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Abstract. Entanglement asymmetry is a quantity recently introduced to meas-
ure how much a symmetry is broken in a part of an extended quantum system.
It has been employed to analyze the non-equilibrium dynamics of a broken sym-
metry after a global quantum quench with a Hamiltonian that preserves it. In
this work, we carry out a comprehensive analysis of the entanglement asym-
metry at equilibrium taking the ground state of the XY spin chain, which breaks
the U (1) particle number symmetry, and provide a physical interpretation of
it in terms of superconducting Cooper pairs. We also consider quenches from
this ground state to the XX spin chain, which preserves the U (1) symmetry.
In this case, the entanglement asymmetry reveals that the more the symmetry
is initially broken, the faster it may be restored in a subsystem, a surprising
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and counter-intuitive phenomenon that is a type of a quantum Mpemba effect.
We obtain a quasi-particle picture for the entanglement asymmetry in terms of
Cooper pairs, from which we derive the microscopic conditions to observe the
quantum Mpemba effect in this system, giving further support to the criteria
recently proposed for arbitrary integrable quantum systems. In addition, we find
that the power law governing symmetry restoration depends discontinuously on
whether the initial state is critical or not, leading to new forms of strong and
weak Mpemba effects.

Keywords: entanglement entropies,
entanglement in extended quantum systems, quantum quenches,
spin chains, ladders and planes
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1. Introduction

Hot water may freeze faster than cold water: this counter-intuitive statement describes
the Mpemba effect. Such phenomenon was already known to Aristotle and was neglected
until 1963 when a student called E B Mpemba observed it preparing an ice-cream [1].
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This observation has opened a new research activity devoted to understanding the
mechanism and conditions behind the Mpemba effect. Indeed, it has been observed not
only in a solution of milk and sugar or in water but in a wide variety of systems, including
clathrate hydrates [2], polymers [3], magnetic alloys [4], carbon nanotube resonators [5],
granular gases [6], or dilute atomic gases [7] to cite some of them. Today, the Mpemba
effect is more generally rephrased as an anomalous relaxation phenomenon where a
system initially further out of equilibrium relaxes faster than a system initially closer
to equilibrium. Recently, a theoretical framework for the Mpemba effect was developed
in [8, 9], followed by a demonstration of the effect in a controlled experimental setting
consisting of a colloidal system that is suddenly quenched by placing it in a thermal bath
at a lower temperature [10]. Further aspects of this framework have been studied, e.g. in
[11–14]. We emphasize that one important aspect of these works is the introduction of a
distance between the state of the system and the final equilibrium state to characterize
the Mpemba effect.

Despite considerable effort to understand this phenomenon at a classical level, there
are only a few investigations in the quantum realm. Most of them study the relaxation
of quantum systems after a quench of the temperature or are subject to non-unitary
dynamics [15–20]. However, a version of the Mpemba effect in a closed many-body
quantum system at zero temperature has been recently reported in [21]. In particular,
if we prepare a spin-1/2 chain in a state that breaks a U (1) symmetry and we evolve the
system unitarily with a Hamiltonian that preserves it, the symmetry may be dynam-
ically restored in a subsystem of the chain and, furthermore, the more the symmetry
is initially broken, the faster it may be restored. The situation here is slightly different
from the standard classical Mpemba effect: since the system is isolated, the local equi-
librium state does depend on the initial state. Then, what defines the quantum Mpemba
effect in this context is not the distance from a common asymptotic state but rather
the amount of symmetry breaking.

Thus, in order to study the quantum Mpemba effect, we have to use a quantity
that does a similar job as the distance considered in [8, 10] to probe the classical
counterpart, but at the level of symmetry breaking. To this aim in [21] the entanglement
asymmetry was introduced to measure how much a symmetry is broken in a part of
an extended quantum system. So far, the entanglement asymmetry has been studied
for the U (1) symmetry associated with transverse magnetization (particle number) in
global quantum quenches to the XX spin chain from both the tilted ferromagnetic and
Néel states, see [21, 22] respectively. While in the first case, the quantum Mpemba
effect can be observed, for the tilted Néel state the symmetry is not restored after the
quench since the reduced density matrix relaxes to a non-Abelian generalized Gibbs
ensemble. In this case, the asymmetry tends at late times to different non-zero values
depending on the initial state, and one cannot define a quantum Mpemba effect. The
entanglement asymmetry and the quantum Mpemba effect have also been analyzed
in quenches from different initial states to interacting integrable Hamiltonians in the
recent [23], in particular, the Lieb–Liniger model and the rule 54 quantum cellular
automaton, using the space-time duality approach developed in [24]. In addition, a
general explanation of the microscopic origin of the quantum Mpemba effect in free and
interacting integrable systems has also been proposed in [23]. Furthermore, experimental
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confirmations of this effect have been reported in a trapped-ion setup [25]. Entanglement
asymmetry has also been employed to analyze the breaking of discrete symmetries in
the XY spin-chain [26] and the massive Ising field theory [27], and of compact groups
in matrix product states [28].

