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Buckling of elastic structures can occur for loads well within the proportionality limit of their

constituent materials. Given the ubiquity of beams and plates in engineering design and

application, their buckling behavior has been widely studied. However, buckling of a cantilever

plate is yet to be investigated, despite the widespread use of cantilevers in modern technological

developments. Here, we address this issue and theoretically study the buckling behavior of a

cantilever plate that is uniformly loaded in its plane. Applications of this fundamental problem

include loading due to uniform temperature and surface stress changes. This is achieved using a

scaling analysis and full three-dimensional numerical solution, leading to explicit formulas for the

buckling loads. Unusually, we observe buckling for both tensile and compressive loads, the

physical mechanisms for which are explored. We also examine the practical implications of these

findings to modern developments in ultra sensitive micro- and nano-cantilever sensors, such as

those composed of silicon nitride and graphene. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4772745]

I. INTRODUCTION

Cantilever beams and plates are used frequently in engi-

neering applications, ranging from the boom arms of indus-

trial cranes to flight control surfaces implemented in

aviation. They also form integral components in microme-

chanical and nanomechanical devices.1–35 One such applica-

tion involves the atomic force microscope (AFM),1–13 which

employs a micron sized cantilever as its force sensing ele-

ment. Due to their widespread use, the mechanical behavior

of cantilever beams and plates has been studied extensively.

The out-of-plane deflection of a cantilever transducer is ana-

lyzed in a large number of these studies, and is a corner-

stone of many applications.1–11,14–32,36–38 One important

aspect that has received relatively little attention involves the

coupling of in-plane loads to the out-of-plane deflection of

cantilever plates. Such a mechanism can potentially lead to

buckling, and is thus of particular relevance to the design of

instrumentation and structures employing these devices.

Buckling of elastic beams has been examined in many

studies, for which classical solutions exist. Some typical

examples include the torsional buckling of thin walled bars,

buckling of laterally loaded hollow beams, and buckling of

columns under uniform axial forces.40–42 The latter problem,

which couples in-plane loading to the out-of-plane deflection

of the beam, can be solved using Euler’s column for-

mula.40,41 This gives the buckling load of a beam or column

under varying conditions, demonstrating that boundary con-

ditions significantly affect the overall buckling behavior.

Elastic plates have also been investigated extensively,

with initial studies focusing on plates that are simply supported

along all edges and under uniform compression in one direc-

tion.40–44 Approximate solutions for loading in two orthogonal

directions,40,42,45 as well as linearly varying boundary traction

for clamped or simply supported plates, have also been pre-

sented.46–50 Subsequent developments50–54 considered various

load types such as concentrated edge loads on cantilever plates

and plates subjected to nonlinear boundary loads. Interestingly,

one study applied uniform compressive and tensile loads in

two orthogonal directions.42 While compressive loads were

found to cause buckling, any tension in the plate resisted buck-

ling. The higher degree of freedom associated with plates,

thus, leads to an elevated level of complexity in analysis com-

pared to beams.

In this article, we theoretically analyze the buckling

behavior of a cantilever plate under an isotropic and uniform

in-plane load. This situation can arise in practice from ther-

mal and surface stress loads including, for example, loads

due to molecular absorption on microcantilevers.6–24,33,34

Importantly, the equivalent mechanical loading con-

cept39,44,45 does not lend itself naturally to the analysis of

cantilever plates, which inherently possess mixed edge con-

ditions. As such, we adopt the theoretical framework of

Refs. 28–30, which is specifically formulated for these con-

ditions. In Refs. 28–30, we examined the (leading-order) lin-

ear variation in stiffness of a cantilever plate due to in-plane

loading. Here, we provide the essential extension of those

studies to nonlinear stiffness effects, up to and including the

buckling point. We show that cantilever plates can buckle

under both compressive and tensile loads, which contrasts to

elastic beams that only buckle under compression. Further-

more, we find that the buckling strain load has a squared

dependence on the thickness-to-width ratio, and is approxi-

mately independent of the aspect ratio (length/width) anda)E-mail address: jsader@unimelb.edu.au.
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Poisson’s ratio of the plate. The underlying physical mecha-

nisms leading to this behavior are explored.

We commence our investigation by reviewing the theo-

retical framework of Refs. 28–30, while summarizing all key

assumptions. A scaling argument based on the small deflec-

tion theory of thin plates is then presented. This yields a pre-

liminary understanding of this buckling problem and allows

for subsequent analysis of numerical results. A numerical

solution is then obtained using a full three-dimensional finite

element analysis (FEA).55 This includes full stress distribu-

tions, buckling loads, and mode shapes. An analytical for-

mula valid for arbitrary plate dimensions is also presented.

Finally, the practical implications of the derived model are

discussed, particularly in the context of modern develop-

ments in nanomechanical cantilever sensors.

