þffiffiffi
N

p and
Trða2

1;2Þ
N ,

whose aKL conditions are given in Appendix B 1. They
lead to a spontaneous decay of quantum information at a
constant rate of Oð 1

N2Þ at zero temperature. There are also
operators that do not change energy of the system, but they
have no contribution to the information loss since their
thermal spectral functions [Eq. (22)] vanish at zero temper-
ature limit, limβ→∞γðν ¼ 0Þ ¼ 0.
To modify the encoded information, we need to apply

logical operators, which involve Trða†1a†2Þ or Trða†21 a†22 Þ.
This requires us to perform nonlocal operations (or a series
of local operations) by bringing the two modes together and

FIG. 4. Contribution of connected diagram with three legs.
Each is suppressed by 1

N.

FIG. 5. In (a), two modes are brought together to implement a logical operator. In (b), two modes are separated far away. Thermal
fluctuation are sufficiently local so the quantum information is preserved.
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turning on some local coupling, as shown in Fig. 5. We
assume this procedure to be accurate. After the logical
operations, we can separate the two modes so that the
system again behaves like a passive memory that protects
the encoded information.
We can also implement logical operations without bring-

ing the two modes together. Instead, we may induce a
coupling mediated by a third ancillary mode c. The pro-
cedure is that we first bring the mode c close enough to the
mode a1 and implement the operator Trða†m1 c†Þ. Then we
bring together the intermediate mode and the mode a2 and
implement the operator Trða†n2 cÞ. These two moves can be
combined together to give the desired logical operation,

Trða†22 cÞTrða†21 c†Þj0i ∝ Trða†21 a†22 Þj0i: ð46Þ
In summary, this model achieves the power law scaling

of memory time with system size. However, it has some
drawbacks. First, it requires a gauge symmetry that acts
consistently on the two matrix modes separated by a large
distance. Second, the logical operation is nonlocal, and thus
can be difficult to implement. For these reasons,we construct
another model, where the twomatrix modes are put together,
but with the added price that a high energy penalty is
required.

B. Local model

In this model, we still consider two matrix harmonic
oscillators, but we put them together and turn on a large
coupling between them. The full Hamiltonian is

H ¼ ωTrða†1a1Þ þ ωTrða†2a2Þ

þ J

�
Trða†1ÞTrða1Þ

N
þ Trða†2ÞTrða2Þ

N
− 1

�
2

þHthermal

ð47Þ
with J ∼ 2ω lnN. The ground space of this Hamiltonian is
spanned by the following two states,

j↑̃i ¼ Trða†1Þffiffiffiffi
N

p j0i12;

j↓̃i ¼ Trða†2Þffiffiffiffi
N

p j0i12; ð48Þ

where j0i12 is again the tensor product of the vacuum states
of the two oscillators. These states span the code subspace
of the model.
We assume that Hthermal contains only single trace

operators:

Hthermal ¼
X
fnkg

λfnkgbfnkg
∶TrðPfa†n11 a†n22 an31 an42 gÞ∶

N

P
4

k¼1
nk

2

þ H:c:;

ð49Þ

where P again denotes the sum over distinct arrangements
of the operators inside the curly bracket, and all the
operators are then normal ordered. In general,

TrðPfa†n11 a†n22 an31 an42 gÞ is a sum over ðn1þn2þn3þn4Þ!
n1!n2!n3!n4!

terms.
The interaction term in the Hamiltonian Eq. (47) incurs

an energy penalty for any logical errors that involve Trða†1Þ
or Trða†2Þ, so their probability to appear are suppressed due
to the thermal factor. For example, the probability of the
error operator Trða†1ÞTrða2Þ is γðJÞγð−JÞ ∼ e−

J
T . We set

the energy scale J to be 2ω lnN, which guarantees that
these uncorrectable errors are unlikely to occur when N is
large enough. All the other operators generated by the
coupling in Eq. (49) are treated as possible errors that could
act on the logical state. To show that these errors are
approximately correctable, and to invoke Theorem 1, it
suffices to check that aKL holds for single-trace errors,

Efnkg ≔
∶TrðPfa†n1

1
a
†n2
2

a
n3
1
a
n4
2
gÞ∶

N

P
4

k¼1
nk

2

,

hĩjE†
fn0kgEfnkgjj̃i ¼ ffn0kg;fnkgδij þ

gijfn0kg;fnkg
N2

þO

�
1

N4

�
;

hĩjEfnkgjj̃i ¼
eijfnkg
N

þO

�
1

N3

�
: ð50Þ

Applying the argumentwe discussed in Sec. III A, one can
again derive the aKL equation for general multitrace oper-
ators using the above relations for single-trace operators.
This guarantees that the aKL condition holds for all the error
operators generated in this model. A proof of the aKL
condition for themost general error is given inAppendixB 2.
Here we discuss a few helpful examples to show that these
errors indeed conform with the aKL condition.

Again, let us first check operators of the form
Trða†

1;2a1;2Þ
N .

They induce a phase error of size Oð1NÞ,

h↑̃jTrða
†
1a1Þ
N

j↑̃i ¼ 1

N
;

h↓̃jTrða
†
1a1Þ
N

j↓̃i ¼ 0; ð51Þ

which is consistent with the aKL condition in Eq. (50).
Next, we check the aKL conditions for single-trace errors

of the form Eðn;mÞ ¼ Trða†n
1
a†m
2
Þ

N
mþn
2

, with n ≥ 1, m ≥ 1. For the

bit flip errors, we can show that

h↓̃jE†
ðn0þ1;m0−1ÞEðn;mÞj↑̃i ¼ δnn0δmm0

ðnþ 1Þm
N2

þO

�
1

N4

�
;

ð52Þ

and for the phase errors, we have
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h↑̃jE†
ðn0;m0ÞEðn;mÞj↑̃i ¼ δnn0δmm0

�
1þ n2 −m2

N2
þO

�
1

N4

��
;

h↓̃jE†
ðn0;m0ÞEðn;mÞj↓̃i ¼ δnn0δmm0

�
1þm2 − n2

N2
þO

�
1

N4

��
:

ð53Þ

When m or n equals to 0, the equations are slightly
different. For instance, when m ¼ 0, n ≥ 2, the matrix
elements are

h↑̃jE†
ðn0;0ÞEðn;0Þj↑̃i ¼ δnn0

�
1þ nðn − 1Þ

N2
þO

�
1

N4

��
;

h↓̃jE†
ðn0;0ÞEðn;0Þj↓̃i ¼ δnn0 ;

h↑̃jE†
ðn0;0ÞEðn;0Þj↓̃i ¼ 0: ð54Þ

Although Hthermal only contains single-trace operators,
the expansion in Eq. (28) involves multitrace operators
acting on the state. To see the effect of these multitrace
errors, we evaluate an example:

h↑̃jE†
ðp;0ÞE

†
ðq;0ÞEðm;0ÞEðn;0Þj↑̃i ¼Fðm;n;p;qÞ

þGðm;n;p;qÞ
N2

þO
�

1

N4

�
;

h↓̃jE†
ðp;0ÞE

†
ðq;0ÞEðm;0ÞEðn;0Þj↓̃i ¼Fðm;n;p;qÞþO

�
1

N4

�
:

ð55Þ

If the Knill-Laflamme conditions are satisfied, then the
above expressions should yield matrix elements that only
depend on the errors. We see that the presence of the G
function does allow one to distinguish the logical states, but
the effect is suppressed by 1=N2. These correlation func-
tions both have simple diagrammatic representations sim-
ilar to those shown in Figs. 2 and 3, but the explicit form of
these two functions are complicated,

Fðm; n; p; qÞ ¼ ðδpmδqn þ δqmδ
p
nÞ þ δpþq

mþn
fðp; q;m; nÞ

N2
;

Gðm; n; p; qÞ ¼ ðδpmδqn þ δqmδ
p
nÞ½nðn − 1Þ þmðm − 1Þ�

þ ðδpm�1δ
q
n∓1 þ δqm�1δ

p
n∓1Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
pqmn

p
; ð56Þ

with some function f whose exact form is not essential for
our argument.
Again all the errors discussed above are approximately

correctable errors, because they can only corrupt the logical
information up toOð 1

N2Þ. The uncorrectable errors or logical
operators are those that contain Trða†1Þ and Trða†2Þ.
However, recall that we have tuned the coupling J to be

proportional to 2ω lnN so that these uncorrectable errors
have a similar 1=N suppressed effect comparable in size to
the approximately correctable errors.
By construction, the bath model has uniform coupling as

required by condition 2 of Theorem 1. In addition, the
number of gauge invariant error operators with energy nω
that are induced by Eq. (49) grows asymptotically as 2n. In
particular, the number of effective error operators that act
nontrivially on the logical state, i.e. ones contributing to the
information leak in the Lindblad equation, must have n2,
n4 ≤ 1. Therefore, the total number of effective errors with
energy ωn is bounded by an exponential function, as
required by condition 1.
Because the aKL condition holds and the bath model

only generates errors which are protected by the code, we
again invoke the Theorem 1. The mutual information
between the encoded qubit S and a reference R is

IðS∶RÞðtÞ ¼ 2 ln 2 − Klocal

�
t
N2

�
: ð57Þ

The expression KlocalðtÞ in this model is slightly different
from KðtÞ, since the Oð 1

N2Þ term in the aKL condition
depends quadratically on n [see Eq. (52)]. When λt ≪ N2,

Klocalð t
N2Þ ∼

P
n
n2λnt

N2 . At late time λt ∼ N2, KlocalðtÞ∼
ðPn n

2λntÞ2.
More importantly, note that the rate of information loss is

given by

X
n

nqλn ¼
X
n

nqdne−nβω;

∼
X
n

nq2ne−nβω; ð58Þ

where q ¼ 2, and dn ∼ 2n is the number of single trace
states at the nth energy level. A crucial distinction from the
previous model is the Hagedorn-like transition with a
critical temperature Tc ¼ ω

ln 2 [26]. In the low temperature
phase where T < Tc, the rate of information loss (58) is
finite and N independent. Therefore the large N gauged
matrix model has a long memory time tmem ∼ N2. However,
for T > Tc, (58) exhibits a Hagedorn-like behavior.8 As a
result, KlocalðtÞ now also scales with N. This N dependence
cancels out the large N suppression, and the memory time
no longer scales with the system size. This behavior is
similar to the holographic code [10], where the temperature
needs to be lower than a critical value to maintain the
robustness of the encoded information.