The goal of the present paper is twofold. On the one hand, we perform a comprehens-
ive analysis of the entanglement asymmetry in the ground state of the XY spin chain,
which is the most paradigmatic free integrable system that breaks a U (1) symmetry. On
the other hand, taking this ground state, we investigate the time evolution of the entan-
glement asymmetry after a sudden global quench to the XX spin chain Hamiltonian,
which respects the U (1) symmetry. This framework provides the ideal setup to further
study the quantum Mpemba effect discovered in [21] in free fermionic systems and give
support to the general mechanism presented in [23] for integrable models.

Entanglement asymmetry: Before summarizing our main results, let us first define
the entanglement asymmetry. We consider an extended quantum system in a pure state
|Ψ⟩, which we divide into two spatial regions A and B. The state of A is given by
the reduced density matrix ρA obtained as ρA =TrB(|Ψ⟩⟨Ψ|), where TrB denotes the
partial trace in the subsystem B. Let us denote by Q the charge operator with integer
eigenvalues that generates a U (1) symmetry group. We require that Q is the sum of the
charge in each region, Q=QA+QB. If |Ψ⟩ has a defined charge, i.e. it is an eigenstate of
Q, then it respects the corresponding symmetry and [ρA,QA] = 0. The latter implies that
ρA is block-diagonal in the eigenbasis of QA and each block corresponds to a particular
charge sector. This situation has recently been intensively studied in the context of
entanglement since entanglement entropy [29–32] and other entanglement measures [33–
36] admit a decomposition in the charge sectors of the theory, which provides a much
better understanding of numerous features of quantum many-body systems [37–48].

On the other hand, if |Ψ⟩ is not eigenstate of Q, then it breaks the U (1) symmetry
generated by Q and [ρA,QA] ̸= 0. Therefore, ρA is not block-diagonal. In this case,
a proper measure of how much the symmetry is broken in the subsystem A is the
entanglement asymmetry, denoted by ∆SA, and defined as

∆SA = S (ρA,Q)−S (ρA) , S (ρ) =−Tr(ρ logρ) . (1)

In this definition, the density matrix ρA,Q is the result of projecting ρA over all the
charge sectors of QA; that is, ρA,Q =

∑
q∈ZΠqρAΠq, where Πq denotes the projector

onto the eigenspace of QA with charge q ∈ Z. The matrix ρA,Q is therefore block-
diagonal in the eigenbasis of QA. One can check that, due to the form of ρA,Q, the
entanglement asymmetry ∆SA is equal to the relative entropy between ρA and ρA,Q,
∆SA =Tr[ρA(logρA− logρA,Q)] [49]. This identity implies that the entanglement asym-
metry is non-negative, ∆SA ⩾ 0. The other important property as measure of symmetry
breaking is that ∆SA vanishes if and only if [ρA,QA] = 0; that is, when the state of A
respects the symmetry associated to QA.
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The entanglement asymmetry ∆SA can be computed from the moments of the dens-
ity matrices ρA and ρA,Q by applying the well-known replica trick for the entanglement
entropy [50, 51]. If we define the Rényi entanglement asymmetry as

∆S
(n)
A = S(n) (ρA,Q)−S(n) (ρA) , S(n) (ρ) =

1

1−n
logTr(ρn) . (2)

One has that limn→1∆S
(n)
A =∆SA. As we will see, ∆S

(n)
A is easier to calculate for positive

integer n values, for which it can be measured in ion trap experiments using protocols

based on randomized shadows [25, 52–55]. Moreover, ∆S
(n)
A satisfies the two crucial

properties to be a measure of symmetry breaking: it is non-negative [56] and is zero if
and only if [ρA,QA] = 0.