II. THEORETICAL FORMULATION

A theoretical formalism to investigate the buckling

behavior of thin cantilever plates under isotropic in-plane

stress loads is now presented; see Fig. 1(a). This is based on

the small deflection theory of thin plates, which allows decou-

pling of the in-plane stress problem from the out-of-plane

deflection of the cantilever plate.44,56,57 The following formu-

lation builds upon the approach of Refs. 28–30, which uses

small deflection theory to investigate the linear effect of sur-

face stress on the stiffness of thin elastic plates.

To begin, we consider the related problem where the

clamp is removed from the cantilever, i.e., a plate of identi-

cal geometry to the original cantilever problem but with all

edges free; see Fig. 1(b). In the presence of an isotropic and

uniform in-plane stress load, r, the unrestrained plate will

deform uniformly in its plane with a compatible isotropic

and uniform strain, e. Since thin plates are considered

throughout, deformations in the x3-direction are ignored. The

corresponding in-plane displacement field is then given by

u ¼ ux̂1þvx̂2 ¼eðx1x̂1þx2x̂2Þ; (1)

where u, v, x̂1, and x̂2 are the displacements and unit vectors

in the x1 and x2-directions, respectively; this displacement

field is a generalization of the result provided in Refs. 28–30

which investigated the effect of an applied surface stress

load. As discussed in those studies,28–30 the displacement

field of the unrestrained plate is incommensurate with the

clamp condition of the original cantilever problem, i.e., the

in-plane deformation must be zero at the clamp. Applying

the same approach here enables decomposition of the origi-

nal cantilever problem into the following two subproblems;

see Fig. 1(b).

Subproblem (1): Deformation of the unrestrained plate

under an arbitrary isotropic and uniform in-plane stress load

r, which gives the resulting isotropic and uniform in-plane

strain e.
Subproblem (2): Cantilever plate with no in-plane stress

load r, but with a specified in-plane displacement along its

restrained edge: u¼ 0, v ¼ �ex2. The latter condition

(v ¼ �ex2) is equivalent to applying a strain load, e, equal

and opposite in sign to e at x1 ¼ 0, i.e., e ¼ �ejx1¼0.

Superposition of the in-plane deformations from these

two subproblems yields an in-plane deformation identical to

the original cantilever problem. This approach thus ensures

that all boundary conditions of the original cantilever prob-

lem are satisfied. Note that the in-plane stress distribution is

independent of the out-of-plane motion of the plate.44,56,57

Since subproblem (1) is unrestrained, the net in-plane

stress in the original cantilever problem is captured by subpro-

blem (2). As such, performing a stability analysis on subpro-

blem (2) yields the buckling behavior of the original

cantilever problem. This stability analysis extends the results

of Refs. 29 and 30, by accounting for nonlinear stiffness

effects due to modification of the out-of-plane deflection func-

tion by the in-plane load, i.e., cantilever stiffness is now a non-

linear function of the applied in-plane load. This allows the

buckling loads and mode shapes to be rigorously determined.

Subproblem (2) is solved numerically using finite ele-

ment analysis in Sec. IV.

A. Scaling analysis

A scaling analysis of subproblem (2) for an arbitrary in-

plane strain load e is now presented, for loads in the vicinity

of buckling. This is to gain initial insight into the buckling

behavior and enable generalization of the numerical results

to cantilever plates of arbitrary dimensions.

We begin with some general considerations based on

the (two-dimensional) governing equation for the small

deflection of a thin plate, subject to an arbitrary in-plane load

D
@2

@xi @xi

@2w

@xj @xj

� �
� Nij

@2w

@xi @xj
¼ q; (2)

FIG. 1. Schematic of (a) cantilever plate showing coordinate system and

applied in-plane load. Origin of coordinate system is at center of mass of the

clamped end of the cantilever plate. (b) Decomposition of original problem,

shown in the x1-x2 plane. Cantilever is of length L, width b, and thickness h.
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where w is the deflection in the z-direction, D � Eh3=
ð12½1� �2�Þ is the flexural rigidity, E, �, and h are the

Young’s modulus, Poisson’s ratio, and cantilever thickness,

respectively, N is the in-plane stress tensor, and q is the

applied load per unit area.

The strain load of subproblem (2) induces localized non-

zero in-plane stresses in the vicinity of the clamp. These

stresses decay along the major axis of the cantilever, with a

characteristic length scale given by the cantilever width b,

i.e., nonzero in-plane stresses are confined near the clamp

(x1 � b) – the in-plane stress obeys the scaling relation

N � OðeEhÞ. It then follows from Eq. (2) that since N is non-

zero in the vicinity of the clamp, the effective flexural rigid-

ity near the buckling point approaches zero only in the

region x1 � b. For x1 � b, where the flexural rigidity is unaf-

fected, the cantilever behaves as a rigid body due to the rela-

tive difference in its rigidity between both regions, provided

L=b� 1, where L is the cantilever length. Consequently, as

the rigidity approaches zero near the clamp, the stiffness of

the cantilever approaches zero at any position away from the

clamp, i.e., x1 � b. The buckling load will therefore be inde-

pendent of aspect ratio L/b. The buckling strain load ecr for

subproblem (2) is obtained by balancing the first and second

terms on the left hand side of Eq. (2), giving

ecr � O
h

b

� �2
 !