8Note that for finite N, the Hagedorn behavior does not
continue to arbitrary energies, but only to order N2, the total
number of gauge invariant degrees of freedom. The counting of
gauge invariant operators can be found in Sec. II D.
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Since the logical states are within the ground space of
this model, there are no operators that can lower the energy.
The zero energy error operators do not contribute to
information loss at zero temperature limit, due to the
vanishing thermal spectral function limβ→∞ γðν ¼ 0Þ.
Therefore, when β → ∞, we expect the information decay
rate to scale as 1

N2 e−βω according to Eq. (58).

IV. RELAXING THE GAUGE CONSTRAINT

We now relax the gauge constraint to a global symmetry,
which we then impose energetically. The purpose of this is
twofold—(i) we want to understand how the stability of
quantum memory is tied to the gauge symmetry specifi-
cally, and (ii) there are very few models in nature that are
known to have gauge symmetries. For example, quantum
electrodynamics has a Uð1Þ symmetry and QCD has an
SUð3Þ symmetry. However, there is no known SUðNÞ
gauged model that can be realized in the laboratory,
especially for arbitrarily large N. Therefore, in this section,
we consider a single oscillator model with only a global
SUðNÞ symmetry. The system of interest has Hamiltonian

HGauss ¼
J
N

X
ij

Gi
jG

j
i ;

Gi
j ¼

X
k

a†ik a
k
j − a†kj aik; ð59Þ

where Gi
jjψi ¼ 0 is the Gauss law constraint associated

with the gauge symmetry. The energy penalty term plays
the role of a Casimir operator in the group SUðNÞ, with
eigenvalues proportional to J and being the same for all
states in an irreducible representation. This term in the
Hamiltonian forces the low energy states to be singlets of
the symmetry group.
In the absence of gauge symmetry, we allow the

modes aijs to couple independently with the thermal bath
operator. Let us consider the following thermal coupling
Hamiltonian,

Hthermal ¼ λ1
X
ij

bija
jð†Þ
i þ λ2

X
ijkl

bikjla
jð†Þ
i alð†Þk

þ λ3
X
ijklpq

bikpjlq a
jð†Þ
i alð†Þk aqð†Þp þ � � � :þ H:c: ð60Þ

One can show that the Lindblad Master equation takes
the form of

ρ̇ðtÞ ¼ λ1
Trða†Þffiffiffiffi

N
p ρ

TrðaÞffiffiffiffi
N

p þ λ1e−
J
T

X
ij

ã†ij ρã
j
i þ � � � ; ð61Þ

where ãij represents the component that transforms in the
adjoint representation of SUðNÞ, such that

ã†ij ¼ a†ij −
Trða†Þ
N

δij: ð62Þ

We show in Appendix C that it is a consequence of the
HGauss term in the Hamiltonian.
These non-singlet errors acting on the “gauge invariant”

logical states, i.e. logical states satisfying the Gauss law
constraint, only corrupt quantum information at Oð 1

N2Þ,
which we show in Appendix B 3. The summation in
Eq. (61) is over N2 number of such errors and therefore
the total effect of these nonsinglet errors is proportional to
N2e−

J
T . Hence the coupling strength J has to be at least

∼2T logN in order to suppress their effects to the same
order as those from the singlet errors. Note that this model
effectively contains one such matrix oscillator and does not
exhibit a Hagedorn-like transition. Nevertheless, it is clear
that stability is only ensured when T ≲ J , hence can also
depend on the system size.9 In the following, we will
assume their suppression with a strong enough coupling.
As for the singlet error operators, they are defined as

Eðfnk;mkÞg ≔
Y
k

TrðPfa†nkamkgÞ
N

P
k
nkþmk
2

: ð63Þ

The logical states we choose in this model are (divided
by proper normalization constant),

j1̃i ¼ Trða†LÞ2
N ðLÞ j0i;

j2̃i ¼ Trða†Lþ1ÞTrða†L−1Þ
N ðLÞ j0i: ð64Þ

We also define the orthogonormal basis

j↑̃i ¼ j1̃i þ j2̃i
2ð1þ h1̃j2̃iÞ ;

j↓̃i ¼ j1̃i − j2̃i
2ð1 − h1̃j2̃iÞ : ð65Þ

In order to recast the code subspace as a lower energy
subspace, let us consider a shifted version of the system
Hamiltonian and write the full Hamiltonian as

9This should be contrasted with the models with exact gauge
symmetry, where the temperature that sets apart a stable and an
unstable memory only depends on the natural frequency of the
system. Note that in the local model with gauge symmetry, there
is an additional scale introduced by J which has to satisfy J ≳
ω logN to to ensure stability. However, as long as we have tuned
J > Tc, then Tc will be the relevant energy scale for the low
energy stability.
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H ¼ J
N

X
ij

Gi
jG

j
i þ ωðTrða†aÞ − LÞ2 þHthermal; ð66Þ

where L > 0 is some arbitrary integer.
One can check that the aKL condition,

hĩjE†
fðn0k;m0

kÞgEfðnk;mkÞgjj̃i ¼ ffðn0k;m0
kÞg;fðnk;mkÞgδij

þ
gijfðn0k;m0

kÞg;fðnk;mkÞg
N2

þO

�
1

N4

�
;

hĩjEfðnk;mkÞgjj̃i ¼
eijfðnk;mkÞg

N
þO

�
1

N3

�
; ð67Þ

holds for all relevant errors induced by (63) as long as
they do not contain Trða†LÞ or Trða†L�1Þ as a factor. For

example, consider the class of error operators En ¼ Trða†nÞffiffi
n

p
N

n
2
.

The relevant matrix elements are

h↑̃jE†
mEnj↓̃i ¼ δmn

�
2n
N2

þO

�
1

N4

��
;

h↑̃jE†
mEnj↑̃i − h↓̃jE†

mEnj↓̃i ¼ O

�
1

N4

�
: ð68Þ

Note that although the Hamiltonian and logical states
depend on L, the error induced by a low energy operator
has no such dependence [the Oð 1

N2Þ term does not depend
on L]; ergo, the aKL condition in the standard form
Eq. (18) holds for such singlet errors (63). We present
the details of the proof in Appendix B 3].
Similar to the discussion in Sec. III A, the number of

singlet errors with the energy n2ω scales as the number of
integer partitions pðnÞ. This is clearly slower than expo-
nential growth. Therefore, if the thermal coupling in (60)
does not contain Trða†LÞ and Trða†L�1Þ as factors, and
λ ∼Oð1Þ, then Theorem 1 applies and we again attain a
memory time quadratic in N. Since the logical states are
within the ground space, there are no spontaneous decay of
quantum information. So the memory time is proportional
to N2e

ω
T at zero temperature limit.

However, the low energy errors like Trða†LÞTrðaLÞ do
appear, which means that the aKL condition does not hold
for these operators. Nevertheless, it is possible to retain this
long memory time in this model as long as we also suppress
the singlet errors containing such terms. One way to
achieve this is to assume that the coupling constants are
exponentially suppressed with respect to the number of
modes involved, i.e. λk ∼ λk for some λ < 1. This gaps out
the dangerous error for large L ∼ logN by suppressing the
error probability to order 1

N2. In the meantime, it is also a
natural requirement in this model because the thermal bath
mode couples to each oscillator individually.
One potential drawback in this model (and also the fully

gauged model in Sec. III B) is that the coupling constants

J ; J ∝ lnN depend on the system size. However, this is not
as unreasonable as it looks because the interaction energy
per harmonic oscillator mode is small10 and is proportional
to lnN

N2 ω. For reference, let us contrast this N dependence
with that of the toric code model with system size equal to
N. Recall that the toric code is a Z2 lattice gauge theory and
the Hamiltonian also involves terms that are proportional to
the Gauss’s law operators, with coupling constant Δ. When
it is coupled to a bath with fixed temperature T, the memory
time is proportional to 1

N e
Δ
T . It becomes a viable quantum

memory if one can tune the coupling Δ to T lnN, which
corresponds to an energy density much larger than that
required in our matrix model.

