of 8
Observation of Time-Reversal Violation in the
B
0
Meson System
J. P. Lees,
1
V. Poireau,
1
V. Tisserand,
1
J. Garra Tico,
2
E. Grauges,
2
A. Palano,
3a,3b
G. Eigen,
4
B. Stugu,
4
D. N. Brown,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
G. Lynch,
5
H. Koch,
6
T. Schroeder,
6
D. J. Asgeirsson,
7
C. Hearty,
7
T. S. Mattison,
7
J. A. McKenna,
7
R. Y. So,
7
A. Khan,
8
V. E. Blinov,
9
A. R. Buzykaev,
9
V. P. Druzhinin,
9
V. B. Golubev,
9
E. A. Kravchenko,
9
A. P. Onuchin,
9
S. I. Serednyakov,
9
Yu. I. Skovpen,
9
E. P. Solodov,
9
K. Yu. Todyshev,
9
A. N. Yushkov,
9
M. Bondioli,
10
D. Kirkby,
10
A. J. Lankford,
10
M. Mandelkern,
10
H. Atmacan,
11
J. W. Gary,
11
F. Liu,
11
O. Long,
11
G. M. Vitug,
11
C. Campagnari,
12
T. M. Hong,
12
D. Kovalskyi,
12
J. D. Richman,
12
C. A. West,
12
A. M. Eisner,
13
J. Kroseberg,
13
W. S. Lockman,
13
A. J. Martinez,
13
B. A. Schumm,
13
A. Seiden,
13
D. S. Chao,
14
C. H. Cheng,
14
B. Echenard,
14
K. T. Flood,
14
D. G. Hitlin,
14
P. Ongmongkolkul,
14
F. C. Porter,
14
A. Y. Rakitin,
14
R. Andreassen,
15
Z. Huard,
15
B. T. Meadows,
15
M. D. Sokoloff,
15
L. Sun,
15
P. C. Bloom,
16
W. T. Ford,
16
A. Gaz,
16
U. Nauenberg,
16
J. G. Smith,
16
S. R. Wagner,
16
R. Ayad,
17,
W. H. Toki,
17
B. Spaan,
18
K. R. Schubert,
19
R. Schwierz,
19
D. Bernard,
20
M. Verderi,
20
P. J. Clark,
21
S. Playfer,
21
D. Bettoni,
22a
C. Bozzi,
22a
R. Calabrese,
22a,22b
G. Cibinetto,
22a,22b
E. Fioravanti,
22a,22b
I. Garzia,
22a,22b
E. Luppi,
22a,22b
M. Munerato,
22a,22b
L. Piemontese,
22a
V. Santoro,
22a
R. Baldini-Ferroli,
23
A. Calcaterra,
23
R. de Sangro,
23
G. Finocchiaro,
23
P. Patteri,
23
I. M. Peruzzi,
23,
M. Piccolo,
23
M. Rama,
23
A. Zallo,
23
R. Contri,
24a,24b
E. Guido,
24a,24b
M. Lo Vetere,
24a,24b
M. R. Monge,
24a,24b
S. Passaggio,
24a
C. Patrignani,
24a,24b
E. Robutti,
24a
B. Bhuyan,
25
V. Prasad,
25
C. L. Lee,
26
M. Morii,
26
A. J. Edwards,
27
A. Adametz,
28
U. Uwer,
28
H. M. Lacker,
29
T. Lueck,
29
P. D. Dauncey,
30
U. Mallik,
31
C. Chen,
32
J. Cochran,
32
W. T. Meyer,
32
S. Prell,
32
A. E. Rubin,
32
A. V. Gritsan,
33
Z. J. Guo,
33
N. Arnaud,
34
M. Davier,
34
D. Derkach,
34
G. Grosdidier,
34
F. Le Diberder,
34
A. M. Lutz,
34
B. Malaescu,
34
P. Roudeau,
34
M. H. Schune,
34
A. Stocchi,
34
G. Wormser,
34
D. J. Lange,
35
D. M. Wright,
35
C. A. Chavez,
36
J. P. Coleman,
36
J. R. Fry,
36
E. Gabathuler,
36
D. E. Hutchcroft,
36
D. J. Payne,
36
C. Touramanis,
36
A. J. Bevan,
37
F. Di Lodovico,
37
R. Sacco,
37
M. Sigamani,
37
G. Cowan,
38
D. N. Brown,
39
C. L. Davis,
39
A. G. Denig,
40
M. Fritsch,
40
W. Gradl,
40
K. Griessinger,
40
A. Hafner,
40
E. Prencipe,
40
R. J. Barlow,
41,
§
G. Jackson,
41
G. D. Lafferty,
41
E. Behn,
42
R. Cenci,
42
B. Hamilton,
42
A. Jawahery,
42
D. A. Roberts,
42
C. Dallapiccola,
43
R. Cowan,
44
D. Dujmic,
44
G. Sciolla,
44
R. Cheaib,
45
D. Lindemann,
45
P. M. Patel,
45,
*
S. H. Robertson,
45
P. Biassoni,
46a,46b
N. Neri,
46a
F. Palombo,
46a,46b
S. Stracka,
46a,46b
L. Cremaldi,
a47
R. Godang,
a47,
k
R. Kroeger,
a47
P. Sonnek,
a47
D. J. Summers,
a47
X. Nguyen,
48
M. Simard,
48
P. Taras,
48
G. De Nardo,
49a,49b
D. Monorchio,
49a,49b
G. Onorato,
49a,49b
C. Sciacca,
49a,49b
M. Martinelli,
50
G. Raven,
50
C. P. Jessop,
51
J. M. LoSecco,
51
W. F. Wang,
51
K. Honscheid,
52
R. Kass,
52
J. Brau,
53
R. Frey,
53
N. B. Sinev,
53
D. Strom,
53
E. Torrence,
53
E. Feltresi,
54a,54b
N. Gagliardi,
54a,54b
M. Margoni,
54a,54b
M. Morandin,
54a
A. Pompili,
54a
M. Posocco,
54a
M. Rotondo,
54a
G. Simi,
54a
F. Simonetto,
54a,54b
R. Stroili,
54a,54b
S. Akar,
55
E. Ben-Haim,
55
M. Bomben,
55
G. R. Bonneaud,
55
H. Briand,
55
G. Calderini,
55
J. Chauveau,
55
O. Hamon,
55
Ph. Leruste,
55
G. Marchiori,
55
J. Ocariz,
55
S. Sitt,
55
M. Biasini,
56a,56b
E. Manoni,
56a,56b
S. Pacetti,
56a,56b
A. Rossi,
56a,56b
C. Angelini,
57a,57b
G. Batignani,
57a,57b
S. Bettarini,
57a,57b
M. Carpinelli,
57a,57b,
{
G. Casarosa,
57a,57b
A. Cervelli,
57a,57b
F. Forti,
57a,57b
M. A. Giorgi,
57a,57b
A. Lusiani,
57a,57b,57c
B. Oberhof,
57a,57b
E. Paoloni,
57a,57b
A. Perez,
57a
G. Rizzo,
57a,57b
J. J. Walsh,
57a
D. Lopes Pegna,
58
J. Olsen,
58
A. J. S. Smith,