; (3)

valid for cantilevers of high aspect ratio, i.e., L=b� 1.

Equation (3) shows that decreasing the cantilever thickness,

h, reduces the buckling load, as expected.

As will become evident in Sec. IV, buckling under ten-

sile and compressive in-plane loads exist and their respective

mechanisms will be discussed. Results will also be given for

the principal stress distributions and buckled mode shapes.

III. SOME PRACTICAL CASES

Before presenting these numerical results, some practi-

cal examples where an isotropic and uniform in-plane stress

load r exists are discussed:

(i) Uniform and isotropic surface stress change in the

plan view faces of the cantilever plate. The corre-

sponding strain load e for subproblem (2) is

e ¼ ð1� �Þr
T
s

Eh
; (4)

where rT
s is the sum of surface stress changes on the

upper and lower faces of the plate,15,28–30,58 which is

complimentary to the commonly characterized differ-

ential surface stress.4,5,14,15,59

(ii) Uniform temperature change in the entire cantilever

plate/clamp structure, which gives rise to the strain

load for subproblem (2)

e ¼ �aDT; (5)

where a � acant � aclamp is the differential coefficient

of linear thermal expansion between the cantilever

and clamp materials, acant and aclamp are the coeffi-

cients of linear thermal expansion for the cantilever

and clamp, respectively, DT � T � T0 is the tempera-

ture change relative to the original reference tempera-

ture T0 of the cantilever/clamp system, and T is the

final temperature.39,44

Throughout, it is implicitly assumed that the cantilever

plate is constructed such that if no load was applied, and

the clamp was removed, the plate would not deform, i.e., the

cantilever is formed in an equilibrium state. This implicit

requirement is evident from the above formulation. A canti-

lever with inbuilt stress can also be analyzed – knowledge

of this stress is required and must be added to the above

specified loads.

The effect of the above loads on the buckling behavior

of some cantilever devices found in practice is explored in

Sec. V. Other practical examples where in-plane stress loads

can be applied include piezoelectric and magnetoelastic

loads.24,32,60

IV. RESULTS AND DISCUSSION

In this section, we solve subproblem (2) for an arbitrary

strain load e. Large strain loads in particularly are consid-

ered, allowing for buckling of the cantilever plate. Large

strain loads are defined as those that induce significant cou-

pling of the in-plane stress to the out-of-plane deflection of

the cantilever plate. The resulting change in the out-of-plane

deflection function is rigorously and explicitly accounted for

in the following analysis. This is performed using the theory

of linear elasticity, in line with the theoretical framework

developed in Sec. II; the effects of nonlinear elasticity are

not considered.

To obtain numerical results for subproblem (2), the

three-dimensional FEA55 used in Refs. 28–30 is imple-

mented. The mesh is systematically refined to ensure the

numerical data converges to 98% accuracy. Numerical

results corresponding to width-to-thickness ratios between

16 � b=h � 96, aspect ratios in the range 2 < L=b � 16 and

Poisson’s ratios over the practical range 0 � � � 0:49, are

presented.

Stiffness change in the cantilever problem of subproblem

(2) can be examined using two equivalent approaches:28–30 (i)

monitor the change in resonant frequency or (ii) apply a fixed

uniform load at the free end of the cantilever and observe

changes in the static deflection; this subsequently allows for

calculation of changes in the cantilever spring constant, k. The

former approach is most commonly implemented in practice

when small changes in stiffness are interrogated experimen-

tally. This was the chosen approach in Refs. 28 and 29 and we

reported the results of both approaches in Ref. 30. Here, we

provide results for the static deflection only, since both

approaches are equivalent and this facilitates identification of

the buckled mode shape using the FEA software implemented.

A. Solution to subproblem (2)

As the strain load e for subproblem (2) increases from

zero, the in-plane stress initially does not affect the out-of-

024501-3 M. J. Lachut and J. E. Sader J. Appl. Phys. 113, 024501 (2013)
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plane deflection function. However, from Eq. (2), it is clear

that coupling between the in-plane stress N and out-of-plane

deflection function w is present at larger loads, and leads to

significant modification of the deflection function.44 Thus, in

contrast to small loads which induce a linear stiffness

change,28–30 larger loads yield a nonlinear change in stiffness

as the load e is varied. This stiffness change increases rapidly

in the vicinity of the buckling point. Since this is the regime

where the scaling analysis presented in Sec. II A is valid, a

formula for the buckling strain load ecr immediately follows

from Eq. (3)

ecr ¼ wð�Þ h

b

� �2

; (6)

where wð�Þ is a dimensionless function purely dependent on

Poisson’s ratio �.