V. LARGE N SPIN MODEL

In the previous sections, we saw that exact SUðNÞ
symmetries in oscillator models can lead to robust quantum
memories, both when the symmetry is fully gauged and
when the singlet restriction is enforced energetically. It is
natural to ask whether such exact symmetries and infinite
dimensional Hilbert spaces are truly necessary for robust-
ness. In other words, can we realize an analogous phe-
nomenon with finite dimensional systems, e.g. involving
qubits, that only have an approximate SUðNÞ symmetry? In
this section, we propose one such model and show that the
requisite large N factorization properties are mostly pre-
served up to small corrections in the low energy sector. As a
result, the general conclusions of Theorem 1 still apply to
this system in a way that is similar to Sec. IV.
To motivate the model, let us first review how one can

approximately embed the low-energy states of an oscillator
into a spin Hilbert space. Consider a spin-j representation
of SUð2Þ. When acting on states with Sz eigenvalue close to
maximal, m≲ j, the spin commutator becomes

½Sx; Sy� ¼ iℏSz ≈ iℏ2jþ � � � : ð69Þ

This suggests that Sx and Sy can be approximately mapped
to a canonical pair. Setting

Q ¼ l
ℏ

ffiffi
j

p Sx; P ¼ 1

l
ffiffi
j

p Sy ð70Þ

for some as yet undetermined length l, we see that

½Q;P� ≈ iℏþ � � � : ð71Þ

Now considering the harmonic oscillator Hamiltonian

H ¼ 1

2
ðP2 þω2Q2Þ ¼ 1

2

�
1

l2j
ðSyÞ2 þω2l2

ℏ2j
ðSxÞ2

�
; ð72Þ

10The energy for thermal state at temperature T ∼ ω ≪ J is
Oð1Þ times J . See Appendix D for more detail.
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we may set l2 ¼ ℏ=ω to obtain

H ¼ ω

2ℏj
ððSxÞ2 þ ðSyÞ2Þ ¼ ω

2ℏj
ðS2 − ðSzÞ2Þ: ð73Þ

Using the standard spectrum of S2 and Sz with m ¼ j − Δ,
the spectrum of H is

ℏω
2j

ðjðjþ 1Þ − ðj − ΔÞ2Þ ¼ ℏω

�
Δþ 1

2
þOðΔ2=jÞ

�
:

ð74Þ

From this discussion, we expect that the physics of our
oscillator models may be suitably extended by replacing the
oscillators with qudits of dimension d (d ¼ 2jþ 1 in the
above mapping). At large d we have a nearly identical low-
energy spectrum, but the models make sense for any d and
we will show that even d ¼ 2 (j ¼ 1=2) suffices.
Specifically, we can construct a system of N2 spins,

which can be thought of as qudits with local dimension d. It
is tempting to write each spin operator in the adjoint
representation of SUðNÞ, meaning each spin operator
carries indices i, j running from 1 to N and transforms as

Si�j →
X
kl

Ui
kS

k�
l U†l

j : ð75Þ

Each spin also satisfies the following SUð2Þ algebra,

½Sjþi ; Si−j � ¼ 2Sjzi ;

½Sjzi ; Sjþi � ¼ Sjþi ;

½Sjzi ; Si−j � ¼ −Si−j ; ð76Þ

where i, j again label the different spins or qudits.
However, the SUðNÞ symmetry does not act consistently
on the spin algebra due to the first line above: we cannot
interpret Sjzi as being in the adjoint of SUðNÞ while also
obeying the commutation relation. Moreover, even if we
grant that Sjzi is not in the adjoint representation, it is
impossible to construct SUðNÞ generators Gj

i with the
desired commutation relations with Sj�i , i.e. there is no Gj

i
obeying11

½Gj
i ; S

l�
k � ¼ δliS

j�
k − δjkS

l�
i : ð77Þ

However, it is still possible to realize an approximate
symmetry in terms of the pseudogenerators,

G̃j
i ¼

X
k

Sjþk Sk−i − Skþi Si−k ;

½G̃j
i ; S

l�
k � ¼ ðδliSj�k − δjkS

l�
i ÞSlzk : ð78Þ

Indeed, if Sz could be approximated as a constant operator,
then we would have the desired commutators. This
approximate algebra thus connects back with the oscillator
models of the previous sections where the symmetry
becomes exact. In what follows, we work with the
pseudogenerators G̃j

i and set d ¼ 2.
Similar to our recipe in the previous sections, one can

construct the analogs of the gauge invariant states by acting
multitrace operators on the tensor product of spin down
states

TrðSþn1ÞTrðSþn2Þ � � �TrðSþnkÞj0i;
j0i ≔ j↓↓ � � �↓i: ð79Þ

For convenience, we still refer to these analogs of the gauge
invariant operators (states) singlet operators (states).
Indeed, one can see that the desired symmetry is only
approximate because the algebra of such operators is not
closed. For example,

TrðS−2ÞTrðSþ2ÞTrðSþ2Þj0i ¼ ð4N2 − 4N − 8ÞTrðSþ2Þj0i
þ 32

X
i

Siþi Siþi j0i: ð80Þ

Generally, the product of such singlet terms can produce
nonsinglet terms that are only subleading in N.12

Now let us consider a system Hamiltonian HS ¼
hH0 þ JHG, where

H0 ¼
�X

ij

Sizj − Stot

�
2

; ð81Þ

and − N2

2
≤ Stot ≤ N2

2
is some N-dependent offset. HG is an

energy penalty term similar to the Gauss law constraint; it
corresponds to the Casimir operator that enforces the
approximate SUðNÞ symmetry for low energy states,13

HG ¼ 1

N
G̃2 ≔

1

N

X
ij

G̃j
i G̃

i
j: ð82Þ

11The inconsistency of SUðNÞ and the SUð2Þ algebra can be
seen from the equation

P
k½½Siþk ; Sk−j �; Slþh � ¼ δijδ

j
hS

lþ
h , where the

right-hand side transforms differently from the left-hand side.

12If we further restrict ourselves to only consider spin-1
2
, i.e.

d ¼ 2, then the nonsinglet terms also vanishes. This can be a
convenient simplification when the local systems are exactly
qubits; however, our analysis of robustness will also hold for
systems with d > 2.

13The Casimir operator C ¼ P
ij G

i
jG

j
i for an exact SUðNÞ

symmetry has a spectrum of the formNwJ, where w is the highest
weight of given representation. Analogously, the HamiltonianHG
also has an energy spectrum of the form of wJ up to 1

N corrections.
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When J is large, it creates a large gap in the spectrum. We
define the low energy sector as the states with eigenvalues
suppressed by 1

N. The energy eigenstates ofHS are generally
superpositions of the singlet and nonsinglet states, but it
can be shown that the low energy sector is isomorphic to
the singlet subspace. For example, the following are four
states created by product of three Sþs, which are simulta-
neous eigenstates of both H0 and HG,

jψ1i ¼ TrðSþ3Þj0i;
jψ2i ¼ ½TrðSþÞ3 − 3TrðSþ2ÞTrðSþÞ�j0i;

jψ3i ¼
�
TrðSþ2ÞTrðSþÞ þ

�
1þ 2

N

�
TrðSþÞ3

−
19

2N

X
i

ðSþ2ÞiiSþi
i

�
j0i;

jψ4i ¼
�X

i

ðSþ2ÞiiSþi
i −

1

N
TrðSþ2ÞTrðSþÞ

�
j0i: ð83Þ

The first three states are in the low energy sector, since
they are eigenstates of HG with eigenvalues EG

1 ¼ EG
2 ¼ 0

and EG
3 ¼ 7J

2N. The fourth state has eigenvalue E
G
4 ¼ J , and

hence a high energy excitation.
There are two potential causes for this model to deviate

from the one in Sec. IV—effects from the symmetry being
approximate and finite dimensionality of each spin.
Formally, we should still expect the low energy states,
i.e. ones with energy ≪ J , to have a one-to-one corre-
spondence with the multitrace operators formed by Sþs.
More precisely, their low energy spectra should coincide up
to corrections that are 1=N suppressed and the multiplicity,
when we ignore such corrections, should be identical.
We see this by noting that their energy only depend on

number of Sþ involved, with small corrections proportional
to J

N (Fig. 6). Therefore, up to these small corrections
introduced by the deviations from the exact symmetry, the
operator counting at each energy level is the same as that in