58
A. V. Telnov,
58
F. Anulli,
59a
R. Faccini,
59a,59b
F. Ferrarotto,
59a
F. Ferroni,
59a,59b
M. Gaspero,
59a,59b
L. Li Gioi,
59a
M. A. Mazzoni,
59a
G. Piredda,
59a
C. Bu
̈
nger,
60
O. Gru
̈
nberg,
60
T. Hartmann,
60
T. Leddig,
60
H. Schro
̈
der,
60,
*
C. Voss,
60
R. Waldi,
60
T. Adye,
61
E. O. Olaiya,
61
F. F. Wilson,
61
S. Emery,
62
G. Hamel de Monchenault,
62
G. Vasseur,
62
Ch. Ye
`
che,
62
D. Aston,
63
D. J. Bard,
63
R. Bartoldus,
63
J. F. Benitez,
63
C. Cartaro,
63
M. R. Convery,
63
J. Dorfan,
63
G. P. Dubois-Felsmann,
63
W. Dunwoodie,
63
M. Ebert,
63
R. C. Field,
63
M. Franco Sevilla,
63
B. G. Fulsom,
63
A. M. Gabareen,
63
M. T. Graham,
63
P. Grenier,
63
C. Hast,
63
W. R. Innes,
63
M. H. Kelsey,
63
P. Kim,
63
M. L. Kocian,
63
D. W. G. S. Leith,
63
P. Lewis,
63
B. Lindquist,
63
S. Luitz,
63
V. Luth,
63
H. L. Lynch,
63
D. B. MacFarlane,
63
D. R. Muller,
63
H. Neal,
63
S. Nelson,
63
M. Perl,
63
T. Pulliam,
63
B. N. Ratcliff,
63
A. Roodman,
63
A. A. Salnikov,
63
R. H. Schindler,
63
A. Snyder,
63
D. Su,
63
M. K. Sullivan,
63
J. Va’vra,
63
A. P. Wagner,
63
W. J. Wisniewski,
63
M. Wittgen,
63
D. H. Wright,
63
H. W. Wulsin,
63
C. C. Young,
63
V. Ziegler,
63
W. Park,
64
M. V. Purohit,
64
R. M. White,
64
J. R. Wilson,
64
A. Randle-Conde,
65
S. J. Sekula,
65
M. Bellis,
66
P. R. Burchat,
66
T. S. Miyashita,
66
E. M. T. Puccio,
66
M. S. Alam,
67
J. A. Ernst,
67
R. Gorodeisky,
68
N. Guttman,
68
D. R. Peimer,
68
A. Soffer,
68
P. Lund,
69
S. M. Spanier,
69
J. L. Ritchie,
70
A. M. Ruland,
70
R. F. Schwitters,
70
B. C. Wray,
70
J. M. Izen,
71
X. C. Lou,
71
F. Bianchi,
72a,72b
D. Gamba,
72a,72b
S. Zambito,
72a,72b
L. Lanceri,
73a,73b
L. Vitale,
73a,73b
J. Bernabeu,
74
F. Martinez-Vidal,
74
A. Oyanguren,
74
P. Villanueva-Perez,
74
H. Ahmed,
75
J. Albert,
75
Sw. Banerjee,
75
F. U. Bernlochner,
75
H. H. F. Choi,
75
G. J. King,
75
R. Kowalewski,
75
M. J. Lewczuk,
75
PRL
109,
211801 (2012)
Selected for a
Viewpoint
in
Physics
PHYSICAL REVIEW LETTERS
week ending
21 NOVEMBER 2012
0031-9007
=
12
=
109(21)
=
211801(8)
211801-1
Ó
2012 American Physical Society
I. M. Nugent,
75
J. M. Roney,
75
R. J. Sobie,
75
N. Tasneem,
75
T. J. Gershon,
76
P. F. Harrison,
76
T. E. Latham,
76
H. R. Band,
77
S. Dasu,
77
Y. Pan,
77
R. Prepost,
77
and S. L. Wu
77
(The
B
A
B
AR
Collaboration)
1
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universite
́
de Savoie, CNRS/IN2P3,
F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy
3b
Dipartimento di Fisica, Universita
`
di Bari, I-70126 Bari, Italy
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
Ruhr Universita
̈
t Bochum, Institut fu
̈
r Experimentalphysik 1, D-44780 Bochum, Germany
7
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
10
University of California at Irvine, Irvine, California 92697, USA
11
University of California at Riverside, Riverside, California 92521, USA
12
University of California at Santa Barbara, Santa Barbara, California 93106, USA
13
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
14
California Institute of Technology, Pasadena, California 91125, USA
15
University of Cincinnati, Cincinnati, Ohio 45221, USA
16
University of Colorado, Boulder, Colorado 80309, USA
17
Colorado State University, Fort Collins, Colorado 80523, USA
18
Technische Universita
̈
t Dortmund, Fakulta
̈
t Physik, D-44221 Dortmund, Germany
19
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern- und Teilchenphysik, D-01062 Dresden, Germany
20
Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
21
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
22a
INFN Sezione di Ferrara, I-44100 Ferrara, Italy
22b
Dipartimento di Fisica, Universita
`
di Ferrara, I-44100 Ferrara, Italy
23
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
24a
INFN Sezione di Genova, I-16146 Genova, Italy
24b
Dipartimento di Fisica, Universita
`
di Genova, I-16146 Genova, Italy
25
Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
26
Harvard University, Cambridge, Massachusetts 02138, USA
27
Harvey Mudd College, Claremont, California 91711, USA
28
Universita
̈
t Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
29