Equation (6) predicts that the buckling load ecr exhibits

three key features: (i) independence of aspect ratio L/b, (ii)

proportionality to the thickness-to-width ratio squared, i.e.,

ðh=bÞ2, and (iii) dependence on Poisson’s ratio, �. We

remind the reader that Eq. (6) is derived for a cantilever of

large aspect ratio, i.e., L=b� 1. These predictions are now

examined using finite element analysis, in the vicinity of

buckling.

We first examine dependence of the buckling strain load

on aspect ratio L/b. Figure 2 gives numerical FEA results for

the stiffness change Dk=k0 as a function of the strain load e,

for various aspect ratios L/b, at a fixed width-to-thickness ra-

tio of b/h¼ 48 and Poisson’s ratio � ¼ 0:25. Note that

Dk � k � k0, where k is the stiffness in the presence of an in-

plane load and k0 is the unloaded stiffness of the cantilever.

It is clear from Fig. 2 that all results converge to the

same buckling points (which occur at Dk=k0 ! �1), regard-

less of aspect ratio, L/b. This confirms the prediction of

Eq. (6) that buckling loads are independent of aspect ratio

L/b, if the aspect ratio is large – the same qualitative feature

is also observed for other width-to-thickness ratios and

Poisson’s ratios (results not shown). The calculations in

Fig. 2 show that this result holds for L=b � 2.

Interestingly, we find that buckling occurs for both posi-

tive and negative strain loads e, i.e., for both tensile and

compressive stress loads r. This contrasts to classical elastic

beams that buckle under compression only. An investigation

of the mechanisms giving rise to this unusual phenomenon is

given in Sec. IV B 1.

Next, we explore dependence of the buckling strain on

the width-to-thickness ratio, b/h, and Poisson’s ratio, �. The

buckling strain, ecr, is determined by varying the applied

strain, e, and extrapolating these numerical results to the as-

ymptotic limit of zero stiffness, i.e., Dk=k0 ! �1, for vari-

ous h/b. The buckling strain load ecr is then multiplied by the

width-to-thickness ratio squared ðb=hÞ2, in accordance with

Eq. (6). In Fig. 3(a), we present this scaled buckling strain,

ðb=hÞ2ecr, as a function of thickness-to-width ratio h/b, for

various Poisson’s ratios, 0 � � � 0:49, and a fixed aspect

ratio of L/b¼ 25/6. Figure 3(a) shows that the scaled buck-

ling strain, ðb=hÞ2ecr, has a weak dependence on h/b. This

demonstrates that the scaling analysis in Sec. II A correctly

captures the leading-order width-to-thickness ratio depend-

ence of the buckling strain load ecr, in the limit of small h/b.

This is as expected because the presented scaling analysis is

derived in the asymptotic limit h=b! 0.

To determine the dimensionless function wð�Þ in Eq. (6),

for both negative and positive strain loads, the numerical data

for ðb=hÞ2ecr are extrapolated to the zero thickness limit,

i.e., h=b! 0. Given that ðb=hÞ2ecr is approximately constant

for small values of h/b, extrapolation is robust and accurate.

Using this procedure, we find that wð�Þ exhibits a nonlinear

Poisson’s ratio � dependence that is well described by

FIG. 2. Relative change in spring constant Dk=k0 vs. strain load e. Results

given for fixed width-to-thickness ratio b/h¼ 48, Poisson’s ratio � ¼ 0:25,

and a range of aspect ratios of L/b¼ 25/12, 25/6, 25/3, and 50/3.

FIG. 3. Effect of Poisson’s ratio, �, on buckling behavior of a cantilever

plate. Results given for an aspect ratio L/b¼ 25/6 and Poisson’s ratio:

� ¼ 0; 0:25 and 0.49. (a) Scaled buckling strain load ðb=hÞ2ecr vs. thickness-

to-width ratio h/b. Both positive and negative strain loads e are presented.

(b) Relative change in spring constant Dk=k0 vs. scaled strain load ðb=hÞ2e
for a width-to-thickness ratio b/h¼ 48.

024501-4 M. J. Lachut and J. E. Sader J. Appl. Phys. 113, 024501 (2013)
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wð�Þ ¼ 63:91ð1� 0:92� þ 0:63�2Þ for e > 0, and wð�Þ
¼ �38:49ð1þ 0:17� þ 1:95�2Þ for e < 0. Substituting these

expressions into Eq. (6), gives the required results for the

buckling loads that are valid for L=b� 1,

eðþÞcr ¼ 63:91ð1� 0:92� þ 0:63�2Þ h

b

� �2

; (7a)

eð�Þcr ¼ �38:49ð1þ 0:17� þ 1:95�2Þ h

b

� �2

; (7b)

where eðþÞcr and eð�Þcr are the buckling strain loads for subpro-

blem (2) at the buckling points for positive and negative

strain loads, e, respectively.

Note that the applied strain e in subproblem (2) and the

original applied stress r (and free strain e) are opposite in

sign. This arises from decomposition of the original problem

into that for an unrestrained plate and a clamp loaded cantile-

ver; see Sec. II and Eqs. (4) and (5). All results shall hence-

forth be referred to e.

