A R
eal-Time He
li copter
Testbed for Insect- Insp
ire d Visual
Fli ght Control
Sh
uo
Han, And
rew D
. Straw, Michae l H. Dickinson
and
Richard M. Murr ay
Abstract
—
The paper
descr ibes an indoo r helicopter
testbed
that allows implementing a
nd
testing o
f bio-inspired control
algorithms developed from
scientific stud
ies on insec ts. The
helicopter rece
ives and
is controlled b
y simulated sensory inpu
ts
(e.g. visual stimuli)
gener ated
in
a v
irtual 3D
environment,
where
the c
onn
ec tion b
etwee n the physical world and
the virtual
world
is
prov ided b
y a v
ideo camer a tracking system. The
virtual environment is spec ified b
y a 3
D
compu
ter
model and
is re latively simple to modify compare d to re alistic sce nes. This
enables rapid
exa minations of whether
a cer
tain
control law
is
robu st und
er
va rious environments, an important f
eature
of insec t behav ior. As a first att empt, flight stabiliz
ation and
ya w
rate c
ontrol near hov er
are
demonstrated, utiliz
ing bio-
logically
re alistic
visual stimuli as in
the fruit fly
Drosop hila
melanoga
ster
.
I. I
NTRODU
CTION
Insec ts were the first organisms to
ac hieve fligh t, and
are a
rgu ably the most soph
isti ca ted flying o
rganisms. Al-
though
their brain con sists of on ly 500
,000 n
euron s, they
are ca
pable of con trolli ng bo
th h
igh
level behavior ( e.g. food
loca li za ti on ) and
low
level behavior (
e.g. leg coo rdinati on )
in app arentl y robu
st and
succe
ss ful ways. Wh
en compared to
autono
mou s mac hines perf orming
multi -level con trol, it be-
comes app arent t hat t he ti ny b
rains of insec ts must i mplement
rather eff ec ti ve a
nd
efficient algo rit hms [1]. Among
insec ts,
flies in g
eneral and
the fr uit fly
Drosoph
il a melanoga
ster
in
parti cular, are e
spec iall y well stud ied spec ies. Variou s visuo -
motor r
espon
ses, in
add iti on
to
senses s
uch
as wind
and
rotati on d
etec ti on , have bee n stud ied to g
ain an und
erstand -
ing o
f ho w
flies s
tabili ze a
nd gu
ide fligh t [2]. The op ti cs of
the c
ompound
eye prov ide spati al resoluti on
far inferior to
mod ern elec tron ic video ca meras, wit h on
ly 700 o
mm
ati dia
(r ough
ly, pixels) per side. The impo rtance
of vision , despit e
this li mit ed spati al resoluti on , is s
ugg
ested by
the po rti on o
f
the brain d
edica ted to v
isual proce ss ing —r
ough
ly two thirds
of the fly b
rain is wit hin the op ti c lob es, and
this neglec ts
parts of the ce
ntral brain also invo
lved wit h v
ision .
This paper introdu
ce s a vision -based h
eli cop ter con trol
testbed (sho wn in Fig. 1), in which the c
on trol l
aw
takes
visual i npu
t fr om
a biolog ica ll y rea li sti c simulati on o
f the
visual system
of
Drosoph
il a
. Generati on o
f the visual sti muli
is acc
ompli shed through g
raph ica l rend ering o
f a 3D
virtual
env iron ment, rather than fr om
onbo
ard v
ideo ca meras. The
testbed serves two fun cti on s. First, this testbed enables ce r-
tain exp eriments that are otherwise difficult t
o con trol or even
no t po ss ible on
rea l animals. Sec ond
, fr om
an eng inee ring
The a
utho
rs are wit h the Division o
f Eng
inee ring
and
App
li ed Science ,
Cali fornia Instit ute of Tec hno
logy
, Pasadena, CA
91125
, USA.
{
hanshuo,
astraw, flyman
}
@caltech.edu
,
murray@cds.caltech.edu
perspec ti ve, it i
s intrigu ing
to
examine po ss ible ways of
adop
ti ng
the mec hanisms of insec t fligh t con trol i n p
rac ti ca l
systems and /or whether there wou ld b
e a
ny
li mit ati on s.
Fig. 1.
The heli cop
ter used in this work. It i s based on
E-flit e Blade CX2,
a c
oaxial 4-chann
el i ndoo
r RC
heli cop
ter (
gross
weigh
t: 224 g
, rotor span:
345
mm)
. Mod
ifica ti on
s includ
e: (1) r emo
val of the original ca nopy
and
tail
boo
m
to increa se payload; (2) add
ing
a me
tal fr ame
wit h 5
LE
Ds as fea ture
po
ints in v
ideo trac king
.
II . R
EL
ATE
D
WORK
The idea
of exp loiti ng v
isual i
nformati on
is no t new
in
the field o
f ae rial robo
ti cs and h
as bee n
implemented
in
variou s un mann ed
ae rial vehicle (UAV
) projec ts [3], [4],
[5]. However, on ly un
til
rece
ntl y
resea rchers have started
to study
the po ss ibilit
y o
f develop ing
con trol l aws that make
use of biolog ica ll y mea ning ful visual i npu
ts. Much work h
as
bee n don
e a
t t
he simulati on
level. Early
resea rch u
suall y
igno
res the detail ed
con figu rati on o
f the c
ompound
eyes,
and
trea ts the two eyes as two sing le pho
tod etec tors [6], [7].
However, there a
re c
lues that i nsec ts use inpu
ts fr om
eac
h
omm
ati dium
via lobu
lar plate tang enti al ce ll s (LPTC) that
perf orm
as “matched filt ers” [8]. Later work sho wed that sim-
ulated reti nal velociti es of eac
h o
mm
ati dium
ca n coll ec ti vely
prov ide a
full
esti mate of the system
states (e.g. forward
spee d, po siti on s) und
er ce rtain maneuv er con straints using
such algo rit hm
[9], [10 ], [11
]. The idea
of matched filt er has
also b
ee n extend ed to insec t fligh t con trol simulati on
wit h
a more biolog ica ll y rea li sti c visual mod el and
Drosoph
il a
body
/wing dyn
amics [12 ], [13 ].