Humboldt-Universita
̈
t zu Berlin, Institut fu
̈
r Physik, Newtonstr. 15, D-12489 Berlin, Germany
30
Imperial College London, London, SW7 2AZ, United Kingdom
31
University of Iowa, Iowa City, Iowa 52242, USA
32
Iowa State University, Ames, Iowa 50011-3160, USA
33
Johns Hopkins University, Baltimore, Maryland 21218, USA
34
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN2P3/CNRS et Universite
́
Paris-Sud 11, Centre Scientifique d’Orsay,
B. P. 34, F-91898 Orsay Cedex, France
35
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
36
University of Liverpool, Liverpool L69 7ZE, United Kingdom
37
Queen Mary, University of London, London, E1 4NS, United Kingdom
38
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
39
University of Louisville, Louisville, Kentucky 40292, USA
40
Johannes Gutenberg-Universita
̈
t Mainz, Institut fu
̈
r Kernphysik, D-55099 Mainz, Germany
41
University of Manchester, Manchester M13 9PL, United Kingdom
42
University of Maryland, College Park, Maryland 20742, USA
43
University of Massachusetts, Amherst, Massachusetts 01003, USA
44
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
45
McGill University, Montre
́
al, Que
́
bec, Canada H3A 2T8
46a
INFN Sezione di Milano, I-20133 Milano, Italy
46b
Dipartimento di Fisica, Universita
`
di Milano, I-20133 Milano, Italy
a47
University of Mississippi, University, Mississippi 38677, USA
48
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
49a
INFN Sezione di Napoli, I-80126 Napoli, Italy
PRL
109,
211801 (2012)
PHYSICAL REVIEW LETTERS
week ending
21 NOVEMBER 2012
211801-2
49b
Dipartimento di Scienze Fisiche, Universita
`
di Napoli Federico II, I-80126 Napoli, Italy
50
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
51
University of Notre Dame, Notre Dame, Indiana 46556, USA
52
Ohio State University, Columbus, Ohio 43210, USA
53
University of Oregon, Eugene, Oregon 97403, USA
54a
INFN Sezione di Padova, I-35131 Padova, Italy
54b
Dipartimento di Fisica, Universita
`
di Padova, I-35131 Padova, Italy
55
Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-Paris6,
Universite
́
Denis Diderot-Paris7, F-75252 Paris, France
56a
INFN Sezione di Perugia, I-06100 Perugia, Italy
56b
Dipartimento di Fisica, Universita
`
di Perugia, I-06100 Perugia, Italy
57a
INFN Sezione di Pisa, I-56127 Pisa, Italy
57b
Dipartimento di Fisica, Universita
`
di Pisa, I-56127 Pisa, Italy
57c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
58
Princeton University, Princeton, New Jersey 08544, USA
59a
INFN Sezione di Roma, I-00185 Roma, Italy
59b
Dipartimento di Fisica, Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
60
Universita
̈
t Rostock, D-18051 Rostock, Germany
61
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
62
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
63
SLAC National Accelerator Laboratory, Stanford, California 94309 USA
64
University of South Carolina, Columbia, South Carolina 29208, USA
65
Southern Methodist University, Dallas, Texas 75275, USA
66
Stanford University, Stanford, California 94305-4060, USA
67
State University of New York, Albany, New York 12222, USA
68
Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel
69
University of Tennessee, Knoxville, Tennessee 37996, USA
70
University of Texas at Austin, Austin, Texas 78712, USA
71
University of Texas at Dallas, Richardson, Texas 75083, USA
72a
INFN Sezione di Torino, I-10125 Torino, Italy
72b
Dipartimento di Fisica Sperimentale, Universita
`
di Torino, I-10125 Torino, Italy
73a
INFN Sezione di Trieste, I-34127 Trieste, Italy
73b
Dipartimento di Fisica, Universita
`
di Trieste, I-34127 Trieste, Italy
74
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
75
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
76
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
77
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 24 July 2012; published 19 November 2012)
Although
CP
violation in the
B
meson system has been well established by the
B
factories, there has
been no direct observation of time-reversal violation. The decays of entangled neutral
B
mesons into
definite flavor states (
B
0
or

