Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 23, 2008 | public
Journal Article

Traversing the metal-insulator transition in a zintl phase: Rational enhancement of thermoelectric efficiency in Yb_(14)Mn_(1-x)Al_xSb_(11)


For high temperature thermoelectric applications, Yb_(14)MnSb_(11) has a maximum thermoelectric figure of merit (zT) of ~1.0 at 1273 K. Such a high zT is found despite a carrier concentration that is higher than typical thermoelectric materials. Here, we reduce the carrier concentration with the discovery of a continuous transition between metallic Yb_(14)MnSb_(11) and semiconducting Yb_(14)AlSb_(11). Yb_(14)Mn_(1-x)Al_xSb_(11) forms a solid solution where the free carrier concentration gradually changes as expected from the Zintl valence formalism. Throughout this transition the electronic properties are found to obey a rigid band model with a band gap of 0.5 eV and an effective mass of 3 m_e. As the carrier concentration decreases, an increase in the Seebeck coefficient is observed at the expense of an increased electrical resistivity. At the optimum carrier concentration, a maximum zT of 1.3 at 1223K is obtained, which is more than twice that of the state-of-the-art Si_(0.8)Ge_(0.2) flown by NASA.

Additional Information

© 2008 John Wiley & Sons, Inc. Received: 29 February 2008; Revised: 4 April 2008. Published online: September 1, 2008 This research was funded by NSF DMR-0600742, the Beckman Fellowship program, and NASA/Jet Propulsion Laboratory. CAC acknowledges funding from NSF funded Bridge to Doctorate fellowship. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

Additional details

August 22, 2023
October 17, 2023