One of the ea
rly att empts on
implementi ng
insec t fligh t
con trol l
aws
in
ae rial robo
ts
is
a
microflyer develop ed
by
Labo ratory o
f I
ntelli gent Systems at EPF
L
[14
]. Wit h
an onbo
ard
li gh tweigh t video
ca mera, op ti c flow
ca n b
e
ca lculated and u
sed as a sensory inpu
t. The microflyer is
in turn able to fly indoo
r whil e a
vo iding ob
stac les through
2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009
978-1-4244-2789-5/09/$25.00 ©2009 IEEE
3055
Helicopter
Coaxial
Radio
Controller
image points
Coordinates of 2D
( < 0.1ms)
Pose Estimation
Ground
CMOS
Camera
IEEE 1394 Link
Visual Stimuli
Control Law
3D Environment Model
Eye Map
Video Processing
Visual Stimuli
Simulation
θ
,
ψ
,
φ
x
,
y
,
z
(
fcontrol
)
(
fview
)
u
α
,
u
β
u
thr
,
u
rud
(
fsee
,
∼
70 fps)
Fig. 2.
A
schema
ti c of the indoo
r heli cop
ter testbed incorpo
rati ng b
iolog
ica l con
trol l aws. The c
on
trol l aws curr entl y on
ly u
se simu
lated
Drosoph
il a
(fr uit
fly) visual sti mu
li fr om
fsee
. The
fsee
prog
ram
requ
ires (1) a 3D
env iron
me
nt mo
del, (2) con
figu
rati on o
f the c
omp
ound
eye op
ti cs (the e
ye ma
p), and
(3) po
siti on
and o
rientati on
(kno
wn as po
se) of the heli cop
ter. The e
nv iron
me
nt mo
del and
eye ma
p are c
od
ed in software, wherea s the po
se is comp
uted
fr om
2D
video ima
ges through
a po
se e
sti ma
ti on
algo
rit hm.
The design
ed con
trol l aw,
fcon trol
, comp
utes the c
on
trol comma
nd
s fr om
the visual sti mu
li
and
fee ds the c
omma
nd
s to the heli cop
ter via a
4-chann
el (
u
thr
,
u
rud
,
u
α
,
u
β
) r
adio con
troll er.
intermitt ent sacca
des (turning by
∼
90 d
eg in y
aw) trigg ered
by
ce rtain chang es in op
ti c flow.
Non e of the work abov
e, ho wever, examines the po ss ibilit
y
of incorpo rati ng
a virtual env iron ment i n the c
on trol l oop
.
This ca n b
e beneficial when
a large nu mber of diff erent
sti muli nee d to b
e tested b
eca
use virtual env iron ment all ows
batch g
enerati on . Buil ding
the e
nti re testbed lea ds to two
po ss ible iss ues that nee d to b
e ca
refull y add ress ed. First,
simulati ng
equ ivalent visual sti muli
requ ires
the c
urr ent
po siti on
and
attit
ud e of the heli cop ter, which ca n b
e ob tained
by po
se e
sti mati on . However, po se e
sti mati on
algo rit hms
usuall y do no
t emph asize
rea l-ti me perf ormance , wherea s
ae rial vehicle c
on trol often impo ses s
tring ent requ irement
on
ti me
delays (
≪
20
ms for ou r heli cop ter) . To
tun e
the a
lgo rit hm
in o
rder to mee t ou r spec ial nee d, ou r work
combines two d
iff erent po se e
sti mati on
algo rit hms, POSIT
and
SoftPOSIT, tog ether wit h
a
Kalman
filt er prov iding
nece
ss ary initi al po se gu ess es and no
ise redu cti on . This gives
sati sfac tory p
erf ormance
(average delay
<
0
.
1
ms) even on
an o
ff- the-shelf PC, avo iding
the use of much more e
xp ensive
profess ion al moti on
ca pture systems (e.g. VICON
). Sec ond
,
the a
im
of this paper is focused on
stabili za ti on
and y
aw
con trol du ring hov
ering . Yet fligh t con trol du ring hov
ering
is
generall y b
eli eved to b
e more c
hall eng ing
than forward fligh t
beca
use the vehicle is no rmall y more susce pti ble to no
ise. It
is un ce rtain that whether the no ise will
severely corr up t t he
state e
sti mates and /or destabili ze
the heli cop ter. The paper
sho ws that good y
aw
rate e
sti mates ca n b
e ob tained u
sing
a “
matched filt er” a
pp roac h and d
iscuss es s
ome a
ss ociated
li mit ati on s.
The
paper is organize d
as foll ows. Sec . III
gives an
ov erview
of the testbed, which con sists of three
major parts:
(1) the heli cop ter it self, (2) the sensor sub system, and
(3)
the c
on trol/ ac tuati on
sub system. Eac h p
art i s introdu
ce d in
sequ ence
in Sec . IV–VI. Sec . VI also p
resents and d
iscuss es
several preli minary result s on h
eli cop ter con trol using b
io-
inspired algo rit hms. The paper con clud es in Sec . VII
wit h
direc ti on s on
future work.
III
. S
YSTE
M
OV
ERVIEW
The e
nti re system
(Fig. 2) con sists of three
major parts: t he
heli cop ter it self, a sensing
sub system
that ca ptures the status
(po siti on
and
attit
ud e) of the heli cop ter and g
enerates the c
or-
respond
ing b
iolog ica l visual sti muli , and
a c
on trol/ ac tuati on
sub system
that exec utes given con trol l aws. There a
re mainly
two typ es of r
adio-con troll ed (RC
) heli cop ter comm
erciall y
avail able, wit h d
iff erent yaw
con trol mec hanisms. One typ e
fea tures a sing le main rotor, wit h it s yaw
torqu e c
on troll ed
by
a
tail
rotor; t
he
other has a
pair of coun
ter-r otati ng
coaxial main rotors where the yaw
is con troll ed through
the
diff erenti al spee d o
f the rotor pair. The latt er is cho sen in ou
r
ca se du e to it s s
imil ar yaw
con trol mec hanism
wit h the fly,
which ac hieves yaw
moti on by
alt ering
the bea t fr equ encies
of the wing p
air. Besides elec tron ics, the heli cop ter is also
equ ipp ed wit h 5
IR
li gh t-emitti
ng d
iod es (LE
D) wit h which
the sensing
sub system
ca n esti mate the c
urr ent po se of the
heli cop ter.