Sec. IV. These corrections can be connected to the break
down of the exact symmetry.
As for the correction from finite dimensionality, thanks

to the “Gauss law” constraintHG and the form ofH0, these
corrections would only significantly modify this counting
when the total number of Sþ involved is of OðNÞ.
Therefore, in the low energy regime where we operate,
both effects are suppressed by having a large enough N.
Similar to the harmonic oscillator model, we consider the

full Hamiltonian,

H ¼ hH0 þ JHG þHthermal; ð84Þ

with Hthermal being

Hthermal ¼ λ1
X
ij

bijS
j�
i þ λ2

X
ijkl

bikjlS
j�
i Sl�k

þ λ3
X
ijklpq

bikpjlq S
j�
i Sl�k Sq�p þ � � � þ H:c: ð85Þ

The lowest energy states must have total spin equal to

Stot. Let us define L ¼ StotþN2=2
2

and pick a two-dimensional
subspace as the code subspace. With proper normalization,

j1̃i ¼ TrðSþLÞ2
N

j0i;

j2̃i ¼ TrðSþLþ1ÞTrðSþL−1Þ
N

j0i: ð86Þ

Again, we define the orthogonormal basis in this logical
subspace as

j↑̃i ¼ j1̃i þ j2̃i
2ð1þ h1̃j2̃iÞ ;

j↓̃i ¼ j1̃i − j2̃i
2ð1 − h1̃j2̃iÞ ; ð87Þ

with the overlap h1̃j2̃i ¼ fðLÞL
ffiffiffiffiffiffiffiffi
L2−1

pffiffi
2

p
N2 , where fðLÞ is a

complicated function defined in Appendix B 4.
Let us couple this system to a thermal bath at temperature

T. First note that the nonsinglet excitations are again
suppressed by a factor of e−

J
T because of the energy penalty

term HG, while the singlet interaction has no such
suppression. Then let us reorganize the system-bath inter-
actions by the approximate symmetry such that

Hthermal ¼ λ1
X
ij

bijS
j�
i þ λ2

X
ijkl

bikjlS
j�
i Sl�k þ � � � þ H:c:;

¼ λ1
X
ij

bij

�
Sjþi −

TrðSþÞ
N

δji

�
þ λ1

TrðbÞffiffiffiffi
N

p TrðSþÞffiffiffiffi
N

p

þ � � � : ð88Þ

FIG. 6. Spectrum of the low energy states. The ground state has
energy zero. Excited states has energy proportional to n2h. Note
that due to the nonexactness of symmetry, there are small energy
splitting proportional to J

N. For sufficiently largeN, this small gap
can be neglected and the degeneracy at each level is the same as in
harmonic oscillator model. Nonsinglet excitations have energy
OðJ Þ, which we do not count as low energy.
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Similar to the discussion in last section, this interaction
induces an order N2 number of nonsinglet errors.
Therefore, the total error contribution from nonsinglet
excitations is ∼N2e−

J
T times that of singlet excitations.

To suppress both types of errors to the same order, we
require the coupling J to be greater than 2h logN.
More precisely, the singlet error operators are defined as

Eðfnk;mkÞg ≔
Y
k

TrðPfSþnkS−mkgÞ
N

P
k
nkþmk
2

: ð89Þ

Again, we show that the aKL condition

hĩjE†
fðn0k;m0

kÞgEfðnk;mkÞgjj̃i ¼ ffðn0k;m0
kÞg;fðnk;mkÞgδij

þ
gijfðn0k;m0

kÞg;fðnk;mkÞg
N2

þO

�
1

N4

�
;

hĩjEfðnk;mkÞgjj̃i ¼
eijfðnk;mkÞg

N
þO

�
1

N3

�
ð90Þ

is satisfied in Appendix B 4. For example, one can see that

the operator TrðSþS−Þ
N ¼

P
ij
Sizj

N acts as the logical identity,
since the logical states have the same total spin in z
direction. For another example, the aKL conditions for

errors En ¼ TrðSþnÞffiffi
n

p
N

n
2
are

h↑̃jE†
mEnj↓̃i ¼ δmn

�
2n
N2

þO

�
1

N4

��
;

h↑̃jE†
mEnj↑̃i − h↓̃jE†

mEnj↓̃i ¼ O

�
1

N4

�
: ð91Þ

Note that, in these examples, and more generally in
Appendix B 4, deviations from the KL condition only
depend on n but not on L. Therefore, the aKL condition
remains valid even for very large L. Similar to the last
section, we can pick L≳ logN to make sure uncorrectable
errors are suppressed for large N. For instance, one may
consider choosing L ¼ N2=4 such that Stot ¼ 0.
Since this spin model has a structure very similar to the

ungauged harmonic oscillator model, we can follow the
same argument in Sec. IV. In the low energy sector with
ϵ ≪ J ∼ logN, (approximate) singlet errors are the dom-
inant error modes. The number of such error operators
grows subexponentially with energy because these oper-
ators still have the multitrace structure whose counting are
the same as the one in Sec. IV. There are small corrections
because of the approximate symmetry, however they are
proportional to J

N, and therefore for large N, they do not
affect the overall structure of the spectrum for the purpose
of our analysis (Fig. 6). Similarly, we also need the thermal
coupling strength to decay exponentially with number
of spins to suppress the singlet error operators such as

TrðS−LÞTrðSþLÞ. As argued in the previous section, this is a
natural assumption since the bath mode couples to each
spin individually. Since the rest of the argument is identical
to those in Sec. IV, we can then invoke Theorem 1 to
conclude that the memory time tm scales quadratically with
N. There is no operator that can lower the logical states’
energy, so the zero temperature limit of memory time is still
proportional to N2e

ω
T . We remark that this model also has

the same drawback as the ungauged harmonic oscillator
model, that is, the interactions remain nonlocal and we need
the coupling strength J to scale as at least logN.

VI. DISCUSSION AND CONCLUSION

Motivated by connections between error correction and
phenomena in gauge theory and quantum gravity, we have
taken a first step in understanding how SUðNÞ gauge
symmetries at large N can be used to construct stable
quantum memories. In particular, we construct a gauged
matrix quantum mechanics toy model with nonlocal logical
operations that is a self-correcting quantum memory. The
memory time of this model is polynomial in N when
coupled to a thermal bath at nonzero temperature. The
presence of gauge symmetry induces approximate quan-
tum error correcting codes that become exact in the
large N limit, thanks to the large N factorization property.
Furthermore, gauge invariance limits the number of error
patterns that can be excited up to a certain energy scale. The
combination of these factors suppresses the proliferation of
memory errors under thermal noise. A similar model with
local logical operation is also possible, but as a trade-off,
we impose an additional energy penalty with a coupling of
strength ∼ logN. The memory time is again polynomial in
N but only for temperatures below a critical value.
As large N gauge symmetries are not known to occur in

nature, we relax the gauge symmetries and impose only
large N global symmetries energetically on a single matrix
oscillator. We also construct a nonlocal finite dimensional
spin model which further relaxes the symmetry constraint
where we only enforce approximate large N symmetries
energetically. Interestingly, these constructions remain
robust in both scenarios under the assumed system-bath
coupling as long as the symmetry constraints can be
energetically enforcedwith a penalty that scales asOðlogNÞ.
Stepping back from these particular examples, our work

provides one set of guidelines for building large N passive
quantum memories in which the encoded information
remains robust when coupled to a thermal bath. Sufficient
conditions on thequantumsystemand its coupling to the bath
are captured in Theorem 1. We hope to extend our current
work in a number of future directions. Let us roughly
categorize these potential generalizations in the direction
of optimality, dimensionality, symmetries, variety, and
practicality.
Although we can construct models that have polyðNÞ

memory time, they also often come with other features that
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are practically difficult, such as nonlocal interactions
and logN coupling strengths. However, we by no means
claim that these are the optimal constructions. Indeed, it is
possible that a more careful design can produce better self-
correcting memories. For example, an interesting theoreti-
cal problem is whether there exists a gauged SUðNÞ
oscillator model with local coupling for which the quantum
memory is stable against thermal noise.
It is also natural to generalize these findings to systems

with gauge symmetries in higher dimensions by con-
sidering geometrically coupled oscillators, lattice gauge
theories, and concatenations with other quantum error
correcting codes. We will take a first step towards tackling
a subset of these problems in an upcoming work [12].
Although we enforce global symmetries energetically in
our work, one can similarly ask whether there are advan-
tages in considering systems with emergent gauge sym-
metries at low energies, which is better understood in
higher dimensional systems. Relatedly, one can examine
what aspects of the SUðNÞ symmetry are actually essential.
For instance, does a similar result hold for discrete, instead
of continuous, non-Abelian symmetries?
Drawing intuition from gauge theories, we can also

examine how to generalize such models by coupling the
“pure gauge” degrees of freedom to fundamental degrees of
freedom like matter fields and defects. In particular, how
does the configuration of these other degrees of freedom
impact our conclusions? One may, for instance, introduce a
variety of fields that may interact under these gauge
couplings. Extensions in this direction draw heavy parallels
with traditional theoretical particle physics, and can open
up new connections with quantum information in this area.
Lastly, as a practical aspect of any quantum memory,

information needs to be encoded and extracted relatively
easily. This is yet unexplored for both the infinite dimen-
sional oscillator and the finite dimensional spin system. As
a standalone quantum code, the gauged matrix oscillator is
a continuous variable system that resembles bosonic codes
[32] in many ways. However, we have barely begun to
analyze its code properties. It is desirable to understand its
similarities and differences with existing bosonic codes, its
robustness against different kinds of errors, and how active
error correction like syndrome extraction can be performed.
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APPENDIX A: PROOF OF THEOREM 1

