Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2, 2006 | Submitted + Supplemental Material
Journal Article Open

Self-cooling of a micromirror by radiation pressure


Cooling of mechanical resonators is currently a popular topic in many fields of physics including ultra-high precision measurements1, detection of gravitational waves, and the study of the transition between classical and quantum behaviour of a mechanical system. Here we report the observation of self-cooling of a micromirror by radiation pressure inside a high-finesse optical cavity. In essence, changes in intensity in a detuned cavity, as caused by the thermal vibration of the mirror, provide the mechanism for entropy flow from the mirror's oscillatory motion to the low-entropy cavity field. The crucial coupling between radiation and mechanical motion was made possible by producing free-standing micromirrors of low mass (m ≈ 400 ng), high reflectance (more than 99.6%) and high mechanical quality (Q ≈ 10,000). We observe cooling of the mechanical oscillator by a factor of more than 30; that is, from room temperature to below 10 K. In addition to purely photothermal effects we identify radiation pressure as a relevant mechanism responsible for the cooling. In contrast with earlier experiments, our technique does not need any active feedback. We expect that improvements of our method will permit cooling ratios beyond 1,000 and will thus possibly enable cooling all the way down to the quantum mechanical ground state of the micromirror.

Additional Information

© 2006 Nature Publishing Group. Received 27 March; accepted 22 September 2006. We thank C. Brukner, S. Gröblacher, J. Kofler, T. Jennewein, M. S. Kim, A. Vandaley and D. Vitali for discussion. We acknowledge financial support by the Austrian Science Fund (FWF), by the City of Vienna, by the Austrian NANO Initiative (MNA) and by the Foundational Questions Institute (FQXi). Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Attached Files

Submitted - 0607068v2.pdf

Supplemental Material - nature05273-s1.pdf


Files (1.0 MB)
Name Size Download all
453.9 kB Preview Download
559.7 kB Preview Download

Additional details

August 19, 2023
October 19, 2023