The sensing
sub system
is compo sed o
f two fun cti on s. A
ground v
ideo ca mera first rec ords the image of the IR LE
Ds,
fr om
which a po se e
sti mati on
algo rit hm
extrac ts ou t t he 3D
po siti on
(
x
,
y
,
z
) as well as the a
ttit
ud e (three
Euler ang les—
θ
,
ψ
,
φ
) of the heli cop ter wit h respec t t
o the ca
mera. To
avo id po
ss ible a
mbigu it y and
err or du ring po
se e
sti mati on , a
Kalman filt er is also add ed in the e
sti mati on
loop
. Wit h the
complete 6-degree -of-fr
ee do m
(DO
F) informati on
avail able,
a prog ram
ca ll ed
fsee
is able to simulate the instantaneou s
3056
biolog ica l visual i
npu
t (see
Fig. 2) f
or a
given v
irtual
env iron ment, which
shares the same origin
wit h
the rea l
world. A
con trol l
aw w
ill
rece
ive this inpu
t and
compu te
the c
on trol comm
and s.
The ac
tuati on
is ac hieved by h
aving
a PC
comm
un ica te
wit h
the radio
con troll er shipp ed
wit h
the heli cop ter. To
kee p the original radio con troll er intac t, the c
omm
un ica ti on
is don
e ov er the trainer po rt t hat acce
pts PP
M
sign als. The
sign als ca n b
e generated fr om
a ce
rtain p
eriph eral circuit
and
several digit al po tenti ometers con troll ed by
the PC ov er
an SP
I interf ace
. A
video sho wing
the heli cop ter in moti on
and
the a
ss ociated simulated
Drosoph
il a
visual sti muli
(a
sinu soidal patt ern is s
ho wn for bett er visual ill
ustrati on ) ca n
be found
in the supp
lementary materials [15 ].
IV. H
EL
ICOPTE
R C
ON
FIGU
RATION
Our testbed u
ses an
E-flit e Blade CX2
coaxial i
ndoo
r
heli cop ter. Its rotor blades are 345
mm
in d
iameter and
are
driven by
two separate DC
brushed motors. Powered by
a
2-ce ll
800
-mAh
lit hium-po lymer batt ery, the heli cop ter is
able to fly for 10 -15
minu tes. The small size a
nd
exce ll ent
fligh t ti
me make this mod el parti cularly
idea l for indoo
r
exp eriments. The pit ch o
f the rotor blades is fixed. Therefore,
li ft con trol i s ac hieved by
chang ing
the spee ds of the upp
er
and
lower r
otors coll ec ti vely through
the throttl e c
omm
and
(
u
thr
). Yaw
con trol i
s rea li ze d by
tun ing
the
diff erenti al
spee d b
etwee n the two coun
ter-r otati ng
rotors via the rudd
er
comm
and
(
u
rud
). Pit ching
and
rolli ng
are c
on troll ed by
the
cycli c pit ch o
f the lower r otor blades, which is con troll ed by
a
2-DO
F servo -driven swashp late that t akes inpu
ts
u
α
and
u
β
;
the upp
er r
otor is pass ively con troll ed by gy
roscop ic force s
generated fr om
the a
tt ac hed stabili ze r bar. All
comm
and s
(
u
thr
,
u
rud
,
u
α
,
u
β
) are sent t hrough
a miniaturize d 4
-chann el
2.4 GH
z radio system. The rudd
er chann el i s also mixed wit h
the ou tpu t fr om
the onbo
ard gy
roscop e, which is ho wever
turned o
ff
in
the
foll owing
exp eriments for yaw
con trol
testi ng pu
rpo ses. The heli cop ter has bee n retrofitt ed to mee t
several requ irements. The ou ter plasti c e
nclosure is remov ed
to g
ain more payload. The heli cop ter also ca rr ies 5 IR LE
Ds
(fr om
NaturalPoint) that are a
rr ang ed
in
a
non
-cop lanar
fashion , as requ ired by
the po se e
sti mati on
algo rit hm. The
algo rit hm
requ ires that t
he po siti on s of the LE
Ds s
hou
ld
be
mea sured
acc
urately. For this pu rpo se, the
LE
Ds are
soldered on
to
several design ated
spo ts loca ted on
a pre-
design ed fr ame, which is in turn att ac hed to the heli cop ter.
One li mit ati on o
f ou r heli cop ter system
is that it i
s und
er-
ac tuated, beca
use it has 6 DO
Fs wit h y
et on ly 4
comm
and
inpu
ts. This is evident i n that t he heli cop ter must, for exam-
ple, pit ch forward in o
rder to initi ate forward fligh t. Due to
this li mit ati on , this paper tests on ly two sce narios that do no
t
invo
lve large lateral moti on : hov
ering
and y
aw
rotati on . Yaw
rotati on
is s
elec ted b
eca
use this is relevant t o sacca
des, which
are rapid
turns perf ormed by
flies intermitt entl y. Yet t
his
iss ue of und
erac tuatedn ess
nee ds to b
e ca
refull y con sidered
in the future if sign ifica nt t ranslati on al mov ement i s present
(e.g. forward fligh t regu lati on ).
V. S
ENSOR
SUBSYSTE
M
A. Video cap ture and p
roce ss ing
A
video system
prov ides the interf ace
betwee n the rea l
world and
the PC. Beca
use the present work is focused on
heli cop ter op erated n
ea r hov
er, it
suffice s to u
se a
sing le
ca mera system, which do
es no t requ ire a
ny
syn chron iza ti on
as in
the ca
se of multi ple ca
meras. Our platform
uses a
PointGrey Firefly MV
CMOS ca mera wit h a fr ame rate of
60
fps (wide VGA
,
752
×
480
). The ca
mera is equ ipp ed
wit h a 6-mm m
icrolens, prov iding
a viewing
ang le of 42 d
eg
and 27 d
eg in the leng th and
width d
irec ti on s, respec ti vely.