In this appendix, we will prove that the mutual infor-
mation decays polynomially in t when coupled to a thermal
bath of suitably low temperature, as long as the conditions
in Theorem 1 are satisfied. We first set up some useful
notations for later use.
Let E be the set of operators that generate the errors. For

all operators Ea ∈ E satisfying the aKL equation, we can
always diagonalize the matrix fab by a basis transformation
inside E, such that hĩjE†

bEajĩi ¼ faδab þOð 1
N2Þ. The matrix

elements here are taken with respect to the d dimensional
code words. Then the aKL equation can be written as

hj̃jE†
bEajĩi ¼ faδabδij þ

gijab
N2

; ðA1Þ

where fa ≥ 0 is some Oð1Þ number that depends on the
error indices.
Now we define two classes of errors according to

whether fa is 0 or not. The first class of errors, labeled
by Eα and Eβ, satisfies fα; fβ ≠ 0. The second class of
errors, labeled by Eσ and Eν, satisfies fσ ¼ fν ¼ 0. Note
that we will label the errors with greek indices, α, β for the
first class, σ, ν for the second class, when we distinguish
their classes. When we do not need to treat them in different
classes, we use Latin indices like a, b to label these errors.
For the first class of errors, we can define an orthonormal
basis fjμiαig by acting error operators Eα on the logical
states jĩi such that

Eαjĩi ¼
ffiffiffiffiffi
fα

p
jμiαi þ

X
β

cαβ
2

ffiffiffiffiffi
fβ

p
N2

jμiβi þ
X
β

Δi
αβ

2
ffiffiffiffiffi
fβ

p
N2

jμiβi

þ
X
β;j≠i

hijαβ
2

ffiffiffiffiffi
fβ

p
N2

jμjβi: ðA2Þ

The states jμiαi s can be read off from the Oð1Þ term in
above equations. All the other coefficients can be read off
from the aKL equations as

cαβ ¼
1

d

Xd
i¼1

giiαβ;

Δi
αβ ¼ giiαβ − cαβ;

hijαβ ¼
�
gijαβ; if i ≠ j

0; if i ¼ j
: ðA3Þ

One can see that there is a clear separation between the
phase errors that are captured by Δi

αβ, and the bit flip errors
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that are captured by hijαβ. So far we have discussed the first
class of errors with nonzero Oð1Þ norm ffiffiffiffiffi

fα
p

. However, the
second class of error operators have vanishing Oð1Þ norm
and let us label them by Eσ and Eν, so hE†

σEσi ¼ Oð 1
N2Þ.

Generally, the aKL equations for these operators take the
form of

hj̃jE†
σEνjĩi ¼

gijσν
N2

þO

�
1

N3

�
: ðA4Þ

These operators in the second class of errors map the
logical states to states with norms proportional to Oð1NÞ.
More generally, they are operators that satisfy the following
equation:

Eσjĩi ¼
X
ν

siσν
N

jμiνi; ðA5Þ

for some Oð1Þ coefficients ss. The states jμiνis are another
set of normalized basis, orthogonal to the states jμiαi s up to
Oð1NÞ overlap. The errors that satisfy

hĩjEσj ˜ji ¼ eijσ
N

þO

�
1

N3

�
ðA6Þ

also belong to the second class of errors, since they are
consistent with Eq. (A5).
For some calculations, we do not need to differentiate

the two types of errors. In that case, we use latin indices
and simply label all of them by Ea. Let us denote the KL
matrix element by hj̃jE†

bEajĩi ¼ Gij
ab; one can write down a

general relation

Eajĩi ¼
X
A

uiaAjμAi; ðA7Þ

where fjμAig is a set of orthonormal states, and uiaA are
coefficients that satisfy

X
A

uiaAu
j
bA ¼ Gij

ab: ðA8Þ

1. Early time approximation

Recall that we model our open system dynamics as a
Markovian process. At early time, we approximate the
evolution by only including the first order perturbation of
errors.14

ρðtÞ ≈ ρ0 −
X
a

λaðϵaÞt
2

fE†
aEa; ρ0g þ

X
a

λaðϵaÞtEaρ0E
†
a

þ � � � ; ðA9Þ

where the sum over Ea includes both the first and second
class of errors, and ρ0 is the maximally entangled state
between reference R and system S at t ¼ 0,

ρ0 ¼
1

d

X
ij

jĩiiRShj̃jj: ðA10Þ

We proceed to compute the mutual information
IðR∶SÞ ¼ SðρRÞ þ SðρSÞ − SðρÞ at early times. Since the
nontrivial unitary dynamics that induces the above
Markovian evolution only occurs between the system
and the bath, the entropy of R should remain invariant
over time, i.e. SðρRÞ ¼ ln d. Therefore, it suffices to
calculate the entropies of S and the RS joint system.
Generally, the density matrix is block diagonal. We can

generate each block matrix using the operators Ea, with
a ∈ Bn, such that for any a; b ∈ Bn, Gab ≠ 0. Here Bn is
an index set that captures the error operators used to
generate a particular block matrix. Sometimes we will also
refer to this set as a block, since it defines the corresponding
block matrix. We write the density matrix associated to the
block Bn as

ρn ¼
X

a ∈ Bn

Eaρ0E
†
a;

¼ 1

d

X
aABij

uiaAu
j�
aBjμAiShμBj ⊗ jiiRhjj: ðA11Þ

The eigenvalues of matrix 1
d

P
a u

i
aAu

j�
aB is the same as

that of the matrix 1
d

P
iA u

i
aAu

i�
bA ¼ 1

d

P
i G

ii
ab. After tracing

out the reference R, the density matrix of system becomes

ρSn ¼
1

d

X
aiAB

uiaAu
i�
aBjμAiShμBj: ðA12Þ

The eigenvalues of matrix 1
d

P
ai u

i
aAu

i�
aB is the same as that

of the matrix 1
d

P
A u

i
aAu

j�
bA ¼ 1

dG
ij
ab.

Therefore, to evaluate the entropy, we need to calculate
the eigenvalues of the matrix 1

dG
ij
ab. Generally, inside a

block, we have both the first and the second class of errors.
Their overlap Gασ scales as 1

N2 by the aKL condition.
However, we can always diagonalize the matrix G, where
the diagonal form G̃ has vanishing matrix elements for the
overlaps G̃ασ ¼ 0 and G̃αβ − Gαβ ¼ Oð 1

N4Þ, G̃σν −Gσν ¼
Oð 1

N4Þ such that the correction is at subleading order.
Therefore, in the following, we can neglect the overlap
between the first and the second class of errors, and always
treat them as different blocks.

14The coupling λaðϵaÞ for each error operator Ea is defined as
λaγðϵaÞ, with γðϵaÞ defined in Eq. (22).

CHUNJUN CAO, GONG CHENG, and BRIAN SWINGLE PHYS. REV. D 108, 086008 (2023)

086008-20



For our following discussion, we use ρð1Þn ; ρð2Þn to denote the state created purely by the first and the second class of errors,

respectively. The entropy for ρð1Þn is

Sðρð1Þn Þ ¼ −Trðρð1Þn ln ρð1Þn Þ;

¼ −Tr
��

f þ c
N2

�
ln

�
f þ c

N2

��
;

¼ −Trðf ln fÞ − 1

N2
Trðc ln fÞ − 1

N2
TrðcÞ − 1

2N4
Trðcf−1cÞ þO

�
1

N6

�
: ðA13Þ

In the second step we used that the eigenvalues of the density matrix are the same as those of the KL overlap matrix
1
d

P
i G

ii. f is the diagonal matrix fαδαβ and the matrix elements of c are given by Eq. (A3). For the reduced density matrix
of system S, ρSn ¼ TrRðρnÞ, its entropy is

Sðρð1ÞSn Þ ¼ −Tr
�
1

d

�
f ⊗ I þ g

N2

�
ln

�
f ⊗ I þ g

N2

��
þ 1

d
Tr

�
f ⊗ I þ g

N2

�
ln d;

¼ TrðρnÞ ln d −
1

d
Tr½ðf ⊗ IÞ lnðf ⊗ IÞ� − 1

dN2
Tr½g lnðf ⊗ IÞ� − 1

dN2
TrðgÞ − 1

2dN4
Tr½gðf−1 ⊗ IÞg� þO

�
1

N6

�
;

ðA14Þ

where f is the matrix with element being fαβ, and I is the d × d identity matrix. After subtracting Sðρð1Þn Þ from Sðρð1ÞSn Þ, we
finally obtain

Sðρð1ÞSn Þ − Sðρð1Þn Þ ¼ Trðρð1Þn Þ ln d −
1

2dN4
Tr½gðf−1 ⊗ IÞg� þ 1

2N4
Trðcf−1cÞ þO

�
1

N6

�
;

¼ Trðρð1Þn Þ ln d −
1

2dN4

�X
i

Tr½Δif−1Δi� þ
X
ij

Tr½hijf−1hTij�
�
þO

�
1

N6

�
; ðA15Þ

where matrices Δi and hij ≔ hij are defined in Eq. (A3). We see that the decay rate of mutual information is suppressed by
1
N4. Repeating the same subtractions but for the second class of errors, the difference in entropy is

Sðρð2ÞSn Þ − Sðρð2Þn Þ ¼ 1

N2

�
S

�
1

d
gijσν

�
− S

�
1

d

X
i

giiσν

������
σ;ν ∈ Bn

þO

�
1

N4

�
;