B
0
), and
J=
c
K
0
L
or
c

cK
0
S
final states (referred to as
B
þ
or
B

), allow
comparisons between the probabilities of four pairs of
T
-conjugated transitions, for example,

B
0
!
B

and
B

!

B
0
, as a function of the time difference between the two
B
decays. Using
468

10
6
B

B
pairs
produced in

ð
4
S
Þ
decays collected by the
BABAR
detector at SLAC, we measure
T
-violating parameters
in the time evolution of neutral
B
mesons, yielding

S
þ
T
¼
1
:
37

0
:
14
ð
stat
Þ
0
:
06
ð
syst
Þ
and

S

T
¼
1
:
17

0
:
18
ð
stat
Þ
0
:
11
ð
syst
Þ
. These nonzero results represent the first direct observation of
T
violation
through the exchange of initial and final states in transitions that can only be connected by a
T
-symmetry
transformation.
DOI:
10.1103/PhysRevLett.109.211801
PACS numbers: 13.25.Hw, 11.30.Er, 14.40.Nd
The observations of
CP
-symmetry breaking, first in
neutral
K
decays [
1
] and more recently in
B
mesons
[
2
,
3
], are consistent with the standard model (SM) mecha-
nism of the three-family Cabibbo-Kobayashi-Maskawa
(CKM) quark-mixing matrix being the dominant source
of
CP
violation [
4
]. Local Lorentz invariant quantum field
theories imply
CPT
invariance [
5
], in accordance with all
experimental evidence [
6
,
7
]. Hence, it is expected that the
CP
-violating weak interaction also violates time-reversal
invariance.
To date, the only evidence related to
T
violation has been
found in the neutral
K
system, where a difference between
the probabilities of
K
0
!

K
0
and

K
0
!
K
0
transitions for
a given elapsed time has been measured [
9
]. This flavor
PRL
109,
211801 (2012)
PHYSICAL REVIEW LETTERS
week ending
21 NOVEMBER 2012
211801-3
mixing asymmetry is both
CP
and
T
violating (the two
transformations lead to the same observation), independent
of time, and requires a nonzero decay width difference

K
between the neutral
K
mass eigenstates to be ob-
served [
10
12
]. The dependence with

K
has aroused
controversy in the interpretation of this observable
[
7
,
11
13
]. In the neutral
B
and
B
s
systems, where

d
and

s
are negligible and significantly smaller, respec-
tively, the flavor mixing asymmetry is much more difficult
to detect [
14
]. Experiments that could provide direct evi-
dence supporting
T
noninvariance, without using an obser-
vation which also violates
CP
, involve either nonvanishing
expectation values of
T
-odd observables, or the exchange
of initial and final states, which are not
CP
conjugates to
each other, in the time evolution for transition processes.
Among the former, there exist upper limits for electric
dipole moments of the neutron and the electron [
15
]. The
latter, requiring neutrinos or unstable particles, are particu-
larly difficult to implement.
In this Letter, we report the direct observation of
T
violation in the
B
meson system, through the exchange
of initial and final states in transitions that can only be
connected by a
T
-symmetry transformation. The method is
described in Ref. [
16
], based on the concepts proposed in
Ref. [
17
] and further discussed in Refs. [
12
,
18
,
19
]. We use
a data sample of
426 fb

1
of integrated luminosity at the

ð
4
S
Þ
resonance, corresponding to
468

10
6
B

B
pairs,
and
45 fb

1
at a center-of-mass (c.m.) energy 40 MeV
below the

ð
4
S
Þ
, recorded by the
BABAR
detector [
20
]at
the PEP-II asymmetric-energy
e
þ
e

collider at SLAC. The
experimental analysis exploits identical reconstruction al-
gorithms, selection criteria, calibration techniques, and
B
meson samples to our most recent time-dependent
CP
asymmetry measurement in
B
!
c

cK
ðÞ
0
decays [
21
],
with the exception of

c
K
0
S
and
J=
c
K

0
ð!
K
0
S

0
Þ
final
states. The ‘‘flavor tagging’’ is combined here, for the first
time, with the ‘‘
CP
tagging’’ [
17
], as required for the
construction of
T
-transformed processes. Whereas the de-
scriptions of the sample composition and time-dependent
backgrounds are the same as described in Ref. [
21
], the
signal giving access to the
T
-violating parameters needs a
different data treatment. This echoes the fundamental dif-
ferences between observables for
T
and
CP
symmetry
breaking. The procedure to determine the
T
-violating pa-
rameters and their significance is thus novel [
16
].
In the decay of the

ð
4
S
Þ
, the two
B
mesons are in an
entangled, antisymmetric state, as required by angular
momentum conservation for a
P
wave particle system.
This two-body state is usually written in terms of flavor
eigenstates, such as
B
0
and

B
0
, but can be expressed in
terms of any linear combinations of
B
0
and

B
0
, such as the
B
þ
and
B

states introduced in Ref. [
16
]. They are defined
as the neutral
B
states filtered by the decay to
CP
eigen-
states
J=
c
K
0
L
(
CP
even) and
J=
c
K
0
S
, with
K
0
S
!

(
CP
odd), respectively. The
B
þ
and
B

states are orthogonal to
each other when there is only one weak phase involved in
the
B
decay amplitude, as it occurs in
B
decays to
J=
c
K
0
final states [
22
], and
CP
violation in neutral kaons is
neglected.
We select events in which one
B
candidate is recon-
structed in a
B
þ
or
B

state, and the flavor of the other
B
is
identified, referred to as flavor identification (ID). We
generically denote reconstructed final states that identify
the flavor of the
B
as

X
for

B
0
and
þ
X
for
B
0
. The
notation (
f
1
,
f
2
) is used to indicate the flavor or
CP
final
states that are reconstructed at corresponding times
t
1
and
t
2
, where
t
2
>t
1
, i.e.,
B
1
!
f
1
is the first decay in the event
and
B
2
!
f
2
is the second decay. For later use in Eq. (
1
),
we define


¼
t
2

t
1
>
0
. Once the
B
1
state is filtered at
time
t
1
, the living partner
B
2
is prepared (‘‘tagged’’) by
entanglement as its orthogonal state. The notation
B
2
ð
t
1
Þ!
B
2
ð
t
2
Þ
describes the transition of the
B
which
decays at
t
2
, having tagged its state at
t
1
. For example,
an event reconstructed in the time-ordered final states
(
þ
X
,
J=
c
K
0
S
) identifies the transition

B
0
!
B

for the
second
B
to decay. We compare the rate for this transition
to its
T
-reversed
B

!