Pointi ng up
ward, the ca
mera ca
n trac k a
76
.
6
×
48
.
9
cm
2
area
1
m
abov
e it , wit h
a spati al resoluti on o
f
∼
1
mm
.
This trac king
rang e is enough
for ou r present exp eriment
where the heli cop ter hov
ers in p
lace
. For f uture e
xp eriments
requ iring
a larger trac king
rang e, the system
ca n b
e up -
graded to a multi -ca mera c
on figu rati on
[16
]. An IR-pass
filt er
(Schn eider Opti cs, B+W
093
,
λ
c
= 830
nm) is add ed in the
fr on t t o redu ce
the influence
fr om
ambient stray li gh t. The
ca mera it self serves as the origin in the rea l world, which
also coincides wit h the origin o
f the virtual env iron ment (see
Sec . V-C).
The ca
mera is conn
ec ted through
IEEE
1394
to a PC,
where
the
video
strea m
is
proce ss ed by
fview
, part of
motmot
[17 ], which is a c
oll ec ti on o
f op en sou rce
pac kages
for r ea l-ti me c
oll ec ti on
and
analysis of un compress ed d
igit al
images. At eac
h fr ame, a plug in in
fview
ca ll ed
tracke
m
will
detec t t he fea ture po ints (LE
Ds in this ca se) by
thresho lding
and
repo rt t heir coo rdinates on
the 2D
image ov er a UD
P
po rt.
B. Pose e
sti mati on
Simulati on o
f biolog ica l visual sti muli requ ires the c
urr ent
po siti on
and o
rientati on
(also kno
wn as po se) of the heli -
cop ter wit h respec t t o the ca
mera. Given the 3D
po siti on s
of the fea ture po ints (in
cm) on
the heli cop ter and
their
loca ti on s on
the image (in p
ixels), the po se ca
n b
e solved by
find ing
the best rotati on al and
translati on al match b
etwee n
the 3D coo rdinates and
the 2D projec ti on s. Two typ es of po se
esti mati on
algo rit hms are used in ou
r testbed: POSIT (Pose
fr om
Orthog
raphy
and
Sca li ng
wit h
ITerati on s) [
18 ] and
SoftPOSIT (POSIT + SoftAss ign ). POSIT is relati vely sim-
ple a
nd
fast (
<
0
.
1
ms@2.4 GH
z Core2 Duo ), bu t requ ires
on e-to-on e mutual corr espond
ence
betwee n the fea ture po ints
and
their projec ted images; SoftPOSIT, on
the other hand ,
ca n h
and le unkno
wn corr espond
ence a
nd
miss ing po
ints, yet
is less
robu
st and
much slower (
2–4
ms).
To full y exp loit t
he video ca mera band width, the delay
ca used by po
se e
sti mati on
is exp ec ted to b
e negli gible c
om-
pared to the ca
mera (17
ms). However, POSIT it self is no t
suit able in ou
r ca se beca
use the image-ob jec t corr espond
ence
ca n b
e unkno
wn du
ring
the fligh t. All t
he 5 LE
Ds app ea r
identi ca ll y on
the 2D
images and
some of the LE
Ds migh t
be blocked by
the fuselage occa
sion all y and
will
be miss ing
in the ca
mera image. To take a
dv antage of bo th POSIT and
SoftPOSIT, ou r po se e
sti mati on p
roce ss
combines the two
through
a Kalman filt er:
3057
1) Run
SoftPOSIT to solve the initi al corr espond
ence ;
2) Rea d the loca ti on s of f
ea ture po ints fr om
the c
urr ent
ca mera image;
3) Run
the ti me-upd
ate (predicti on ) stage of the Kalman
filt er to p
redict t he c
urr ent po se;
4) From
the predicted po
se, eit her (
a) determine the c
ur-
rent corr espond
ence s using n
ea rest neighbo
rhood
and
solve the c
urr ent po se fr om
POSIT or ( b) when POSIT
fail s, solve the po se fr om
SoftPOSIT
direc tl y. Using
nea rest neighbo
rhood
method
ca n eli minate spu riou s
fea ture po ints on
the 2D
image.
5) Run
the mea surement-upd
ate stage of the Kalman filt er
to smoo th ou
t t he po se e
sti mati on
result and
redu ce
the
eff ec t of occa
sion al false e
sti mati on .
The dyn
amica l mod el of ou r Kalman filt er is a simple on e
ass uming
con stant velociti es for all t
he 6 DO
Fs, yet perf orms
surprising ly well . Occa
sion al occ lusion o
f on e LE
D has bee n
tested to h
ave negli gible influence
on po
se e
sti mati on
result s.
It i
s worth no
ti ng
that a Kalman
filt er incorpo rati ng
the
dyn
amica l mod el of the heli cop ter is exp ec ted to g
ain more
acc
urac y, alt hough
this was no t t ested in this work. There is
also a po ss ibilit
y that t he Kalman filt er may filt er ou t some
rea li sti c no ises fr om
the heli cop ter. This arti ficial smoo thing
iss ue ca
n b
e a
po tenti al li
miti ng
fac tor when testi ng
the high -
fr equ ency p
erf ormance
of con trol l aws s
uch as disturbance
rejec ti on . Future work will
be c
ondu
cted to charac terize
the
band width o
f the video trac king
system.