Main results: As we have already mentioned, the goal of this work is to expand
the analysis done in [21] for the tilted ferromagnetic state. We study the entanglement
asymmetry in the ground state of the XY spin chain, described by the Hamiltonian

H =−1

4

∞∑
j=−∞

[
(1+ γ)σx

j σ
x
j+1+(1− γ)σy

jσ
y
j+1+2hσz

j

]
, (3)

where the σβ
j are the Pauli matrices at the site j, γ is the anisotropy parameter between

the couplings in the x and y directions of the spin and h is the value of the external
transverse magnetic field. When the anisotropy parameter γ is not zero, H breaks the
U (1) symmetry generated by the transverse magnetization

Q=
1

2

∑
j

σz
j . (4)

Therefore, in this work, we are interested in the region γ ̸=0 for which the ground state
entanglement asymmetry associated to Q is non-zero while for γ=0 it vanishes. For
γ ̸=0, the XY spin chain is critical along the lines |h|= 1, which belong to the Ising
universality class. The tilted ferromagnetic states considered in [21] are only a subset
of the ground states of the Hamiltonian (3) along the curve γ2+h2 = 1 [57, 58]. In this
more general setup, we can compute the entanglement asymmetry for any ground state
of (3) and we find that, for a subsystem A of contiguous spins of length ℓ, it reads

∆S
(n)
A =

1

2
logℓ+

1

2
log

πg (γ,h)n1/(n−1)

4
+O

(
ℓ−1
)
, (5)

where g(γ,h) is a function depending on the two parameters γ and h of the
Hamiltonian (3). We find that this term is related to the density of Cooper pairs,
which are responsible for the breaking of the conservation of the number of particles.

We remark that ∆S
(n)
A increases logarithmically with the subsystem size, both if the

system is critical (|h|= 1) or not.
If we choose the ground state of the Hamiltonian in equation (3) for arbitrary γ

and h and we let it evolve with the XX spin chain, that is taking γ=0 and h =0
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in equation (3), which commutes with the charge (4), the symmetry is dynamically
restored. We derive a quasi-particle picture for the entanglement asymmetry at large
times after the quench based on the initial density of Cooper pairs. From it, we find
that the Rényi entanglement asymmetry vanishes for large times as t−3 for any initial
value of γ when |h| ̸= 1 and we predict under which conditions for the parameters (γ,h)
we observe the Mpemba effect. It turns out that, if the density of Cooper pairs around
the slowest modes of the post-quench Hamiltonian is larger for the state that initially
breaks less the symmetry, the quantum Mpemba effect occurs, in agreement with the
general findings of [23] for integrable systems. On the other hand, when the system is
prepared initially in the critical ground state, i.e. |h|= 1, the Rényi asymmetry vanishes
as t−1 for any value of γ. Therefore, for critical systems, we can define a strong version
of the Mpemba effect for which the relaxation happens algebraically slower regardless
of the initial condition for the non-critical state.

Outline: In section 2, we provide a recipe to evaluate the entanglement asymmetry
for Gaussian fermionic operators such as the reduced density matrix of the ground state
of the XY spin chain. Section 3 is devoted to the analysis of the entanglement asymmetry
in the ground state of the XY model, while section 4 studies the time-evolution of the
asymmetry after a quench to the XX spin chain and the origin of the Mpemba effect.
Finally, we draw our conclusions in section 5 and we include three appendices with
additional results and technical details.

2. Charged moments and XY spin chain

As we have seen in the previous section, by applying the replica trick, the entanglement

asymmetry ∆SA can be computed from the Rényi version ∆S
(n)
A defined in equation (2).

The advantage of doing this is that, using the Fourier representation of the projector
Πq, the projected density matrix ρA,Q can be rewritten as

ρA,Q =

ˆ π

−π

dα

2π
e−iαQAρAe

iαQA. (6)

Therefore, its moments are given by

Tr
(
ρnA,Q

)
=

ˆ π

−π

dα1 . . .dαn

(2π)n
Zn (α) , (7)

where α= {α1, . . . ,αn} and Zn(α) are the (generalized) charged moments

Zn (α) = Tr

 n∏
j=1

ρAe
iαj,j+1QA

 , (8)

with αij ≡ αi−αj and αn+1 = α1. Since in general [ρA,QA] ≠ 0, the order in which
these operators enter in the expression of Zn(α) is crucial. In fact, if [ρA,QA] = 0, then

Zn(α) = Zn(0), which implies Tr(ρnA,Q) = Tr(ρnA) and ∆S
(n)
A = 0.

https://doi.org/10.1088/1742-5468/ad17b4 6
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In this manuscript, we are particularly interested in calculating the charged moments

Zn(α) and, from them using equation (7), the Rényi entanglement asymmetry ∆S
(n)
A

in the ground state of the XY spin chain (3). As well-known, this Hamiltonian is easily

diagonalizable as follows [59]. We can first map it to the fermionic operators cj = (c†j,cj)
via a Jordan–Wigner transformation, namely