B
0
(exchange of initial and final
states) by reconstructing the final states (
J=
c
K
0
L
,

X
).
Any difference in these two rates is evidence for
T
-symmetry violation. There are three other independent
comparisons that can be made between
B
þ
!
B
0
J=
c
K
0
S
;‘
þ
X

,

B
0
!
B
þ
(
þ
X
,
J=
c
K
0
L
), and
B

!
B
0
(
J=
c
K
0
L
,
þ
X
) transitions and their
T
conjugates,
B
0
!
B
þ
(

X
,
J=
c
K
0
L
),
B
þ
!

B
0
(
J=
c
K
0
S
,

X
), and
B
0
!
B

(

X
,
J=
c
K
0
S
), respectively. Similarly, four dif-
ferent
CP
(
CPT
) comparisons can be made, e.g., between
the

B
0
!
B

transition and its
CP
(
CPT
) transformed
B
0
!
B

(
B

!
B
0
)[
16
].
Assuming

d
¼
0
, each of the eight transitions has a
general, time-dependent decay rate
g

;
ð


Þ
given by
e


d


f
1
þ
S

;
sin
ð

m
d


Þþ
C

;
cos
ð

m
d


Þg
;
(1)
where indices

¼
þ
,

and

¼
K
0
S
,
K
0
L
stand for
þ
X
,

X
and
c

cK
0
S
,
J=
c
K
0
L
final states, respectively, and the
symbol
þ
or

indicates whether the decay to the flavor
final state

occurs before or after the decay to the
CP
final
state

. Here,

d
is the average decay width,

m
d
is the
mass difference between the neutral
B
mass eigenstates,
and
C

;
and
S

;
are model independent coefficients. The
sine term, expected to be large in the SM, results from
the interference between direct decay of the neutral
B
to
the
J=
c
K
0
final state and decay after
B
0
-

B
0
oscillation,
while the cosine term arises from the interference between
decay amplitudes with different weak and strong phases,
and is expected to be negligible [
22
].
T
violation would
manifest itself through differences between the
S

;
or
C

;
values for
T
-conjugated processes, for example, be-
tween
S
þ
þ
;K
0
S
and
S


;K
0
L
.
PRL
109,
211801 (2012)
PHYSICAL REVIEW LETTERS
week ending
21 NOVEMBER 2012
211801-4
In addition to
J
c
=K
0
S
,
B

states are reconstructed
through the
c
ð
2
S
Þ
K
0
S
and

c
1
K
0
S
final states (denoted
generically as
c

cK
0
S
), with
J=
c
;
c
ð
2
S
Þ!
e
þ
e

,

þ


,
c
ð
2
S
Þ!
J
c
=
þ


,

c
1
!
J
c

, and
K
0
S
!

þ


,

0

0
(the latter only for
J=
c
K
0
S
).
B
þ
states are identified
through
J=
c
K
0
L
. The
J=
c
K
0
L
candidates are characterized
by the difference

E
between the reconstructed energy of
the
B
and the beam energy in the
e
þ
e

c.m. frame,
E

beam
,
while for the
c

cK
0
S
modes we use the beam-energy sub-
stituted invariant mass
m
ES
¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
E

beam
Þ
2
p

B
Þ
2
q
, where
p

B
is the
B
momentum in the c.m. frame.
The flavor ID of the other neutral
B
meson in the event,
not associated with the reconstructed
B
þ
or
B

, is made on
the basis of the charges of prompt leptons, kaons, pions
from
D

mesons, and high-momentum charged particles.
These flavor ID inputs are combined using a neural net-
work (NN), trained with Monte Carlo (MC) simulated data.
The output of the NN is then divided into six hierarchical,
mutually exclusive flavor categories of increasing misiden-
tification (misID) probability
w
. Events for which the NN
output indicates very low discriminating power are ex-
cluded from further analysis. We determine the signed
difference of proper time

t
¼
t


t

between the two
B
decays from the measured separation of the decay ver-
tices along the collision axis. Events are accepted if the
reconstructed
j

t
j
and its estimated uncertainty,

t
, are
lower than 20 and 2.5 ps, respectively. The performances
of the flavor ID and

t
reconstruction algorithms are
evaluated by using a large sample of flavor-specific
neutral
B
decays to
D
ðÞ
½

þ
;
ð
770
Þ
þ
;a
1
ð
1260
Þ
þ

and
J=
c
K

0
ð!
K
þ


Þ
final states (referred to as
B
flav
sam-
ple). The

t
resolution function is the same as in Ref. [
21
]
except that all Gaussian offsets and widths are modeled to
be proportional to

t
.
The composition of the final sample is determined
through fits to the
m
ES
and

E
distributions, using para-
metric forms and distributions extracted from MC simula-
tion and dilepton mass sidebands in data to describe the
signal and background components. Figure
1
shows the
m
ES
and

E
data distributions for events that satisfy
the flavor ID and vertexing requirements, overlaid with
the fit projections. The final sample contains
7796
c

cK
0
S
events, with purities in the signal region (
5
:
27
<m
ES
<
5
:
29 GeV
=c
2
) ranging between 87% and 96%, and
5813
J=
c
K
0
L
events, with a purity of 56% in the
j

E
j
<
10 MeV
region.
We perform a simultaneous, unbinned maximum like-
lihood fit to the

t
distributions for flavor identified
c

cK
0
S
and
J=
c
K
0
L
events, split by flavor category. The signal
probability density function (PDF) is [
16
]
H
;
ð

t
Þ/
g
þ
;
ð

t
true
Þ
H
ð

t
true
Þ
R
ð
t
;

t
Þ
þ
g

;
ð

t
true
Þ
H
ð

t
true
Þ
R
ð
t
;

t
Þ
;
(2)
where

t
true
is the signed difference of proper time
between the two
B
decays in the limit of perfect

t
reconstruction,
H
is the Heaviside step function,
R
ð
t
;

t
Þ
with
t
¼

t


t
true
is the resolution func-
tion, and
g

;
are given by Eq. (
1
). Note that

t
true
is
equivalent to


(



) when a true flavor (
CP
) tag
occurs. Because of the convolution with the resolution
function, the distribution for

t>
0
contains predomi-
nantly true flavor-tagged events, with contribution from
true
CP
-tagged events at low

t
, and conversely for

t<
0
. Mistakes in the flavor ID algorithm mix correct and
incorrect flavor assignments, and dilute the
T
-violating
asymmetries by a factor of approximately (
1
2
w
).
Backgrounds are accounted for by adding terms to
Eq. (
2
)[
21
]. Events are assigned signal and background
probabilities based on the
m
ES
or