C. Visua l sti muli simulati on
To ac qu ire visual i nformati on , a virtual 3D
env iron ment
mod el nee ds to b
e spec ified. In ou
r study
, the e
nv iron ment
was s
et t
o b
e a
round
arena wit h
ce rtain
image patt erns
painted on
it s inn er wall . The mod el i s bu ilt
wit h Goog
le
Sketchup
and
expo
rted in COLL
ADA
(.dae ) f
ormat, which
ca n then b
e loaded and
rend ered by
OpenSce neGraph , an
op en sou rce , cross -platform
3D
graph ics too lkit
based on
OpenGL. At eac
h sampli ng
instant, acc
ording
to the e
sti -
mated po
se of the heli cop ter, the 3D
env iron ment mod el i s
rend ered as a c
ub e map, which con sists of 6 snapsho ts of the
surr ound
ing s. A
fast algo rit hm
ca n then transform
the c
ub e
map to the luminance
profile, which is blurr ed by
a Gauss ian
kernel t
o
emulate
the
op ti cs of the c
ompound
eye. The
transformati on u
ses a biolog ica ll y rea li sti c distribu ti on o
f the
omm
ati dia, which is ob tained by
Buchn er f
or
Drosoph
il a
[19 ]. The e
ye map includ es 699
elements on
eac
h compound
eye, wit h eac
h element spann ing
a soli d ang le of 4.5 to 6
deg. Fig. 3 sho ws the ac
tual eye map and
a typ ica l simulati on
of the visual sti muli . Detail s of the simulati on
are described
elsewhere [13 ].
VI. C
ON
TROL
/
ACTUA
TION
SUBSYSTE
M
A. Hardware setup
A
hardware
interf ace
is requ ired
for the
PC
to
send
con trol comm
and s to the heli cop ter, or ess enti all y, the radio
con troll er. Like most adv ance d radio con troll ers, ou r r
adio
con troll er comes wit h
a
trainer po rt t
hat rece
ives pu lse
po siti on
modu
lati on
(PP
M) sign als fr om
a buddy box
. We
Left
Right
c)
b)
a)
Fig. 3.
a) Con
figu
rati on o
f
Drosoph
il a
comp
ound
eye op
ti cs (eye ma
p)
represented
in 3
D, acc
ording
to
Buchn
er’ s data [19
]. Eac h
ce ll
on
the
sph
erica l surf ace
ind
ica tes the soli d ang
le spann
ed by
a sing
le omma
ti dium.
There is a mi
ss ing
wedg
e loca ted in the a
ft po
rti on
, me
aning
the fly is no
t
able to ob
serve imme
diate visual cues in the bac k; b) Naturali sti c sce ne used
in the 3D
arena mo
del, cou
rtesy o
f A. D. Straw
[20 ]; c) Simu
lated v
isual
sti mu
li fr om
bo
th two comp
ound
eyes (sho wn in Merca tor projec ti on
) when
the heli cop
ter is at t he ce
nter of the a
rena. The c
loud
and
sky
are fr om
the
bac kg
round o
f the 3D w
orld where the a
rena is place
d, no
t t he a
rena it self.
use the c
ircuit t
aken fr om
a sec ond
radio con troll er of the
same mod el t o g
enerate the PP
M
sign al. All t
he 4 onbo
ard
po tenti ometers that con trol t he 4 chann els are replace
d by
digit al on es. The PC
ca n then comm
un ica te wit h the digit al
po tenti ometers ov er an
SP
I bu s. A GU
I fr
on tend
ca ll ed
fcon trol
, writt en in Python
, prov ides user interac ti on
(e.g.
data rec ording ) and d
ata visuali za ti on . The
fcon trol
interf ace
all ows the user to
swit ch b
etwee n
manu al and
automati c
con trol mod e, where the former mod e takes joy sti ck inpu
ts
through
pyga me
modu
le a
nd
the latt er on e send s con trol
comm
and s given by
the c
on trol l aw
detail ed b
elow.
B. Con trol l aw and
result s
The first go al i
n h
eli cop ter fligh t con trol i
s to stabili ze
the vehicle in hov
er. The hov
ering
cond
iti on
requ ires that
6 v
elociti es (3 translati on al, 3 angu
lar)
be ze
ro:
̇
x
= ̇
y
=
̇
z
= 0
,
̇
θ
=
̇
ψ
=
̇
φ
= 0
. However, con trolli ng
solely the
lateral velociti es (
̇
x
and
̇
y
) will
eventuall y lea d to cumulati ve
err ors in the lateral po siti on s and
ca use the heli cop ter to
mov e beyond
the visible rang e of the ca
mera system. The
hov
ering
cond
iti on
is then restricted to b
e “
hov
er in p
lace”
(
x
= 0
,
y
= 0
) in o
rder to circumvent t his iss ue, forcing
the heli cop ter to stay n
ea r the origin. For safety pu
rpo ses,
the a
ltit
ud e (
z
po siti on ) is con troll ed manu all y through
the
throttl e; it i
s used to initi ate takeoff /l and ing
and
is s
imply
held con stant on ce
the heli cop ter r eac
hes the desired h
eigh t.
Pit ch and
roll moti on s are ob served to b
e pass ively stable
and do no
t requ ire a
dd iti on al con trol.
Our con trol l
aw
con trols the rest 3
DO
Fs—
x
,
y
, and
yaw
rate—v
ia the c
oll ec ti ve pit ch comm
and s (
u
α
and
u
β
)
and
the rudd
er comm
and
(
u
rud
), respec ti vely. For simpli cit y,
coup
li ng s betwee n the three c
hann els are igno
red and
three
ind epend ent con trol l aws are a
pp li ed. The yaw
rate, which is
app rox imately
̇
φ
nea r hov
er, is con troll ed by
a propo
rti on al-
integral (PI)
con troll er, wherea s
x
and
y
by p
ropo
rti on al-
derivati ve (PD) con troll ers:
u
rud
=
k
P
φ
dot
(
̇
φ
ref
−
̇
φ
) +
k
I
φ
dot
∫
(
̇
φ
ref
−
̇
φ
)
dt,
(1)
3058
u
α
=
k
P
x
(
x
ref
−
x
) +
k
D
x
d
dt
(
x
ref
−
x
)
,
(2)
u
β
=
k
P
y
(
y
ref
−
y
) +
k
D
y
d
dt
(
y
ref
−
y
)
.