Significantly, Eqs. (7) show that the buckling strain

loads exhibit a weak nonlinear dependence on �. This differs

from the case of infinitesimal strain load, for which the rela-

tive change in stiffness is given by30

Dkeff

k0

¼ �0:063� e
b

L

� �
b

h

� �2

; (8)

which possesses a strong (linear) dependence on Poisson’s

ratio, �.

The mechanism leading to the weak (nonlinear) depend-

ence of the buckling loads on Poisson’s ratio � [see Eqs. (7)]

is explored in Sec. IV B 3. Equations (4), (5), and (7) are used

in Sec. V to examine the practical implications of cantilever

buckling due to isotropic and uniform in-plane stress loads.

Figure 3(b) shows the transition from linear to nonlinear

stiffness effects, as the load e is increased from zero, over

the full range of Poisson’s ratio, 0 � � � 0:49, at a fixed

aspect ratio and width-to-thickness ratio. For zero Poisson’s

ratio, the stiffness change is zero for small loads, i.e.,

e � ðh=bÞ2, as predicted by Eq. (8) and Ref. 30, but varies

significantly for large loads, i.e., e � Oð½h=b�2Þ. Figure 3

also reveals that the buckling strain loads decrease algebrai-

cally for both positive and negative e, as captured in Eq. (7).

In Sec. IV B, the effect of large strain loads (as defined

above) on the deflection function is examined.

B. Deflection function under large strain loads

To study the effect of large strain loads (e � Oð½h=b�2Þ)
on the out-of-plane deflection function, we systematically

increase the load from the infinitesimal limit up to the buck-

ling point. This is performed for both positive and negative

strain loads. Since the stiffness varies significantly, espe-

cially near the buckling point, the amplitude of the deflection

function at the center of the cantilever free end is normalized

to unity throughout. This facilitates comparison of the deflec-

tion functions under various loads.

Evolution to buckling: Figure 4 gives results for the

normalized out-of-plane deflection function W � wðx1; x2Þ=

FIG. 4. Evolution of the normalized deflection function W � wðx1; x2Þ=wðL; 0Þ to the buckling point as a function of the strain load e. Positive strain loads

(e > 0): (a) x2 ¼ 0; (b) x2 ¼ 6b=2. Negative strain loads (e < 0): (c) x2 ¼ 0; (d) x2 ¼ 6b=2. Insets are normalized deflection functions in vicinity of the

clamp. Values of ðb=hÞ2e shown in the insets are for zero load and the buckling loads; all values are (a) ðb=hÞ2e ¼ 0, 25.6, 38.5, 44.7, 52.3; (b) ðb=hÞ2e ¼ 0,

�25.6, �38.5, �42.2, �44.5. Results for aspect ratio L/b¼ 25/6, width-to-thickness ratio b/h¼ 48, and Poisson’s ratio � ¼ 0:25.

024501-5 M. J. Lachut and J. E. Sader J. Appl. Phys. 113, 024501 (2013)

 06 O
ctober 2023 20:32:55



wðL; 0Þ, as a function of positive and negative strain loads, e.

Results are given along the central axis (x2 ¼ 0) and side

edges (x2 ¼ 6b=2) of the plate. Insets show the deflection

function in the vicinity of the clamp.

In Fig. 4, we observe significant modification of the deflec-

tion function as the strain load is increased from zero. Two key

features are evident: (i) reduction in curvature away from the

clamp (x1 � b), and (ii) non-monotonic variation in the deflec-

tion function near the clamp (x1 � b). The first feature is con-

sistent with a reduction in the flexural rigidity of the plate near

the clamp only – this produces a rigid body movement away

from that region. The second feature is due to strong coupling

between the in-plane stresses and the deflection function. These

complementary features are examined further below.

Interestingly, we observe reverse behavior in the vicinity

of the clamp for positive and negative strain loads. The

deflection function decreases monotonically along the cen-

tral axis x2 ¼ 0 for positive strain loads, whereas this occurs

at x2 ¼ 6b=2 for negative strain loads. Similarly, non-

monotonic variations occur along x2 ¼ 6b=2 and x2 ¼ 0 for

positive and negative strain loads, respectively. This reverse

behavior shows that the buckled mode shapes are different

for positive and negative strain loads.

Buckled mode shapes: Three-dimensional plots of the

deflection functions at the buckling points, for both positive

and negative strain loads, are given in Fig. 5. These results

clarify the overall effect of the above mentioned variations.

For positive strain loads, anticlastic curvature is observed in

the mode shapes near the clamp, with the plate curling up in

the x2-direction and down in the x1-direction; see Fig. 5(a).