E
distributions, for
c

cK
0
S
or
J=
c
K
0
L
events, respectively.
A total of 27 parameters are varied in the likelihood
fit: eight pairs of (
S

;
,
C

;
) coefficients for the signal,
and 11 parameters describing possible
CP
and
T
violation
in the background. All remaining signal and background
parameters are fixed to values taken from the
B
flav
sample,
J=
c
-candidate sidebands in
J=
c
K
0
L
, world averages for

d
and

m
d
[
8
], or MC simulation [
21
]. From the 16 signal
coefficients [
23
], we construct six pairs of independent
asymmetry parameters (

S

T
,

C

T
), (

S

CP
,

C

CP
), and
(

S

CPT
,

C

CPT
), as shown in Table
I
. The
T
-asymmetry
parameters have the advantage that
T
-symmetry breaking
would directly manifest itself through any nonzero
value of

S

T
or

C

T
, or any difference between

S

CP
and

S

CPT
, or between

C

CP
and

C

CPT
(analogously
for
CP
-or
CPT
-symmetry breaking). The measured
values for the asymmetry parameters are reported in
Table
I
. There is another 2 times three pairs of
T
-,
CP
-, and
CPT
-asymmetry parameters, but they are
not independent and can be derived from Table
I
or
Ref. [
23
].
)
2
(GeV/c
ES
m
5.2
5.22
5.24
5.26
5.28
2
Events / 2 MeV/c
0
1000
2000
0
S
0
K
ψ
J/
B
S
0
(2S)K
ψ
B
S
0
K
c1
χ
B
a)
E (MeV)
0204060
Events / 2 MeV
0
500
1000
0
L
0
K
ψ
J/
B
b)
FIG. 1 (color online). Distributions of (a)
m
ES
and (b)

E
for
the neutral
B
decays reconstructed in the
c

cK
0
S
and
J=
c
K
0
L
final
states, respectively, after flavor ID and vertexing requirements.
In each plot, the shaded region is the estimated background
contribution. The two samples of events are identical to those
used in our most recent
CP
-violation study [
21
], but excluding

c
K
0
S
and
J=
c
K

0
ð!
K
0
S

0
Þ
final states.
PRL
109,
211801 (2012)
PHYSICAL REVIEW LETTERS
week ending
21 NOVEMBER 2012
211801-5
We build time-dependent asymmetries
A
T
ð

t
Þ
to visu-
ally demonstrate the
T
-violating effect. For transition

B
0
!
B

,
A
T
ð

t
Þ
H


;K
0
L
ð

t
Þ
H
þ
þ
;K
0
S
ð

t
Þ
H


;K
0
L
ð

t
Þþ
H
þ
þ
;K
0
S
ð

t
Þ
;
(3)
where
H

;
ð

t
Þ¼
H
;
ð

t
Þ
H
ð

t
Þ
. With this
construction,
A
T
ð

t
Þ
is defined only for positive

t
values. Neglecting reconstruction effects,
A
T
ð

t
Þ

S
þ
T
2
sin
ð

m
d

t
Þþ

C
þ
T
2
cos
ð

m
d

t
Þ
. We introduce the
other three
T
-violating asymmetries similarly. Figure
2
shows the four observed asymmetries, overlaid with the
projection of the best fit results to the

t
distributions with
and without the eight
T
-invariance restrictions:

S

T
¼

C

T
¼
0
,

S

CP
¼

S

CPT
, and

C

CP
¼

C

CPT
[
23
].
Using large samples of MC simulated data, we deter-
mine that the asymmetry parameters are unbiased and have
Gaussian errors. Splitting the data by flavor category or
data-taking period give consistent results. Fitting a single
pair of (
S
,
C
) coefficients, reversing the sign of
S
under

t
$

t
,or
B
þ
$
B

or
B
0
$

B
0
exchanges, and the
sign of
C
under
B
0
$

B
0
exchange, we obtain identical
results to those obtained in Ref. [
21
]. Performing the
analysis with
B
decays to
c

cK

and
J=
c
K

final states
instead of the signal
c

cK
0
S
and
J=
c
K
0
L
, respectively,
we find that all the asymmetry parameters are consistent
with zero.
In evaluating systematic uncertainties in the asymmetry
parameters, we follow the same procedure as in Ref. [
21
],
with small changes [
23
]. We considered the statistical
uncertainties on the flavor misID probabilities,

t
resolu-
tion function, and
m
ES
parameters. Differences in the
misID probabilities and

t
resolution function between
B
flav
and
CP
final states, uncertainties due to assumptions
in the resolution for signal and background components,
compositions of the signal and backgrounds, the
m
ES
and

E
PDFs, and the branching fractions for the backgrounds
and their
CP
properties, have also been accounted for. We
also assign a systematic uncertainty corresponding to any
deviation of the fit for MC simulated asymmetry parame-
ters from their generated MC values, taking the largest
between the deviation and its statistical uncertainty.
Other sources of uncertainty such as our limited knowledge
of

d
,

m
d
, and other fixed parameters, the interaction
region, the detector alignment, and effects due to a nonzero

d
value in the time dependence and the normalization of
the PDF, are also considered. Treating
c

cK
0
S
and
J=
c
K
0
L
as
orthogonal states and neglecting
CP
violation for flavor
categories without leptons, has an impact well below the
statistical uncertainty. The total systematic uncertainties
are shown in Table
I
[
23
].
The significance of the
T
-violation signal is evaluated
based on the change in log-likelihood with respect to the
maximum (