(3)
During hov
ering , all t
he reference
set po ints,
̇
φ
ref
,
x
ref
,
and
y
ref
, are set t
o ze ro. The a
bov
e c
on trol l
aws requ ire
esti mati on o
f
x
,
y
, and
̇
φ
.
̇
φ
ca n b
e ob tained fr om
reti nal
velocit y, defined as the mov ement rate of the visual world
projec ted on
to the reti na. The reti nal velocit y represents the
fly’s visual perce pti on o
f the surr ound
ing
sce nery. Reti nal
velocit y n
ea r eac
h o
mm
ati dium
ca n b
e ob tained fr om
two
adjace
nt omm
ati dia through
a non
li nea r tempo rospati al cor-
relati on . This corr elati on
mod el, propo
sed by
Hass enstein
and
Reichardt fr om
exp eriments on b
ee tl es, is often kno
wn
as the e
lementary
moti on d
etec tor (
EMD) [
21 ]. Fig. 4a
sho ws the original EMD
con figu rati on , which compu tes the
diff erence
betwee n two b
alance d b
ranches that eac
h p
erf orms
corr elati on :
EMD
i
(
t
) =
I
A
(
t
−
τ
)
I
B
(
t
)
−
I
A
(
t
)
I
B
(
t
−
τ
)
.
(4)
Actual
Estimated by fsee
180
160
140
120
100
80
60
40
20
0
−20
0
20
40
60
80
100
120
140
160
180
0
2
4
6
8 10 12 14 16 18 20
−400
−300
−200
−100
0
100
200
300
400
...
Matched Filter
State Estimate
...
EMD
EMD
1
2
EMD
n
A
B
EMD Output
a)
_
+
Σ
b)
c)
Time (s)
Yaw
Rate (deg/
s)
w
1
w
2
w
n
Σ
τ
τ
××
∆
φ
Azimuth
φ
(deg)
Elevation
θ
(deg)
Fig. 4.
a) Hass enstein-Reichardt EMD
mo
del and
ma
tched filt er used for
state e
sti ma
ti on
. The EMD comp
utes the temp
orospati al corr elati on b
etwee n
inpu
ts fr om
two adjace
nt omma
ti dia A
and
B.
∆
φ
is the a
ng
le spac ing
betwee n the two o
mma
ti dia.
τ
is the ti me
delay app
ea red in corr elati on
.
All t
he EMD
ou
tpu
ts are fed into a ma
tched filt er wit h weigh
ts
w
j
(
j
=
1
,
2
, . . . ,
n
)
to ob
tain the c
orr espond
ing
state e
sti ma
te. b) Matched filt er
for yaw
rate e
sti ma
ti on p
lott ed against elevati on
θ
and
az imu
th
φ
. Eac h
po
int on
the 2D
qu
iver plot corr espond
s to a po
int on
the e
ye ma
p (
φ
= 0
:
fr on
t,
θ
= 0
: t op
), wherea s the leng
th and d
irec ti on o
f arr ows represent t he
weigh
ts
w
j
(2D
vec tors); c) Comp
arison o
f yaw
rate e
sti ma
te vs. ac tual
me
asureme
nt. The e
sti ma
ted y
aw
rate is ob
tained fr om
the ma
tched filt er
sho wn in b
), wherea s the ac
tual on
e is fr om
nu
me
rica l diff erenti ati on o
f the
po
se data.
Respon
se of an EMD to a ce
rtain mov ing p
att ern is non
li n-
ea r, non
mono
ton ic, and
sensiti ve to b
righ tness /con trast [22 ].
Alt hough
the EMD
respon
se ca
n b
e ob tained analyti ca ll y
for sinu soidal patt erns, no
closed
form
is
avail able
for
naturali sti c patt erns. Therefore, the non
li nea rit y and b
righ t-
ness /con trast depend ency h
ave bee n add ress ed by bu
il ding
an
empirica l l ook
-up
table fr om
simulati on
result s. In add iti on ,
the yaw
rate is kept wit hin the mono
ton ic region o
f EMD
respon
se, so that t he reti nal velociti es fr om
eac
h EMD
pair
ca n b
e determined wit hou
t ambigu it y. The reti nal velociti es
are kno
wn to g
ive a
n esti mate of the yaw
rate through
li nea r
weigh ted summ
ati on , using
the method p
ropo
sed in [10
].
The weigh ts used in summ
ati on
corr espond
to ce rtain spe-
cific moti on p
att erns, hence a
re a
lso ca ll ed matched filt ers.
A
nu mber of diff erent patt erns have
bee n
identi fied by
elec trophy
siolog ica l rec ording s on
the
LPTCs in
insec ts’
brain [8]. As oppo
sed to find ing
the suit able matched filt er
analyti ca ll y, in this exp eriment t he weigh ts are ob tained fr om
the ou tpu ts of the EMDs und
er given stereotyp ed moti on s—
yaw
rotati on
in ou
r ca se. Fig. 4b
sho ws the matched filt er
patt ern, con sisti ng
mainly o
f yaw
moti on
as exp ec ted. Pose
data fr om
a rea li sti c heli cop ter trajec tory are used to compare
the e
sti mati on o
f yaw rate using nu
merica l diff erenti ati on v
s.
a matched filt er. Beca
use ou r heli cop ter is no t equ ipp ed wit h
an IMU, nu merica l diff erenti ati on
is con sidered as the ground
truth. From
the c
omparison
in Fig. 4c, it ca n b
e see n that
the matched filt er app roac h g
ives a fairly acc
urate e
sti mate
of the yaw
rate.
