of 185
TECHNICAL REPORT 032
The 1998 Center for Simulation of Dynamic Response in Materials
Annual Technical Report
Center
fo
r
Simulation
of
Dynamic
Resp
onse
in
Materials
Annual
T
echnical
Rep
o
rt
Sept.
3,
1997
-
Sept.
30,
1998
W.
A.
Godd
ard,
D.
I
Meir
on,
M.
Or
tiz,
J.
E.
Shepherd,
J.
Pool
Calif
ornia
Institute
of
Technology
P
asadena,
CA
91125
Prepared
for
DOE
ASCI
Alliances
Program
La
wrence
Liv
ermore
National
Lab
oratory
De
c
emb
er
28,
1998
Con
ten
ts
1
In
tro
duction
4
2
High
Explosiv
es
5
2.1
In
tro
duction
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5
2.2
Materials
Prop
erties
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7
2.2.1
HMX
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7
2.2.2
Equation
of
State
of
T
A
TB
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
11
2.3
Thermodynamic
analysis
of
molecular
dynamics
results
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
14
2.3.1
-HMX
isotherms
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
17
2.3.2
The
w
arm
compression
curv
e
of
-HMX
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
17
2.3.3
The
Gr

uneisen
co
ecien
t.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
19
2.3.4
Co
ecien
t
of
thermal
expansion
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
22
2.3.5
The
Isothermal
Bulk
Mo
dulus
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
22
2.3.6
Hugoniot
curv
e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
23
2.3.7
T
emp
erature
along
the
Hugoniot
curv
e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
26
2.4
Reaction
rate
mo
deling
and
h
ydro
dynamic
sim
ulations
of
gas{phase
detonations
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
28
2.4.1
Reduced
Reaction
Mo
dels
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
28
2.4.2
Implemen
tation
of
Detailed
Chemistry
in
Unsteady
Flo
w
Solv
er
.
.
.
31
2.4.3
Summary
of
W
ork
Completed
in
FY98
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
34
2.5
High
Explosiv
es
Engineering
Numerical
Mo
dels
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
34
2.5.1
Equations
of
motion
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
35
2.5.2
Ro
e's
appro
ximate
linearized
Riemann
solv
er
.
.
.
.
.
.
.
.
.
.
.
.
.
.
36
2.6
Sho
c
k-tub
e
exp
erimen
ts
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
38
2.6.1
Inert
HMX
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
38
2.6.2
Detonating
HMX
sho
c
k-tub
e
exp
erimen
ts
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
39
2.7
Detonating
HMX
corner
turning
problem
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
41
2.7.1
Fixed
rate
and
sho
c
k
collision
with
higher
densit
y
substance
.
.
.
.
.
42
2.7.2
Pressure
dep
enden
t
rate
and
\dead-zone"
phenomenon
.
.
.
.
.
.
.
.
43
2.8
Pressure
sti ening
of
rubb
ery
binder:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
48
2.8.1
In
tro
duction
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
48
2.8.2
Motiv
ation
for
study
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
48
2.8.3
Accomplishmen
ts
during
FY98
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
49
1
2.8.4
Summary
of
computational
results
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
50
2.9
High
Explosiv
es
P
ersonnel
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
53
3
Solid
Dynamics
55
3.1
Description
of
accomplishmen
ts
for
FY
98
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
55
3.1.1
Ov
erall
goals
and
ob
jectiv
es
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
55
3.1.2
Mixed
atomistic
con
tin
uum
sim
ulations
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
57
3.1.3
Single-crystal
plasticit
y
mo
del
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
59
3.1.4
Dislo
cation
structures
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
61
3.1.5
Three-dimensional
meshing
algorithms
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
62
3.1.6
Mesh
adaption
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
65
3.2
Solid
mec
hanics
p
ersonnel
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
70
4
First
Principles
Materials
Prop
erties
for
Sim
ulating
the
Dynamic
Re-
sp
onse
of
Materials
73
4.1
Goals
for
materials
prop
erties
researc
h
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
73
4.2
Materials
prop
erties
milestones
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
74
4.2.1
Material
prop
erties
researc
h
for
HE
applications
.
.
.
.
.
.
.
.
.
.
.
.
75
4.2.2
Material
prop
erties
researc
h
for
SD
applications
.
.
.
.
.
.
.
.
.
.
.
.
75
4.2.3
Material
prop
erties
researc
h
for
CT
applications
.
.
.
.
.
.
.
.
.
.
.
.
76
4.2.4
Material
prop
erties
researc
h
and
dev
elopmen
t
for
soft
w
are
in
tegration
(SI)
and
computer
science
(CS)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
76
4.3
New
metho
ds
and
soft
w
are
for
MP
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
76
4.3.1
Quan
tum
mec
hanics
(QM)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
76
4.3.2
F
orce
elds
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
81
4.4
Applications
of
MP
to
sim
ulations
of
HE,
SD,
and
CT
.
.
.
.
.
.
.
.
.
.
.
.