However, for negative strain loads [Fig. 5(c)], curvatures in

both x1 and x2-directions are identical in sign, leading to a

central bulge in the vicinity of the clamp. Away from the

clamp, x1 � b, both positive and negative strain loads induce

a rigid body displacement and rotation of the plate; see results

in Figs. 5(b) and 5(d), which are consistent with the observa-

tions of Fig. 4. This is due to the presence of in-plane stress

in the vicinity of the clamp only (x � b), as discussed above.

The results in Figs. 4 and 5 show that the deflection

function is modified significantly near the buckling point, in

comparison to the unloaded case. This modification of the

deflection function gives rise to the observed nonlinear varia-

tion in stiffness, and ultimate buckling of the plate. Impor-

tantly, two distinct buckled mode shapes are found, one for

positive and another for negative strain loads, e. The physical

mechanisms giving rise to these different mode shapes are

now examined.

1. In-plane stress distributions

Compressive stresses must exist for a structure to

buckle. We, therefore, study the principal in-plane stresses in

subproblem (2) to elucidate the origin of the observed buck-

ling behavior, for both positive and negative strain loads e.

The principal in-plane stresses N1; N2 are

N1 ¼
N11 þ N22

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N11 � N22

2

� �2

þ N12
2

s
; (9a)

FIG. 5. Normalized buckled mode shapes W � wðx1; x2Þ=wðL; 0Þ for positive and negative strain loads e. Positive strain loads (e > 0): (a) mode shape near

clamp (0 � x1 � b); (b) global mode shape (0 � x1 � L). Negative strain loads (e < 0): (c) mode shape near clamp (0 � x1 � b); (d) global mode shape

(0 � x1 � L). Results given for L/b¼ 25/6, b/h¼ 48, and � ¼ 0:25.
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N2 ¼
N11 þ N22

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N11 � N22

2

� �2

þ N12
2

s
; (9b)

where N11; N22, and N12 are the components of the in-plane

stress tensor, and refer to the normal and shear in-plane

stresses, respectively.39 Note that N1 is always algebraically

greater than N2, i.e., N1 > N2 for all e.

We first consider the case of a positive strain load, i.e.,

e > 0. Figures 6(a) and 6(b) give results for the normalized

principal stresses N1 � N1=ðeEhÞ and N2 � N2=ðeEhÞ,
respectively. Note that N1 is strictly positive (tensile) through-

out the domain of the plate, whereas N2 is negative (compres-

sive) in the vicinity of the clamp and the neighboring free

edges only – N2 is tensile away from these regions. This indi-

cates that buckling here is initiated by regions near the side

edges in the vicinity of the clamp. This will be explored

further below.

For the opposite case of negative strain load (e < 0),

results for the stress in Figs. 6(a) and 6(b) hold, except the

values of N1 and N2 are switched. That is, Fig. 6(a) now cor-

responds to N2 , whereas Fig. 6(b) becomes N1 . Since N1 and

N2 are scaled by the strain, e, and this is now negative, we

observe that both unscaled principal stresses N1 and N2 are

negative (compressive) in the interior of the plate, whereas

only N1 is tensile near the clamp and the side edges.

The presence of compressive in-plane stresses for both

positive and negative strain loads is consistent with buckling

in both cases. However, since the compressive stress distri-

butions differ, their buckling loads may not be identical, as

observed in Fig. 2.

2. Mechanical pressure

To determine where compressive (and tensile) stresses

dominate, we calculate the mechanical pressure, P � �1=2 tr

N. Figure 7(a) gives results for the normalized mechanical

pressure, P � P=ðjejEhÞ, for e > 0 with level curves divided

into two regions: Regions 1 and 2, corresponding to positive

and negative pressure, respectively. These results show that

the pressure is positive along the side edges of the plate and

away from the clamp (region 1), and there exists a central

core near the clamp where the pressure is negative (region 2).

The pressure is maximum at the side edges x2 ¼ 6b=2 and in

the vicinity of the clamp, near x1 ¼ b=3.

These results are to be compared to the corresponding

mode shape at the buckling point, for positive strain loads;

see Fig. 7(b). This mode shape differs significantly from the

case of zero in-plane load, whose level sets are approxi-

mately parallel to the clamp, i.e., to the x2-axis. The presence

of an in-plane load modifies the deflection function of the

plate, and at the buckling point leads to warping of the plate

in the region of maximum compressive pressure, i.e., near

x1 ¼ b=3 and x2 ¼ 6b=2.

This contrasts to the opposite situation where the strain

load is negative. This reverses the sign of the pressure in

Fig. 7(a), thus producing compressive stress in region 2. The

buckled mode shape in this case is given in Fig. 7(c), where

we observe approximate coincidence of the maximum (posi-

tive) pressure position and a central bulge in the plate. Thus,

we again find a strong correlation between the position of

maximum (positive) pressure, and strong deviations in the

buckling mode shape.

These results show that the buckled mode shapes differ

for positive and negative strain loads, due to the different

compressive stress distributions in these complementary

cases.