2 ln
L
). We reduce

2 ln
L
by a factor
1
þ
max
f
m
2
i
1
:
61
to account for systematic errors in
the evaluation of the significance. Here,
m
2
i
¼
2
ð
ln
L
i

ln
L
Þ
=s
2
, where
ln
L
is the maximum log-likelihood,
ln
L
i
is the log-likelihood with asymmetry parameter
i
fixed to
its total systematic variation and maximized over all other
TABLE I. Measured values of the
T
-,
CP
-, and
CPT
-
asymmetry parameters, defined as the differences in
S

;
and
C

;
between symmetry-transformed transitions. The values of
reference coefficients are also given at the bottom. The first
uncertainty is statistical and the second systematic. The indices

,
þ
,
K
0
S
, and
K
0
L
stand for reconstructed final states that
identify the
B
meson as

B
0
,
B
0
,
B

, and
B
þ
, respectively.
Parameter
Result

S
þ
T
¼
S


;K
0
L

S
þ
þ
;K
0
S

1
:
37

0
:
14

0
:
06

S

T
¼
S
þ

;K
0
L

S

þ
;K
0
S
1
:
17

0
:
18

0
:
11

C
þ
T
¼
C


;K
0
L

C
þ
þ
;K
0
S
0
:
10

0
:
14

0
:
08

C

T
¼
C
þ

;K
0
L

C

þ
;K
0
S
0
:
04

0
:
14

0
:
08

S
þ
CP
¼
S
þ

;K
0
S

S
þ
þ
;K
0
S

1
:
30

0
:
11

0
:
07

S

CP
¼
S


;K
0
S

S

þ
;K
0
S
1
:
33

0
:
12

0
:
06

C
þ
CP
¼
C
þ

;K
0
S

C
þ
þ
;K
0
S
0
:
07

0
:
09

0
:
03

C

CP
¼
C


;K
0
S

C

þ
;K
0
S
0
:
08

0
:
10

0
:
04

S
þ
CPT
¼
S

þ
;K
0
L

S
þ
þ
;K
0
S
0
:
16

0
:
21

0
:
09

S

CPT
¼
S
þ
þ
;K
0
L

S

þ
;K
0
S

0
:
03

0
:
13

0
:
06

C
þ
CPT
¼
C

þ
;K
0
L

C
þ
þ
;K
0
S
0
:
14

0
:
15

0
:
07

C

CPT
¼
C
þ
þ
;K
0
L

C

þ
;K
0
S
0
:
03

0
:
12

0
:
08
S
þ
þ
;K
0
S
0
:
55

0
:
09

0
:
06
S

þ
;K
0
S

0
:
66

0
:
06

0
:
04
C
þ
þ
;K
0
S
0
:
01

0
:
07

0
:
05
C

þ
;K
0
S

0
:
05

0
:
06

0
:
03
t (ps)
02468
T
A
-0.5
0
0.5
a)
t (ps)
02468
T
A
-0.5
0
0.5
b)
t (ps)
02468
T
A
-0.5
0
0.5
c)
t (ps)
02468
T
A
-0.5
0
0.5
d)
FIG. 2 (color online). The four independent
T
-violating asym-
metries for transition (a)

B
0
!
B

(
þ
X
,
c

cK
0
S
), (b)
B
þ
!
B
0
(
c

cK
0
S
,
þ
X
), (c)

B
0
!
B
þ
(
þ
X
,
J=
c
K
0
L
), (d)
B

!
B
0
(
J=
c
K
0
L
,
þ
X
), for combined flavor categories with low misID
(leptons and kaons), in the signal region (
5
:
27
<m
ES
<
5
:
29 GeV
=c
2
for
c

cK
0
S
modes and
j

E
j
<
10 MeV
for
J=
c
K
0
L
). The points with error bars represent the data, the red
solid and dashed blue curves represent the projections of the best
fit results with and without
T
violation, respectively.
PRL
109,
211801 (2012)
PHYSICAL REVIEW LETTERS
week ending
21 NOVEMBER 2012
211801-6
parameters, and
s
2

1
is the change in
2ln
L
at 68%
confidence level (CL) for one degree of freedom (d.o.f.).
Figure
3
shows CL contours calculated from the change

2 ln
L
in two dimensions for the
T
-asymmetry parame-
ters (

S
þ
T
,

C
þ
T
) and (

S

T
,

C

T
). The difference in the
value of
2ln
L
at the best fit solution with and without
T
violation is 226 with 8 d.o.f., including systematic uncer-
tainties. Assuming Gaussian errors, this corresponds to a
significance equivalent to 14 standard deviations (
), and
thus constitutes direct observation of
T
violation. The
significance of
CP
and
CPT
violation is determined anal-
ogously, obtaining 307 and 5, respectively, equivalent to
17
and
0
:
3
, consistent with
CP
violation and
CPT
invariance.
In summary, we have measured
T
-violating parameters
in the time evolution of neutral
B
mesons, by comparing
the probabilities of

B
0
!
B

,
B
þ
!
B
0
,

B
0
!
B
þ
, and
B

!
B
0
transitions, to their
T
conjugate. We determine
for the main
T
-violating parameters