¼ Trðρð2Þn Þ ln d −
1

N2

�
S

�
1

d

X
i

giiσν

�
−
1

d
SðgijσνÞ

�����
σ;ν ∈ B0

n

þO

�
1

N4

�
; ðA16Þ

where SðgijσνÞ means that we are calculating entropy of the matrix whose elements are gσi;νj. On the other hand, in
Sð1d

P
i g

ii
σνÞ, we compute the entropy of the matrix with elements proportional to 1

d

P
i g

ii
σν. The decay rate is only suppressed

in 1
N2. The entropy difference in the second term depends on the matrix elements gijσν in a complicated way. Instead of

calculating it explicitly, we just provide an upper bound for this expression. Suppose that in each blockBn, the matrix gijσν
has a rank of rðnÞ with its elements bounded by a function fðnÞ, then the second term is bounded by rðnÞfðnÞ log d

N2 .
For n ≥ 1, define αn ¼ λnt. The early time density matrix can be written as15

ρðtÞ ¼ ⨁
∞

n¼0

ðαnρnÞ: ðA17Þ

15To keep the notation tractable, we absorbed any a dependence of the coupling λa into the operators Ea such that the couplings λ only
retain the n dependence. To be more precise, one can redefine the couplings and errors such that λðϵaÞ only depends on the energy of
each error operator ϵa. Because ϵa ¼ ϵn for all a ∈ Bn, we can rewrite λðϵaÞ as λn.
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Applying the relation
P

n αnTrðρnÞ ¼ 1, one find that the difference of total entropy is

SðρSðtÞÞ − SðρðtÞÞ ¼ ln d −
X∞
n¼1

λnt
N2

�
S

�
1

d

X
i

giiσν

�
−
1

d
SðgijσνÞ

�����
σ;ν ∈ B0

n

−
X∞
n¼1

λnt
2dN4

X
αβ ∈ Bn

�X
i

Δi2
αβ þ

X
i≠j

ðhijαβÞ2
�
þO

�
1

N6

�
: ðA18Þ

For early time, i.e. λnt ≪ 1, the dominant contribution to
information decay is from the second class of errors.

2. Finite time

In this section, we look at the finite time behavior of
density matrix up to Oð 1

N2Þ contributions. We will see that,
although the early time effect of the first class of errors is
subdominant, it becomes more relevant at later times since
it grows quadratically in time. Recall that the overlap
between the different classes of errors are suppressed, we
can split the Lindbladian operator into two parts associated
with the first class and the second class of errors,

ρðtÞ ¼ eLtρð0Þ ¼ eL
ð1ÞtþLð2Þtρð0Þ þO

�
1

N4

�
: ðA19Þ

From Eq. (A5), the second class of Lindblad operator
creates a term of Oð 1

N2Þ each time it acts on the density
matrix. Therefore, the state can be approximated by

ρðtÞ ¼ ρð1ÞðtÞ þ tLð2Þ½ρð1ÞðtÞ� þO
�

1

N4

�
; ðA20Þ

with ρð1ÞðtÞ ¼ eL
ð1Þtρð0Þ being the state evolved under the

first class of errors. Here we only keep the commuting
contributions from Lð1Þ and Lð2Þ, since their commutator
only contributes at higher orders of 1

N.
To simplify the discussion, we will look at an approxi-

mation, which we claim is sufficient to capture the behavior
of information decay in our discussion. Let us first look at
the case with only one type of error E in the first class,

ρ̇ðtÞ ¼ λEρE†þ λE†ρE−
λ

2
fE†E;ρg− λ

2
fEE†;ρg: ðA21Þ

For low energy operators E, we can make the approxi-
mation where the coupling of E and its conjugate has the
same strength λ, which in general should be different due to
the thermal factor. In this large N model, we observe that
E†E acts trivially in the leading order,

E†EEpρ ¼ ðpþ 1ÞEpρþO

�
1

N2

�
;

EE†Epρ ¼ pEpρþO

�
1

N2

�
; ðA22Þ

where p is some integer power.

The order 1
N2 corrections can be captured by an operator

Z, which acts on the code state in the following way:

Zjμiαi ¼
�
1þ gii

2N2

�
jμiαi: ðA23Þ

It is not hard to find the solution up to order 1
N2,

ρðtÞ ¼
X∞
k¼0

ðλtÞk
ð1þ λZtÞkþ1

Ekρ0E†k

k!
þO

�
1

N4

�
: ðA24Þ

One might generalize this equation to include all the first
class error operators Eα. We denote the density matrix
dressed by the first class of errors as ρð1ÞðtÞ, which is

ρð1ÞðtÞ ¼
X
fkαg

wðfkαgÞ
Y
α

Ekα
α ρð0ÞE†kα

α

kα!
þO

�
1

N4

�
; ðA25Þ

where the weight function can be upper bounded by

wðfkαgÞ ¼
Y
α

wðkαÞ;

where wðkαÞ ≤
ðλαtÞkα

ð1þ λαZαtÞkαþ1
; for kα ≥ 1: ðA26Þ

The bound is only saturated if we could neglect the
difference between the coupling constants of Eα and E†

α.
While said difference is negligible for low energy errors,
it is not for high energy ones. In fact, the coupling con-
stant goes down exponentially with the energy ϵα of the
operator Eα,

λα ∝ γðϵαÞ ∼ e−βϵα ; ðA27Þ

for ϵα > 0. However, the coupling constant λ0α for E†
α

barely depends on energy, since γðϵαÞ ∼ 1, for ϵα < 0.
We only bound the weight function for kα ≥ 1, since the
kα ¼ 0 component does not contribute to the mutual
information decay, and it is determined by the constraintP∞

kα¼0 wðkαÞ ¼ 1 of the weight function.
Given the density matrix, we calculate the entropy

difference by the equation
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Sðρð1ÞSÞ − Sðρð1ÞÞ ¼ Trðρð1ÞÞ ln 2

−
1

2dN4

X
AB

wA

�X
i

ðΔi
ABÞ2

þ
X
i≠j

ðhijABÞ2
�
þO

�
1

N6

�
; ðA28Þ

where we use A and B as a shorthand notation for the
product of first class operators, so that EA ≔

Q
αi ∈ A Eαi .

wA is a number obtained by setting all the Zαs to identity
in Eq. (A26). The d function and h function scale linearly
with kn, and are proportional to some power q of nα, with
nα ¼ ϵα

Ω being the energy level of Eα, where Ω has
dimension of energy. For example,Ω ¼ ω for our oscillator
model. Thus we can upper bound the information decay
rate by (up to 1

N4),

Kð1ÞðtÞ ¼ 1

N4

X∞
kα¼1

wðfkαgÞ
�X

α

nqαkα

�
2

;

≤
1

N4

�
2

�X
α

λαn
q
αt

�
2

þ
X
α

λαn
2q
α t

�
: ðA29Þ

Note that the coefficient λα scales as e−βϵα , and the
density of errors with energy ϵ is bounded by eμϵ by
our sparsity condition. By the same argument we have
for Eq. (58) in Sec. III B, one can show that the quantity
inside the square bracket does not scale as N as long
as T < 1

μ.
The decay rate due to the first class of errors is

suppressed by N4 and grows quadratically with time for
λt ≫ 1. Similar arguments also apply for higher orders of
1
N2. In general, the decay rate at order 1

N2m is proportional to
Δm and hm [defined in Eq. (A3)] of the corresponding error
operators, which scales as km for the error operator Ek

α.
Therefore, the general decay rate takes the form of tm

N2m at
each order with m ≥ 2.
The second class of errors of the form Ek

ν is suppressed
by tk

N2k in the Lindblad equation, where the leading order
term is linear in t,

ρð2ÞðtÞ ≔ tLð2Þ½ρð1ÞðtÞ�;

¼
X
ν

λνt

�
Eνρ

ð1ÞðtÞE†
ν −

1

2
fρð1ÞðtÞ; E†

νEνg
�
: ðA30Þ

Recall that ρð1ÞðtÞ is the density matrix induced by the
first class of errors, explicitly given by Eq. (A25). For the
sake of clarity, let us rewrite ρð1ÞðtÞ as

ρð1ÞðtÞ ¼
X
A

wAðtÞEAρ0E
†
A: ðA31Þ

Like our discussion in Appendix A 1, we convert the
entropy of the state to the entropy of the matrix gijσA;νB,
which can be read off from

hj̃jE†
BE

†
νEσEAjĩi ¼

gijAσ;Bν

N2
þO

�
1

N4

�
: ðA32Þ

Being the product of a second class error and a first class
error, this composite operator belongs to the second class of
errors, but it has Oð1NÞ overlap with some operators in the
first class,

hj̃jE†
BEσEAjĩi ¼

δijgσA;B

N
þO

�
1

N3

�
: ðA33Þ

Due to the factorization property, hj̃jE†
BE

†
νEσEAjĩi ¼

hj̃jE†
νEσjĩih0jE†

BEAj0i þ hj̃jĩih0jE†
BE

†
νEσEAj0i, the matrix

element can be written as sum of two terms,

gijAσ;Bν ¼ gijσνfAB þ δijgσA;νB; ðA34Þ

where fAB ≔ h0jE†
BEAj0i and j0i is the vacuum state of

our system. The matrix gijσν is identical to the one in
Eq. (A4). gσA;νB is positive definite where each element is
equal to the four point function h0jE†