Fig. 5 and 6
sho w
the e
sti mated po
se (
x
,
y
,
z
,
θ
,
ψ
,
φ
) of
the heli cop ter nea r hov
er and
step chang es in y
aw, respec -
ti vely. Yaw rate c
on trol i s rea li ze d by
simply chang ing
the set
po int,
̇
φ
ref
, fr om
0 d
eg/s to 20 d
eg/s. The c
urr ent li
mit ati on o
f
state e
sti mati on u
sing
matched filt ers, though
, is that it
ca nno
t
prov ide sati sfac tory esti mate of lateral po siti on s, which is
no t claimed in p
reviou s s
tud ies on p
lanar vehicles [23
]. This
ca n b
e e
xp ec ted to h
app en in ae rial vehicle c
on trol du e to
more DO
Fs invo
lved. The e
sti mated lateral po siti on s, which
are given by
integrati ng
the translati on al velociti es (
̇
x
and
̇
y
) fr
om m
atched filt er ou tpu ts, suff er fr
om
the c
umulati ve
err ors of
̇
x
and
̇
y
and
will
eventuall y mov e the heli cop ter
ou t of the trac king
rang e. Instea d, esti mati on o
f
x
and
y
po siti on s are given d
irec tl y by po
se e
sti mati on
in the c
urr ent
implementati on .
0
2
4
6
8
−8
−4
0
4
Time (s)
x (cm)
0
2
4
6
8
−5
0
5
Time (s)
y (cm)
0
2
4
6
8
80
85
90
95
100
Time (s)
z (cm)
0
2
4
6
8
−10
−5
0
5
Time (s)
θ
(deg)
0
2
4
6
8
−10
−5
0
Time (s)
ψ
(deg)
0
2
4
6
8
45
50
55
60
65
Time (s)
φ
(deg)
Fig. 5.
Positi on
and
attit
ud
e me
asureme
nts when
the heli cop
ter is in
stabili ze d hov
er. The oscill ati on
s around
the e
qu
ili brium
po
int are du
e to
air disturbance s and
/or commu
nica ti on
err ors of the radio system,
and
are
con
troll ed wit hin a sati sfac tory rang
e. The non
-ze ro o
ff sets in p
it ch and
roll
are ca
used by
inacc
urac y in mo
un
ti ng
the LE
D
fr ame
.
3059
0
10
20
30
40
−5
0
5
10
15
20
25
30
35
Time (s)
Angular velocity (deg/s)
Fig. 6.
Yaw
rate c
on
trol. The heli cop
ter is s
wit ched fr om
hov
er to a yaw
rate of
̇
φ
ref
= 20
deg/s and b
ac k to hov
er at
t
≈
4
s and
t
≈
37
s,
respec ti vely, as s
ho wn by
the red d
ashed li ne. The yaw
rate c
omp
uted fr om
po
se e
sti ma
ti on
result s is s
ho wn in b
lue.
VII . C
ON
CLUSION
S AND
FUTURE WORK
The paper describes a rea l-ti me heli cop ter platform
that
all ows implementati on
and
testi ng o
f con trol algo rit hms—
espec iall y b
io-inspired on
es, op erati ng
in d
iff erent env iron -
ments. As oppo
sed to laying ou
t rea li sti c ob jec ts and
sce nes,
the e
nv iron ment i
s s
pec ified
in
a
virtual world u
sing
a
3D
compu ter mod el, all owing
rapid examinati on o
f a large
nu mber of env iron ments. The c
onn
ec ti on b
etwee n the rea l
world and
the virtual env iron ment i s prov ided by
a ho me-
made ca
mera system
that t rac ks the po se of the heli cop ter.
As a first step, we have demon strated fligh t stabili za ti on n
ea r
hov
er and y
aw
con trol. These promising
result s ca n moti vate
further inv estment on
this testbed.
The present work, nevertheless , on ly incorpo rates ce rtain
preli minary fea tures of a fly’s s
ensory system, in p
arti cu-
lar, visual fee db ac k
system. It i
s no t surprising
that flies
fuse informati on
fr om m
ulti ple sensors to gu
ide their fligh t
maneuv ers. For example, halt eres, the fly’s equ ivalent of
gy roscop e, ca n po
tenti all y ass ist t ranslati on al velocit y esti -
mati on by p
rov iding
acc
urate yaw
rate mea surement [13 ].
Furthermore, this paper do es no t add ress
the biolog ica l con -
trol l aw
implemented by
insec ts, which are more interesti ng
fr om
an eng inee ring po
int of view. Yet t he heli cop ter testbed
“imm
ersed” in a virtual env iron ment presented in this paper
ca n b
e useful i n study
ing
more e
labo rate c
on trol algo rit hms
and
shed li gh t on
the und
erlying
mec hanisms in the future.
VIII
. A
CKNO
W
LE
DG
MENTS
The a
utho rs wou ld li ke to thank
Sawyer Full er and
Fran-
cisco Zabala for helpful discuss ion s on h
eli cop ter con trol
and h
ardware implementati on s. This work is s
uppo
rted in
part t
hrough
the Instit ute for Coll abo rati ve Biotec hno
logy
(I CB
), the Boeing
Corpo rati on , and
the Cali fornia Instit ute
of Tec hno
logy
.
R
EFERENCES
[1] M. A. Frye a
nd
M. H. Dickinson
, “Fly fligh
t: A
mo
del for the neural
con
trol of comp
lex b
ehavior,”
Neuron
, vo l. 32
, pp
. 385–388
, 2001
.
[2] M. B. Reiser, J. S. Humb
ert, M. J. Dun
lop
, D. Del Vecc
hio, R. M.
Murr ay, and
M. H. Dickinson
, “Vision
as a c
omp
ensatory me
chanism
for disturbance
rejec ti on
in up
wind
fligh
t,”
in
American
Con trol
Con ference
(ACC
)
, 2004
.
[3] M. Ichikawa, H. Yama
da, and
J. Takeuchi, “A
flying
robo
t con
troll ed
by
a biolog
ica ll y inspired v
ision
system,” in
Interna ti ona
l Con ference
on
Neural Informati on
Proce ss ing
(I CONIP)
, 2001
.
[4] T. Kanade, O. Ami
di, and
Q. Ke, “Rea l-ti me
and 3
D
vision
for
autono
mo
us s
ma
ll
and
mi
cro air vehicles,” in
IEEE
Con ference
on
Dec ision and
Con trol (CDC)
, 2004
.
[5] L. O. Meji as, S. Saripalli , P. Cervera, and
G. S. Sukh
atme
, “Visual
servo ing
for trac king
fea tures in u
rban area s using
an autono
mo
us
heli cop
ter,” in
IEEE
Interna ti ona
l Con ference
on
Robo
ti cs and
Au-
tomati on
(I CRA
)
, 2006
.