S
þ
T
¼
1
:
37

0
:
14
ð
stat
Þ
0
:
06
ð
syst
Þ
and

S

T
¼
1
:
17

0
:
18
ð
stat
Þ
0
:
11
ð
syst
Þ
, and observe directly for the first time a depar-
ture from
T
invariance in the
B
meson system, with a
significance equivalent to
14
. Our results are consistent
with current
CP
-violating measurements obtained invok-
ing
CPT
invariance. They constitute the first observation of
T
violation in any system through the exchange of initial
and final states in transitions that can only be connected by
a
T
-symmetry transformation.
We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues, and for the
substantial dedicated effort from the computing organiza-
tions that support
BABAR
. The collaborating institutions
wish to thank SLAC for its support and kind hospitality.
This work is supported by DOE and NSF (USA), NSERC
(Canada), CEA and CNRS-IN2P3 (France), BMBF and
DFG(Germany), INFN (Italy), FOM (The Netherlands),
NFR (Norway), MES (Russia), MINECO (Spain), STFC
(United Kingdom). Individuals have received support from
the Marie Curie EIF (European Union), the A. P. Sloan
Foundation (USA) and the Binational Science Foundation
(USA-Israel).
*
Deceased.
Present address: the University of Tabuk, Tabuk 71491,
Saudi Arabia.
Also with Universita
`
di Perugia, Dipartimento di Fisica,
Perugia, Italy.
§
Present address: the University of Huddersfield,
Huddersfield HD1 3DH, U.K.
k
Present address: University of South Alabama, Mobile,
AL 36688, USA.
{
Also with Universita
`
di Sassari, Sassari, Italy.
[1] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay,
Phys. Rev. Lett.
13
, 138 (1964)
.
[2] B. Aubert
et al.
(
BABAR
Collaboration),
Phys. Rev. Lett.
87
, 091801 (2001)
; K. Abe
et al.
(Belle Collaboration),
Phys. Rev. Lett.
87
, 091802 (2001)
.
[3] B. Aubert
et al.
(
BABAR
Collaboration),
Phys. Rev. Lett.
93
, 131801 (2004)
; Y. Chao
et al.
(Belle Collaboration),
Phys. Rev. Lett.
93
, 191802 (2004)
.
[4] N. Cabibbo,
Phys. Rev. Lett.
10
, 531 (1963)
;M.
Kobayashi and T. Maskawa,
Prog. Theor. Phys.
49
, 652
(1973)
.
[5] G. Lu
̈
ders,
Math. Fysik. Medd. Kgl. Danske Akad. Ved.
,
1954, Vol. 28, p. 5; J. S. Bell, Ph.D. thesis, Birmingham
University, 1954;
Niels Bohr and the Development of
Physics
, edited by W. Pauli, L. Rosenfold, and V.
Weisskopf (McGraw-Hill, New York, 1955).
[6] R. Carosi
et al.
,
Phys. Lett. B
237
, 303 (1990)
; A. Alavi-
Harati
et al.
,
Phys. Rev. D
67
, 012005 (2003)
;
B. Schwingenheuer
et al.
,
Phys. Rev. Lett.
74
, 4376
(1995)
.
[7] See ‘‘Tests of conservation laws’’ review in [
8
].
[8] K. Nakamura
et al.
(Particle Data Group),
J. Phys. G
37
,
075021 (2010)
.
[9] A. Angelopoulus
et al.
(CPLEAR Collaboration),
Phys.
Lett. B
444
, 43 (1998)
.
[10] P. K. Kabir,
Phys. Rev. D
2
, 540 (1970)
.
[11] L. Wolfenstein,
Phys. Rev. Lett.
83
, 911 (1999)
.
[12] L. Wolfenstein,
Int. J. Mod. Phys. E
08
, 501 (1999)
.
[13] H. J. Gerber,
Eur. Phys. J. C
35
, 195 (2004)
, and references
therein.
[14] B. Aubert
et al.
(BABAR Collaboration),
Phys. Rev. Lett.
96
, 251802 (2006)
;
92
, 181801 (2004)
; E. Nakano
et al.
(Belle Collaboration),
Phys. Rev. D
73
, 112002
(2006)
; V. M. Abazov
et al.
(D0 Collaboration),
Phys.
Rev. Lett.
105
, 081801 (2010)
;
98
, 151801 (2007)
;
F. Abe
et al.
(CDF Collaboration),
Phys. Rev. D
55
,
2546 (1997)
.
[15] J. J. Hudson
et al.
,
Nature (London)
473
, 493 (2011)
;C.A.
Baker
et al.
,
Phys. Rev. Lett.
97
, 131801 (2006)
.
±
T
S
-1
0
1
±
T
C
-1
-0.5
0
0.5
1
FIG. 3 (color online). The central values (blue point and red
square) and two-dimensional CL contours for
1

CL
¼
0
:
317
,
4
:
55

10

2
,
2
:
70

10

3
,
6
:
33

10

5
,
5
:
73

10

7
, and
1
:
97

10

9
, calculated from the change in the value of

2 ln
L
compared with its value at maximum (

2 ln
L
¼
2
:
3
, 6.2, 11.8, 19.3, 28.7, 40.1), for the pairs of
T
-asymmetry
parameters (

S
þ
T
,

C
þ
T
) (blue dashed curves) and (

S

T
,

C

T
)
(red solid curves). Systematic uncertainties are included. The
T
-invariance point is shown as a
þ
sign.
PRL
109,
211801 (2012)
PHYSICAL REVIEW LETTERS
week ending
21 NOVEMBER 2012
211801-7
[16] J. Bernabeu, F. Martinez-Vidal, and P. Villanueva-Perez,
J. High Energy Phys. 08 (2012) 064
.
[17] M. C. Ban
̃
uls and J. Bernabeu,
Phys. Lett. B
464
, 117
(1999)
;
Nucl. Phys.
B590
, 19 (2000)
.
[18] H. R. Quinn,
J. Phys. Conf. Ser.
171
, 012001 (2009)
.
[19] J. Bernabeu,
J. Phys. Conf. Ser.
335
, 012011 (2011)
.
[20] B. Aubert
et al.
(
BABAR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002)
.
[21] B. Aubert
et al.
(BABAR Collaboration),
Phys. Rev. D
79
,
072009 (2009)
.
[22] See ‘‘
CP
violation in meson decays’’ review in [
8
].
[23] See Supplemental Material at
http://link.aps.org/
supplemental/10.1103/PhysRevLett.109.211801
for a
breakdown of the main systematic uncertainties on the
asymmetry parameters,
CP
- and
CPT
-violating asymme-
tries, and the complete (
S

;
,
C

;
) analysis results.
PRL
109,
211801 (2012)
PHYSICAL REVIEW LETTERS
week ending
21 NOVEMBER 2012
211801-8