BE
†
νEσEAj0i, modulo

the 1
N2 factor. The overlap between the composite operators

and some first class operators [Eq. (A33)] can be removed
by a basis transformation, which also cancels the second
term in Eq. (A34). Therefore, similar to Eq. (A16), we
conclude that the entropy difference is

Sðρð2ÞSðtÞÞ − Sðρð2ÞðtÞÞ

¼ 1

N2

�
S

�
1

d
gijσνðtÞfABðtÞ

�
− S

�
1

d

X
i

giiσνðtÞfABðtÞ
��

;

¼ TrðfABðtÞÞ
N2

�
S

�
1

d
gijσνðtÞ

�
− S

�
1

d

X
i

giiσνðtÞ
��

;

¼
X
n

λnt
N2

�
S

�
1

d
gijσν

�
− S

�
1

d

X
i

giiσν

������
σ;ν ∈ B0

n

; ðA35Þ

where Sð1d gijσνðtÞfABðtÞÞ denotes the entropy of the matrix

whose element is 1
d gσAi;νBjðtÞ ¼ 1

d g
ij
σνðtÞfABðtÞ. We

have absorbed the factor λνt into the matrix gijσνðtÞ ≔ffiffiffiffiffiffiffiffiffi
λνλσ

p
tgijσν, and the weight function wAðtÞ into the function

fABðtÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wAðtÞwBðtÞ

p
fAB. By definition, TrðfABÞ ¼P

AwAðtÞh0jE†
AEAj0i ¼ Trðρð1ÞðtÞÞþOð 1

N2Þ ¼ 1þOð 1
N2Þ.

In the last step, we again utilized the block diagonal form of
the matrix gijσν to write the result as a sum of each block’s
contribution, with blocks being labeled byB0

n, such that the
matrix elements are nonzero only for σ and ν in the same
block. Note that the entropy difference is the same as in
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Eq. (A16). We can bound the decay rate induced by the
second class of errors with the following function at leading
order of λt

N2,

Kð2ÞðtÞ ≤
X
n

λnt
N2

fðnÞrðnÞ log d; ðA36Þ

where fðnÞ is a upper bound for each matrix element gijσν in
the block Bn, and rðnÞ is the rank of the block.
At higher order, we can continue to expand the second

class of Lindbladian operator and one can repeat these
calculations following the same procedure. Errors of the
form Em

σ then induce information decay at Oð 1
N2mÞ, with

magnitude proportional to ðλtÞm.
In summary, we find that both the first class of errors and

the second class of errors contribute to the information
decay with some rate function KmðtÞ ∝ tm

N2m as long as the
assumptions of Theorem 1 are satisfied. For N2 ≫ λt ≫ 1,

IðS∶RÞ ¼ 2 ln d −
X∞
m¼1

KmðtÞ: ðA37Þ

APPENDIX B: aKL CONDITION FOR SINGLE
TRACE ERRORS

1. Nonlocal model

In this section, we present the aKL equations for the most
general single-trace error operators. Since the logical states
[Eq. (35)] are symmetric in a†1 and a†2, we only need to
consider the single-trace operators involving a1 and a†1. In
the following, we will only keep track of the terms up
to Oð 1

N2Þ.
Let us define a class of error operators

EP
n;m ¼ ∶TrðPfa†n1 am1 gÞ∶

N
nþm
2

; ðB1Þ

where P denotes a particular permutation of the operators
inside the curly brackets. Acting it on the logical states, one
obtains

EP
n;mjĩi ¼ fjμii þ g

N2
jμi þO

�
1

N4

�
: ðB2Þ

To extract these coefficients, we calculate the overlap

hĩjEP0†
n0;m0EP

n;mjj̃i; ðB3Þ

which is essentially a four-point function that factorizes
into

hÕ†
i E

P0†
n0;m0EP

n;mÕji¼ hÕi
†ÕjihEP0†

n0;m0EP
n;miþO

�
1

N

�
: ðB4Þ

This is the only way to factorize into disconnected
correlators, because Oi and Oj contain a†2, while E

P
n;ms do

not. The two point function hEP0†
n0m0EP

n;mi vanishes, unless
m;m0 ¼ 0, which is the case that we discussed in the main
text. Moreover, the subleading term can be Oð1NÞ only if
m0 ¼ n0 ¼ 0, hence the only nontrivial four-point function

contribution is when m ¼ n. In this case, we define ZP
n ¼

∶TrðPfa†nangÞ∶
Nn and find that

hj̃jZP
n jĩi ¼

cPn
N

þO

�
1

N3

�
; ðB5Þ

for some constant cPn , which is nonzero only when n ¼ 2.
This is consistent with the aKL condition [Eq. (18)].
So far, we have discussed the order one and 1

N term in
Eq. (B5). All the other error operators can only produce
order 1

N2 terms when acting on the logical states. This
completes the proof of aKL condition.
As a special example, consider the decay mode, E0;2,

which lower the energy when acting on the logical states. It
also satisfies the aKL condition,

h1̃jE†
0;2E0;2j1̃i − h2̃jE†

0;2E0;2j2̃i ¼
8

N2
þO

�
1

N4

�
;

h2̃jE†
0;2E0;2j1̃i ¼

4
ffiffiffi
2

p

N3
þO

�
1

N5

�
: ðB6Þ

So the decay mode belongs to the second class of errors
classified in Appendix A, and lead to a spontaneous decay
of quantum information at zero temperature with a rate
proportional to 1

N2.

2. Local model

In this section, we prove the aKL condition for the
single-trace errors of the form

Efnig ¼
∶TrðPfa†n11 a†n22 an31 an42 gÞ∶

N

P
4

k¼1
nk

2

; ðB7Þ

with logical states defined as

j↑̃i ¼ Trða†1Þffiffiffiffi
N

p j0i12;

j↓̃i ¼ Trða†2Þffiffiffiffi
N

p j0i12: ðB8Þ

In the main text, we derived a general formula for the
case when n3 ¼ n4 ¼ 0. Moreover, since the logical states
are annihilated by more than two a1 or a2, and the error
operators are normal ordered, we are left to discuss the case
when n3 þ n4 ¼ 1. Without loss of generality, we will only
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consider the case with n3 ¼ 1, n4 ¼ 0. Then the relevant
overlaps are

h↑̃jE†
ðn−1;m;0;0ÞEðn;m;1;0Þj↑̃i ¼

n
N2

þO

�
1

N4

�
;

h↑̃jE†
ðn;0;1;0ÞEðn;0;1;0Þj↑̃i ¼

n
N2

þO

�
1

N4

�
;

h↓̃jE†
ðn;m;0;0ÞEðn;m;1;0Þj↓̃i ¼ h↓̃jE†

ðn;0;1;0ÞEðn;0;1;0Þj↓̃i ¼ 0;

h↓̃jE†
ðn;m−1;0;0ÞEðn;m;1;0Þj↑̃i ¼

m
N2

þO

�
1

N4

�
: ðB9Þ

Exceptions of these formulas consist of special cases
when n ¼ 1, m ¼ 0 and n ¼ 0, m ¼ 1, where one can
derive that

h↑̃jTrða
†
1a1Þ
N

j↑̃i ¼ 1

N
; h↓̃jTrða

†
1a1Þ
N

j↓̃i ¼ 0;

h↓̃jTrða
†
2a1Þ
N

j↑̃i ¼ 1

N
: ðB10Þ

These areOð1NÞ overlap, which are consistent with Eq. (18).
So we complete the proof of aKL (18) for general single-
trace errors in this local model.

3. Global symmetry

In this section, we prove the aKL condition for the model
in Sec. IV. The logical space is spanned by the two states of
unit norm

j1i ¼ Trða†LÞ2
NLξðL; LÞ ;

j2i ¼ Trða†Lþ1ÞTrða†L−1Þ
NLξðLþ 1; L − 1Þ ; ðB11Þ

where the normalization constant are ξðL;LÞ ¼ ffiffiffi
2

p
Lð1þ

Oð 1
N2ÞÞ and ξðLþ 1; L − 1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 1

p
ð1þOð 1

N2ÞÞ. Note
that these states are not orthogonal but have overlap

h1j2i ¼ L2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 1

p
ffiffiffi
2

p
N2

: ðB12Þ

To check the aKL condition, we insert the error operators

En ¼ Trða†nÞ
N

n
2ξðnÞ with ξðnÞ being the normalization constant, and

derive the following equations:

h1jE†
mEnj1i− h2jE†

mEnj2i ¼ δmn

�
2n
N2

þO

�
1

N4

��
;

h1jE†
mEnj2i ¼ δmn

�
L2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 1

p
ffiffiffi
2

p
N2

þO

�
1

N4

��
:

ðB13Þ

Note that the leading term in the second equation is a
consequence of the nonorthogonality between our defini-
tion of j1i and j2i; it can be easily removed via a change of
basis [cf. Eq. (65)]. The above equation also holds

for En ¼ TrðanÞ
N

n
2ξðnÞ.