88
4.4.1
Applications
to
High
Explosiv
es
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
89
4.4.2
Applications
in
solid
dynamics
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
100
4.4.3
Applications
to
uid
dynamics
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
117
4.5
P
ersonnel
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
119
5
Compressible
T
urbulence
121
5.1
In
tro
duction
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
121
5.2
High
Mac
h
n
um
ber
Ric
h
tm
y
er-Meshk
o
v
Instabilit
y
.
.
.
.
.
.
.
.
.
.
.
.
.
.
122
5.3
Sho
c
k-con
tact
in
teraction
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
123
5.4
Sim
ulations
of
3-D
Ric
h
tm
y
er-Meshk
o
v
Instabilit
y
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
126
5.5
Sho
c
k-v
ortex
in
teraction
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
128
5.6
Large-eddy
sim
ulation
of
turbulen
t o
ws
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
133
5.7
Incompressible
Ra
yleigh-T
a
ylor
T
urbulence
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
137
5.8
Multi-scale
phenomena
in
turbulence
sim
ulations
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
139
5.9
P
ersonnel
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
141
2
6
Computational
and
Computer
Science
143
6.1
In
tro
duction
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
143
6.2
Problem-solving
en
vironmen
ts
for
distributed
collab
orativ
e
computing
.
.
.
.
144
6.3
Comp
osition
and
in
tegration
of
div
erse,
complex
computational
mo
dules
.
.
146
6.3.1
Comp
osition
framew
ork
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
147
6.3.2
Computational
engines
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
148
6.3.3
Managemen
t
of
the
soft
w
are
dev
elopmen
t
e ort
.
.
.
.
.
.
.
.
.
.
.
.
149
6.4
Metho
ds
for
exploiting
curren
t
and
future
ASCI
system
arc
hitectures
.
.
.
.
150
6.5
Scalabilit
y
and
load
balancing
of
fundamen
tal
algorithms
.
.
.
.
.
.
.
.
.
.
.
151
6.5.1
P
orting
the
solid
dynamics
engine
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
151
6.5.2
Banded
Eigenproblems
in
Quan
tum
Mec
hanics
.
.
.
.
.
.
.
.
.
.
.
.
.
151
6.6
Geometric
mo
deling
and
adv
anced
visualization
for
mo
del
v
alidation
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
152
6.7
Scalable
parallel
input
and
output
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
154
6.8
P
ersonnel
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
156
7
Implemen
tation
Plan
for
FY
'99
158
7.1
Up
dated
Sim
ulation
Dev
elopmen
t
Roadmap
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
158
7.1.1
FY99
Milestones
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
159
7.2
Implemen
tation
Plan
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
160
7.2.1
High
Explosiv
es
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
160
7.2.2
Solid
Dynamics
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
164
7.2.3
Materials
Prop
erties
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
165
7.2.4
Compressible
T
urbulence
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
167
7.2.5
Soft
w
are
In
tegration
and
the
VTF
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
169
7.3
Budget
for
FY'99
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
173
7.4
Cross
Cen
ter
In
teraction
Plan
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
175
7.5
ASCI
computing
resource
plan
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
175
7.5.1
Estimated
ASCI
computing
resource
usage
(including
PSC)
.
.
.
.
.
175
7.5.2
Additional
Resource
Requiremen
ts:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
176
7.6
Cen
ter
Managemen
t
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
176
7.6.1
In
ternal
reviews
and
pro
ject
assessmen
ts
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
176
7.6.2
TST
Activities
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
176
3
Chapter
1
In
tro
duction
This
ann
ual
rep
ort
describ
es
researc
h
accomplishmen
ts
for
FY
98
of
the
Cen
ter
for
Sim
ulation
of
Dynamic
Resp
onse
of
Materials.
The
Cen
ter
is
constructing
a
virtual
sho
c
kph
ysics
facilit
y
in
whic
h
the
full
three
dimensional
resp
onse
of
a
v
ariet
y
of
target
materials
can
b
e
computed
for
a
wide
range
of
compressiv
e,
tensional,
and
shear
loadings,
including
those
pro
duced
b
y
detonation
of
energetic
materials.
The
goals
are
to
facilitate
computation
of
a
v
ariet
y
of
exp
erimen
ts
in
whic
h
strong
sho
c
k
and
detonation
w
a
v
es
are
made
to
impinge
on
targets
consisting
of
v
arious
com
binations
of
materials,
compute
the
subsequen
t
dynamic
resp
onse
of
the
target
materials,
and
v
alidate
these
computations
against
exp
erimen
tal
data.
The
researc
h
is
cen
tered
on
the
three
primary
stages
required
to
conduct
a
virtual
exp
eri-
men
t
in
this
facilit
y:
detonation
of
high
explosiv
es,
in
teraction
of
sho
c
kw
a
v
es
with
materials,
and
sho
c
k-induced
compressible
turbulence
and
mixing.
The
mo
deling
requiremen
ts
are
ad-
dressed
through
v
e
in
tegrated
researc
h
initiativ
es
whic
h
form
the
basis
of
the
sim
ulation
dev
elopmen
t
road
map
to
guide
the
k
ey
disciplinary
activities:
1.