[6] L. Schenato, X. Deng
, W. Wu, and
S. Sastry, “Virtual i
nsec t fligh
t
simu
lator (
VIFS
): a
software
testbed
for insec t fligh
t,”
in
IEEE
Interna ti ona
l Con ference
on
Robo
ti cs and
Automati on
(I CRA
)
, 2001
.
[7] F. Ruffier and
N. France schini, “Visuall y gu
ided mi
cro-ae rial vehicle:
automa
ti c take off , terr ain foll owing
, land
ing
and
wind
reac
ti on
,” in
IEEE
Interna ti ona
l Con ference
on
Robo
ti cs and
Automati on
(I CRA
)
,
2004
.
[8] H. G. Krapp
and
R. Heng
stenb
erg, “Esti ma
ti on o
f self- mo
ti on by op
ti c
flow
proce ss ing
in sing
le visual i nterneuron
s,”
Nature
, vo l. 384
, pp
.
463–466
, 1996
.
[9] M. B. Reiser and
M. H. Dickinson
, “A
test bed for insec t-inspired
robo
ti c c
on
trol,”
Phil osoph
ical Tran sacti on s of t he Royal So ciety A:
Mathemati cal, Physical and
Eng inee ring S
cience s
, vo l. 361
, pp
. 2267–
2285
, 2003
.
[10
] J. S. Humb
ert, R. M. Murr ay, and
M. H. Dickinson
, “A
con
trol-
oriented analysis of bio-inspired v
isuo
mo
tor conv
ergence ,” in
IEEE
Con ference
on
Dec ision and
Con trol and
Europ ean
Con trol Con fer-
ence
(CDC-ECC
)
, 2005
.
[11
] J. S. Humb
ert and
M. A. Frye, “Extrac ti ng b
ehaviorall y relevant reti nal
ima
ge mo
ti on
cues via wide-field integrati on
,” in
American
Con trol
Con ference
(ACC
)
, 2006
.
[12
] M. Epstein, S. Waydo
, S. B. Full er, W. B. Dickson
, A. D. Straw, M. H.
Dickinson
, and
R. M. Murr ay, “Biolog
ica ll y inspired fee db
ack d
esign
for
Drosoph
il a
fligh
t,” in
American
Con trol Con ference
(ACC
)
, 2007
.
[13
] W. B. Dickson
, A. D. Straw, and
M. H. Dickinson
, “Integrati ve mo
del
of
Drosoph
il a
fligh
t,”
AIAA
Jou rna l
, vo l. 46
, pp
. 2150–2164
, 2008
.
[14
] A. Beyeler, J.-C. Zuff erey, and
D. Florea no
, “3D
vision
-based n
avi-
gati on
for indoo
r mi
croflyers,” in
IEEE
Interna ti ona
l Con ference
on
Robo
ti cs and
Automati on
(I CRA
)
, 2007
.
[15
] Also avail able a
t: htt p:// pu
rl.org/hanshuo
/2008
/yaw
con
trol
wit h
fsee
(last visit ed on
Feb 8
, 2009
).
[16
] Y. Yoshihata, K. Watanabe, Y. Iwatani, and
K. Hashimo
to, “Multi -
ca me
ra visual servo ing o
f a mi
cro h
eli cop
ter und
er occ lusion
s,” in
IEEE
/RSJ Interna ti ona
l Con ference
on
Intelli gent Robo
ts and S
ystems
(I ROS)
, 2007
.
[17
] Avail able a
t:
htt p:// cod
e.astraw.com/
projec ts/mo
tmo
t (last visit ed on
Feb 8
, 2009
).
[18
] D. F. Deme
nthon
and
L. S. Davis, “Mod
el-based ob
jec t po
se in 25
li nes of cod
e,”
Interna ti ona
l Jou rna l of Compu ter Vision
, vo l. 15
, pp
.
123–141
, 1995
.
[19
] E. Buchn
er, “Dunk
elanregung d
es s
tati on
ae ren flug
s der fr
uchtfliege
Drosoph
il a
. Dipl. thesis,” Ph.D. diss ertati on
, Univ. Tuebing
en, Tue-
bing
en, Germa
ny , 1971
.
[20
] A. D. Straw, T. Rainsford, and
D. C. O’Carr oll , “Con
trast sensiti vit y
of insec t mo
ti on d
etec tors to n
atural i ma
ges,”
Jou rna l of Vision
, vo l. 8,
pp
. 1–9
, 2008
.
[21
] B.
Hass enstein
and
W.
Reichardt,
“Systemt
heoreti sche a
nalyse
der
ze it -, reihenfolgen-, und vo
rze ichenauswertung b
ei
der
be-
wegung
sperze pti on d
es r
̈
uss elk
̈
afers
Chlorophanu
s
,”
Zeit schrift
Fur
Naturfors chung
, vo l. 11b
, pp
. 513–524
, 1956
, (“System
theoreti ca l
analysis of the ti me
-, order- , and
sign
-evaluati on
in mo
veme
nt per-
ce pti on by
the wee vil
Chlorophanu
s
,”
Jou rna l of Natural Research
)
(Eng
li sh translati on
).
[22
] R. O. Dror, D. C. O’Carr oll , and
S. B. Laugh
li n, “Acc urac y o
f velocit y
esti ma
ti on by
Reichardt corr elators,”
J. Opt. So c. Am. A
, vo l. 18
, pp
.
241–252
, 2001
.
[23
] S. B. Full er, A. D. Straw, M. Epstein, S. Waydo
, W. B. Dickson
, M. H.
Dickinson
, and
R. M. Murr ay, “Geome
tric a
nalysis of Hass enstein-
Reichardt eleme
ntary mo
ti on d
etec tors and
app
li ca ti on
to con
trol i n a
fr uit fly simu
lator and
a robo
t,” in
Interna ti ona
l Sympo sium on
Flying
Insec t Robo
ti cs
, Ascon
a, Swit ze rland
, 2007
.
3060