3. Poisson’s ratio dependence

The numerical results in Fig. 3 show that the buckling

strain loads exhibit a weak dependence on Poisson’s ratio,

�. To explain this feature, we first examine the Poisson’s ra-

tio dependence of the normalized mechanical pressure, P.

Figure 8 gives results for the difference between the P distri-

butions for � ¼ 0 and 0.49. This clearly shows that the

mechanical pressure is insensitive to Poisson’s ratio, with

the differences being an order of magnitude smaller than the

pressure itself, cf. Figs. 7(a) and 8.

The corresponding mode shapes for both positive and

negative strain loads are presented in Fig. 9. In line with the

FIG. 6. Principal in-plane stress distributions for L/b¼ 25/6, b/h¼ 48, and

� ¼ 0:25. (a) Normalized principal stress N1 � N1=ðeEhÞ for e > 0; this

coincides with N2 � N2=ðeEhÞ for e < 0. (b) Normalized principal stress N2

for e > 0; this coincides with N1 for e < 0.
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imposed in-plane stress distribution, we again observe identi-

cal qualitative features in the buckled mode shapes regard-

less of Poisson’s ratio. These results show that the observed

weak dependence of the buckled mode shapes on Poisson’s

ratio � is primarily due to insensitivity of the in-plane stress

distribution to �.

V. PRACTICAL IMPLICATIONS

To conclude, we explore the implications of the above

findings to devices found in practice. In Sec. IV A, we

derived general analytical formulas, Eq. (7), for the buckling

strain loads of cantilever plates of large aspect ratio, i.e.,

L=b � 2. These formulas are now applied to two cases of

practical interest: (i) surface stress loads and (ii) thermal

loads. The corresponding strain loads are given in Eqs. (4)

and (5), respectively, and are used in conjunction with

Eq. (7) to determine the buckling loads.

A. Surface stress loads

We first examine the effect of a change in surface stress

on the buckling of some cantilevers found in practice. Impor-

tantly, Eqs. (4) and (7) show that the surface stress change,

rT
s , required to buckle a cantilever scales linearly with its

Young’s modulus, E, is proportional to its thickness cubed

and inversely proportional to the square of its width, i.e.,

rT
s / Eh3=b2. Thus, to increase the susceptibility of a canti-

lever to buckle, its thickness should be reduced and its width

increased; the buckling load is independent of length, as

discussed.

We consider two illustrative examples: (1) a silicon

nitride cantilever 30 lm	 12 lm	 0.09 lm from a recent

study,26 and (2) a smaller cantilever composed of multilayer

graphene with dimensions 3.2 lm	 0.8 lm	 0.6 nm,61,62 a

material which is known to behave in accordance with the

continuum mechanics.61 Reported mechanical properties for

these materials and device dimensions are listed in Table I.

Silicon nitride cantilever: Using typical values for sili-

con nitride,63 the surface stress loads required to buckle this

device are rT
s 
 690 N=m; see Table I. These values are 2-3

orders of magnitude larger than surface stress changes

FIG. 7. Results showing connection between the mechanical pressure and the

buckled mode shapes for positive and negative strain loads; for L/b¼ 25/6,

b/h¼ 48, and � ¼ 0:25. (a) Normalized mechanical pressure P � P=ðjejEhÞ
for positive strain load e > 0. Normalized buckled mode shapes for (b) e > 0

and (c) e < 0. Buckled mode shapes are normalized by the displacements at

the center of the cantilever free end, i.e., x1 ¼ L; x2 ¼ 0.

FIG. 8. Difference in the normalized mechanical pressure P for � ¼ 0

and � ¼ 0:49, i.e., DP � Pj�¼0 � Pj�¼0:49. Results given for L/b¼ 25/6 and

b/h¼ 48.
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typically reported.8–10,14–16 Conventional microcantilevers

used in atomic force microscopy have even larger buckling

loads. This is because an increase in device size enhances

the buckling loads. We therefore conclude that under practi-

cal experimental conditions, surface stress cannot buckle

standard silicon nitride micro- and nano-cantilever devices.

Graphene cantilever: This device possesses a thickness

two orders of magnitude smaller than the above specified

silicon nitride device, which dramatically enhances it suscep-

tibility to the effects of surface stress. In Ref. 30, we showed

that such a graphene cantilever exhibits a frequency shift

of Dx=x0 
 0:01, for a typical surface stress change of

rT
s 
 �2:5 mN m�1. Using Eqs. (4) and (7), we find that a

surface stress load an order of magnitude larger than this

value, i.e., rT
s 
 630 mN=m, will buckle this device; see

Table I. Importantly, this is within typically reported values

for surface stress change, which are in the approximate range

of 1–1000 mN/m.8–10,14–16

Therefore, in contrast to the above silicon nitride device,

cantilevers composed of (ultrathin) graphene are highly

susceptible to the effects of surface stress and may indeed be

unstable under practical conditions. Typical surface stress

effects at the graphene surface may therefore buckle the canti-

lever, thus complicating their fabrication and application.