Mo
deling
and
sim
ulation
of
fundamen
tal
pro
cesses
in
detonation,
2.
Mo
deling
dynamic
resp
onse
of
solids,
3.
First
principles
computation
of
materials
prop
erties,
4.
Compressible
turbulence
and
mixing,
and
5.
Computational
and
computer
science
infrastructure.
The
pro
ject
team
consists
primarily
of
a
div
erse
group
of
Caltec
h
facult
y
comprised
of
applied
mathematicians,
c
hemists,
computer
scien
tists,
engineering
facult
y
in
uid
and
solid
mec
hanics,
materials
scien
tists,
and
ph
ysicists.
In
addition,
to
further
strengthen
the
team
in
the
selected
areas
of
computational
science
and
materials
science,
a
few
k
ey
researc
hers
from
Bro
wn
Univ
ersit
y
,
Univ
ersit
y
of
T
ennessee,
Indiana
Univ
ersit
y
,
Univ
ersit
y
of
Illinois,
the
Carnegie
Institute
of
W
ashington,
and
the
Information
Sciences
Institute
at
USC
ha
v
e
joined
in
this
collab
oration.
W
ork
ac
hiev
ed
in
FY
98
is
describ
ed
in
Chapters
2-6.
On
Chapter
7
w
e
outline
our
implemen
tation
plans
for
FY99
and
pro
vide
an
o
v
erview
of
our
in
tegration
plan
as
w
ell
as
the
prop
osed
budget.
4
Chapter
2
High
Explosiv
es
2.1
In
tro
duction
One
of
the
three
ma
jor
stages
of
the
o
v
erarc
hing
sim
ulation
is
the
detonation
of
high
explo-
siv
es
(HE).
One
goal
of
the
Caltec
h
ASCI
Alliance
cen
ter
is
to
mak
e
signi can
t
impro
v
emen
ts
in
the
state
of
the
art
in
sim
ulations
of
the
detonation
pro
cess
in
high
explosiv
es.
As
part
of
the
prop
osal
pro
cess
and
during
the
rst
y
ear
of
the
pro
ject,
w
eha
v
e
iden
ti ed
a
n
um
ber
of
issues
that
w
e
need
to
address
in
order
to
do
that.
An
in
terdisciplinary
team
of
facult
y
,
p
ostdo
ctoral
sc
holars
and
studen
ts
has
b
een
orga-
nized
to
w
ork
on
these
issues.
This
researc
h
team,
dubb
ed
the
HE
(high
explosiv
es)
group,
is
one
of
the
v
e
ma
jor
organizational
comp
onen
ts
of
the
Caltec
h
ASCI
Alliance.
The
HE
group
is
led
b
y
Jo
e
Shepherd
and
has
ab
out
15
mem
b
ers
dra
wn
from
the
di eren
t
disciplines
in
v
olv
ed
in
the
Caltec
h
ASCI
Alliance.
The
purp
ose
of
this
group
is
to
co
ordinate
researc
h
activities,
educate
the
mem
b
ers
ab
out
di eren
t
approac
hes
to
HE
mo
deling,
and
to
dev
elop
the
sim
ulation
metho
dology
and
to
ols
for
the
high
explosiv
e
comp
onen
t
of
the
virtual
test
facilit
y
.
The
group
meets
regularly
on
a
w
eekly
basis.
In
the
b
eginning
of
the
y
ear,
the
meet-
ings
w
ere
tutorial
and
and
w
e
emphasized
learning
ab
out
the
v
o
cabulary
and
capabilities
of
the
di eren
t
participan
ts.
Later,
as
collab
orations
dev
elop
ed,
the
group
meeting
w
as
used
to
review
tec
hnical
progress
in
the
sp
eci c
fo
cus
areas.
There
are
t
w
o
trac
ks
to
the
researc
h
program
in
high
explosiv
es.
W
ork
is
pro
ceeding
on
b
oth
trac
ks
sim
ultaneously
.
Within
eac
h
trac
k,
the
w
ork
has
concen
trated
on
a
few
sp
eci c
materials.
A
goal
of
ac
hieving
a
simple
v
ersion
of
the
in
tegrated
sim
ulation
has
serv
ed
to
fo
cus
the
e orts
of
the
whole
group.
In
addition
there
is
a
third
comp
onen
t
whic
h
addresses
the
in
tegration
of
these
activities
with
other
researc
h
activities
of
the
pro
ject:
1.
First
Principles
-
Selected
problems
are
b
eing
studied
using
detailed
and
realistic
c
hemical
and
ph
ysical
description
of
explosiv
es.
One
problem
that
is
b
eing
studied
in
this
fashion
is
the
equation
of
state
of
of
explosiv
es,
binders
and
reactions.
Another
problem
is
reactiv
e o
wh
ydro
dynamics
in
gases
using
detailed
c
hemistry
net
w
orks
and
reaction
rates.
2.
Ev
olutionary
-
Existing
engineering
mo
dels
of
high
explosiv
es
are
b
eing
extended
and
incorp
orated
in
to
high
resolution
computations
using
adaptiv
e
mesh
re nemen
t.
5