For more general operators Eðn;mÞ ≔
Trða†namÞ
N

mþn
2

, with

n ≠ m, one can show that

h1jE†
n0;m0En;mj1i − h2jE†

n0;m0En;mj2i

¼ δn0−m0;n−m

�
2

N2
þO

�
1

N4

��
;

h1jE†
n0;m0En;mj2i

¼ δn0−m0;n−m

�
L2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 1

p
ffiffiffi
2

p
N2

þO

�
1

N4

��
; ðB14Þ

which indicates the aKL condition holds.
For the special case of n ¼ m, the operator also incurs no

phase error, because

h1jTrða
†nanÞ
Nn j1i ¼ h2jTrða

†nanÞ
Nn j2i ¼ 2L

N
: ðB15Þ

We thereby conclude that the aKL conditions hold for all
the single trace operators.

4. Spin model

The approximate Knill-Laflamme condition for the spin
model can be calculated using the spin algebra. Recall that
we can construct two states that span the code subspace in a
way analogous to our definition in the oscillator model,

j1i ¼ TrðSþLÞ2
NLηðL;LÞ ;

j2i ¼ TrðSþL−1ÞTrðSþLþ1Þ
NLηðLþ 1; L − 1Þ ; ðB16Þ

where ηðL;L0Þ is the normalization constant. They have the
same leading order behavior as ξðL;L0Þ in the harmonic
oscillator model, but have different forms in subleading
terms. The overlap of these two states is

h1j2i ¼ fðLÞL
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 1

p
ffiffiffi
2

p
N2

; ðB17Þ
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where fðLÞ is some complicated function of L. Again, we

insert error operators of the form En ¼ TrðS�nÞ
N

n
2ηðnÞ and En;m ¼

TrðSþnS−mÞ
N

mþn
2

into the correlator, and derive the aKL equations

for the spin model,

h1jE†
mEnj1i − h2jE†

mEnj2i ¼ δmn

�
2n
N2

þO

�
1

N4

��
;

h1jE†
n0;m0En;mj1i − h2jE†

n0;m0En;mj2i ¼ δn0−m0;n−m

×

�
2

N2
þO

�
1

N4

��
:

ðB18Þ

Again, the bit flip error only appears at Oð 1
N4Þ

h1jE†
mEnj2i ¼ δmn

�
fðLÞL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − 1

p
ffiffiffi
2

p
N2

þO

�
1

N4

��
; ðB19Þ

where we recall the first term can be removed by choosing
an orthonormal basis. This completes our proof for the aKL
condition.

APPENDIX C: MASTER EQUATION IN
LINDBLAD FORM

Suppose the coupling between system and thermal
reservoir is

H ¼ HS þHB þ VI;

VI ¼
X
a

Ea ⊗ ba þ H:c:; ðC1Þ

where HS and HB are the system and bath Hamiltonian,
respectively, and bas are the bath modes.
In the interaction picture, time evolution is described by

ρ̇ðtÞ ¼ −i½VIðtÞ; ρðtÞ�;

¼ −i½VIðtÞ; ρ0� −
�
VIðtÞ;

Z
t

0

dt0½VIðt0Þ; ρðt0Þ�
�
: ðC2Þ

The essential simplification is enabled by the Born-
Markov approximation, which allows one to approximate
the full density matrix as ρðtÞ ∼ ρSðtÞ ⊗ ρB at all times.
After tracing out the thermal state, we arrive at

ρ̇ISðtÞ ¼
Z

t

0

dt0
X
ab

½Ebðt0ÞρISðtÞE†
aðtÞ

− E†
aðtÞEbðt0ÞρISðtÞ�TrðρBb†aðtÞbbðt0ÞÞ þ H:c:

ðC3Þ
For sufficiently long time t, we can treat the initial time

as −∞. We also assume that the bath modes are uncorre-
lated. Then we define

Z
t

−∞
dt0 TrðρBb†aðtÞbbðt0ÞÞeiωðt−t0Þ ≔

γðωÞ
2

δab: ðC4Þ

For operators EaðtÞ with the decomposition,

EaðtÞ ¼
X
k

EðkÞ
a e−iϵ

ðkÞ
a t; ðC5Þ

Eq. (C3) simplifies as

ρ̇ISðtÞ ¼
X
a;k

γðϵðkÞa Þ
2

½EðkÞ
a ρISðtÞE†

aðtÞ

− E†
aðtÞEðkÞ

a ρISðtÞ�e−iϵ
ðkÞ
a t þ H:c: ðC6Þ

For example, consider the error operator Eijkl ¼ a†ij a
†k
l

in Sec. IV. It can be decomposed as

EijklðtÞ ¼ ga†ij a†kl e−2iJ t þ
� gða†2Þil

N
δkj þ

gða†2Þkj
N

δil

þ Trða†Þ
N

ã†ij δ
k
l þ

Trða†Þ
N

ã†kl δij

�
e−iJ t

þ Trða†2Þ
N2

δilδ
k
j þ

Trða†Þ2
N2

δijδ
k
l ; ðC7Þ

where the operator under the tilde vanishes when con-
tracting with the Kronecker delta, e.g. a†ij δ

j
i ¼ 0.

Consequently, the tensor coefficients are almost orthogonal
to each other, i.e.

X
ijkl

E†ðmÞ
ijkl E

ðnÞ
ijkl ∝ δmn þO

�
1

N

�
; ðC8Þ

where the Oð1NÞ term denotes operators that has Oð1NÞ
expectation value with respect to any low energy state.
More generally, a tensor product of individual creation

and annihilation operators can always be decomposed into
different components obtained by index contractions,
which are orthogonal to each other up to Oð1NÞ, in the
sense of Eq. (C8). As a result, the Lindbladian operator can
always be written as a diagonal sum of components that
correspond to different contractions,X
m

γðϵðmÞÞ
X
a

EðmÞ
a ρE†ðmÞ

a ¼
X
ma

γðϵðmÞÞEðmÞ
a ρE†ðmÞ

a : ðC9Þ

APPENDIX D: EXPECTATION VALUE
OF THE CASIMIR

In this section, we evaluate the expectation value of the
penalty HamiltonianHG [in Eq. (59)] for a thermal state ρT
at temperature T < J

2 logN,
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TrðρTHGÞ ¼
X∞
m¼0

dmmJ e−
mðJþωÞ

T ; ðD1Þ

wherem is the highest weight of a particular representation,
with degeneracy dm and energymJ . Examples of nonsinglet
states are the N2 number of a†ij j0is in the adjoint represen-

tationwith energyJ , and theN4 number of a†ij a
†k
l j0i s in the

tensor product representation with energy 2J .
In the oscillator model, we expect dm to scale as

dm ∼ N2m. This factor cancels with the factor e
−mJ
T , since

J > 2T logN. Therefore, we estimate the energy expect-
ation value to be

TrðρTHGÞ <
X
m

mJ e
−mω
T : ðD2Þ

This is an Oð1Þ number times the energy scale J . So
we conclude that, for a thermal state with temperature
T < J

2 logN, the energy expectation value of HG per oscil-

lator is Oð1Þ times J
N2.

[1] A. Y. Kitaev, Proceedings of the 3rd International
Conference of Quantum Communication and Measurement,
edited by O. Hirota, A. S. Holevo, and C. M. Caves
(Plenum, New York, 1997).

[2] A. Yu. Kitaev, Fault-tolerant quantum computation by
anyons, Ann. Phys. (Amsterdam) 303, 2 (2003).

[3] Alexei Kitaev and John Preskill, Topological Entanglement
Entropy, Phys. Rev. Lett. 96, 110404 (2006).

[4] R. Alicki, M. Fannes, and M. Horodecki, On thermalization
in Kitaev’s 2D model, J. Phys. A 42, 065303 (2009).

[5] R. Alicki, M. Horodecki, P. Horodecki, and R. Horodecki,
On thermal stability of topological qubit in Kitaev’s 4D
model, arXiv:0811.0033.

[6] Alexei Kitaev, Anyons in an exactly solved model and
beyond, Ann. Phys. (Amsterdam) 321, 2 (2006).

[7] Ahmed Almheiri, Xi Dong, and Daniel Harlow, Bulk
locality and quantum error correction in AdS=CFT, J. High
Energy Phys. 04 (2015) 163.

[8] S. W. Hawking and Don N. Page, Thermodynamics of black
holes in anti-de Sitter space, Commun. Math. Phys. 87, 577
(1982).

[9] Edward Witten, Anti–de Sitter space, thermal phase tran-
sition, and confinement in gauge theories, Adv. Theor.
Math. Phys. 2, 505 (1998).

[10] Ning Bao, ChunJun Cao, and Guanyu Zhu, Deconfinement
and error thresholds in holography, Phys. Rev. D 106,
046009 (2022).

[11] Fernando Pastawski, Beni Yoshida, Daniel Harlow, and
John Preskill, Holographic quantum error-correcting codes:
Toy models for the bulk/boundary correspondence, J. High
Energy Phys. 06 (2015) 149.

[12] Gong Cheng, ChunJun Cao, and Brian Swingle, companion
paper (to be published).

[13] Emanuel Knill, Raymond Laflamme, and Lorenza Viola,
Theory of Quantum Error Correction for General Noise,
Phys. Rev. Lett. 84, 2525 (2000).
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