FIG. 9. Dependence of buckled mode shape on Poisson’s ratio �. Positive strain loads (e > 0): (a) � ¼ 0; (b) � ¼ 0:49. Negative strain loads (e < 0):

(c) � ¼ 0; (d) � ¼ 0:49. Results given for L/b¼ 25/6 and b/h¼ 48.

TABLE I. Spatial dimensions (L, b, and h), material properties (�, E, and a), surface stress changes (rT
s ), and temperature changes (DT) that will buckle silicon

nitride and graphene cantilevers. The difference between the linear coefficient of thermal expansion, a, of the clamp substrate and cantilever material is used to

calculate the temperature change [see Eq. (5)]; the coefficient of linear thermal expansion of silicon nitride, silicon, and graphene are, respectively, 3.2, 2.6,

and �0:7	 10�6=K.

Cantilever L b h E a rT
s > 0ð< 0Þ DT > 0ð< 0Þ

Material (lm) (lm) (nm) � (GPa) (10�6=K) (Nm�1) (K)

Si3N4 30 12 90 0.2 290 0.6 98.7 (�78.5) 4010 (unphysical)

Graphene 3.2 0.8 0.6 0.24 1400 �3.3 0.0324 (�0.0276) 8.9 (�7.6)
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While this may present a potential limitation to the use of gra-

phene (or similar materials) for the development of ultra-

sensitive sensing devices, it could also be used to advantage

to construct sensors that rely on buckling phenomena.

B. Thermal loads

Next, we examine the effect of a uniform increase in

temperature on the above specified devices. The substrate

holding the cantilevers is taken to be silicon, which is often

the practical case and for which its thermal properties are

well characterized.64 Since the silicon substrate also has a

finite coefficient of thermal expansion, uniform heating of

the entire cantilever/clamp structure will result in a differen-

tial stress between the cantilever and substrate, as analyzed

in Sec. III. Note that if the cantilever and substrate are com-

posed of identical materials, uniform heating cannot induce a

net stress in the cantilever and hence buckling will not occur;

see Eq. (5). For simplicity of discussion, we use known

material properties at room temperature.

Silicon nitride cantilever: The cantilever/clamp system

is assumed to be at room temperature initially. Equations (5)

and (7) predict that the device will buckle when the tempera-

ture is increased by �4000 K. Buckling cannot occur when

the temperature is decreased, because the required tempera-

ture would be below absolute zero. Since the former case is

above the melting point of both the clamp substrate and

cantilever materials, and the latter is physically impossible,

these calculations show that the device cannot buckle under

thermal loads.

Graphene cantilever: The coefficient of thermal expan-

sion ag of a bilayer (and trilayer) of graphene was recently

measured: jagj < 7	 10�7;65 this is almost an order of mag-

nitude smaller than that of silicon over a large temperature

range. Consequently, thermal stresses in the graphene device

will be induced primarily by strain in the clamp. In contrast

to the silicon nitride device, we find the graphene cantilever

will buckle when the temperature is varied by only �68 K;

see Table I. This can be easily achieved under laboratory

conditions, indicating that such ultrathin devices are highly

susceptible to the effects of temperature variations. Use of a

clamp substrate with a higher coefficient of thermal expan-

sion, such as glass, will decrease the temperature change

required for buckling.

Importantly, the thermal buckling load is independent of

device size and relies only on (i) the thickness-to-width ratio,

h/b, and (ii) the relative difference in the coefficients of linear

thermal expansion between the clamp substrate and cantilever,

a. Thus, a macroscopic device of similar thickness-to-width

ratio, h/b, and relative coefficient of thermal expansion, a, to

the above specified graphene cantilever will buckle for a simi-

lar temperature change. The same is not true for surface stress

loads, whose buckling loads scale linearly with device size.

These conclusions are evident from the key formulas in

Eqs. (4), (5), and (7).

VI. CONCLUSIONS

We have theoretically examined the buckling behavior

of thin cantilever plates that are uniformly loaded in their

plane. In contrast to doubly clamped beams, we find that

cantilever plates buckle under both compressive and tensile

loads. This unusual feature is due to the generation of com-

pressive in-plane stresses within the plate in both cases,

which occur at different spatial regions in the vicinity of the

clamp. The buckled mode shapes for positive and negative

strain loads differ as a result, as do the buckling loads (albeit

weakly). Importantly, since the in-plane stresses are confined

to the vicinity of the clamp, the buckling loads are insensi-

tive to variations in cantilever length, for fixed width and

thickness, provided L=b � 2. The buckling loads are also

weakly dependent on Poisson’s ratio.

The implications of this study to practical devices were

also explored for surface stress and thermal loads. Typical

silicon nitride micro- and nano-scale cantilevers were found

to be resilient to buckling under practical conditions. This

was in contrast to ultrathin devices, such as those made of

graphene, which were found to buckle under both surface

stress and thermal loads. This presents an opportunity to uti-

lize the buckling behavior of nanoscale cantilever devices in

the development of novel sensing applications.
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