H =−1

2

∞∑
j=−∞

(
c†jcj+1+ γc†jc

†
j+1+h.c+2hc†jcj

)
. (9)

By performing now a Fourier transformation to momentum space dk =
∑

j∈Z e
−ikjcj and

then the Bogoliubov transformation(
ηk
ηπ−k

)
=

(
cos(∆k/2) i sin(∆k/2)
isin(∆k/2) cos(∆k/2)

)(
dk
dπ−k

)
, (10)

with

cos∆k =
h− cos(k)√

(h− cos(k))2+ γ2 sin2k
,

sin∆k =
γ sin(k)√

(h− cos(k))2+ γ2 sin2k
,

(11)

the XY spin chain is diagonal in terms of the Bogoliubov modes ηk ,

H =
∑
k

ϵk

(
η†kηk −

1

2

)
, (12)

where εk is the single-particle dispersion relation

ϵk =

√
(h− cosk)2+ γ2 sin2k. (13)

Thus the ground state is the Bogoliubov vacuum |0⟩ that is annihilated by all the
operators ηk , i.e. ηk|0⟩= 0 for all k. For γ ̸=0, this state breaks the U (1) symmetry
associated to the conservation of the total transverse magnetization (4), i.e. [ρ,Q] ̸= 0

with ρ= |0⟩⟨0|, and the asymmetry ∆S
(n)
A is non-zero. On the other hand, for γ=0,

|0⟩ is an eigenstate of Q and ∆S
(n)
A vanishes. Therefore, |0⟩ is an ideal state to explore

∆S
(n)
A .
The ground state of the XY spin chain is a Slater determinant and, consequently,

the reduced density matrix ρA is a Gaussian operator in terms of cj [60]. This simplifies

the calculation of ∆S
(n)
A since, due to the Wick’s theorem, ρA is univocally determined

by the two-point correlation matrix

Γjj ′ = 2Tr
[
ρAc

†
jcj ′

]
− δjj ′, (14)

https://doi.org/10.1088/1742-5468/ad17b4 7
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with j,j ′ ∈A. If A is an interval of contiguous sites of length ℓ, then Γ is a 2ℓ× 2ℓ block
Toeplitz matrix; that is, their entries are the Fourier coefficients [61]

Γjj ′ =

ˆ 2π

0

dk

2π
G (k)e−ik(j−j ′), j,j ′ = 1, . . . ,ℓ, (15)

of the 2× 2 symbol

G (k) =

(
cos∆k −i sin∆k

isin∆k −cos∆k

)
. (16)

Under the Jordan–Wigner transformation, the transverse magnetization Q in
equation (4) is mapped to the fermion number operator Q=

∑
j(c

†
jcj − 1/2) and eiαQA

turns out to be Gaussian, too. Therefore, equation (8) is the trace of the product of
Gaussian fermionic operators, ρA and eiαj,j+1QA. As explicitly shown in appendix B of
[22], using the special properties of Gaussian operators [62, 63], the trace of equation (8)
can be re-expressed as a determinant involving the two-point correlation matrix Γ,

Zn (α) =

√√√√√det

(I −Γ

2

)n
I +

n∏
j=1

Wj

, (17)

with Wj = (I +Γ)(I −Γ)−1eiαj,j+1nA and nA is a diagonal matrix with (nA)2j,2j = 1,
(nA)2j−1,2j−1 =−1, j = 1, . . . ,ℓ. Equation (17) allows to exactly compute numerically

∆S
(n)
A and is the starting point to derive analytic expressions for Zn(α) and ∆S

(n)
A for

large subsystem sizes.

3. Entanglement asymmetry in the ground state of the XY spin chain

In this section, we study the entanglement asymmetry in the ground state of the XY
spin chain. As we have previously shown, this state is the vacuum |0⟩ of the Bogoliubov
modes that diagonalize the Hamiltonian (3) of the chain. Since the reduced density
matrix ρA =TrB(|0⟩⟨0|) is Gaussian, we can apply equation (17) to study both numer-
ically and analytically the charged moments Zn(α), from which the Rényi entanglement
asymmetry can be derived using equations (2) and (7).

3.1. Charged moments

For simplicity, let us first consider the case n =2 and afterwards we will generalize the
results to any n. Observe that, for n =2, the expression (17) of the charged moments
Zn(α) in terms of the two-point correlation function Γ simplifies, after a change of
variable α12 = α, as

Z2 (α) =

√
det

(
I +ΓαΓ−α

2

)
. (18)

https://doi.org/10.1088/1742-5468/ad17b4 8
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The matrix Γα ≡ ΓeiαnA is block Toeplitz

(Γα)jj ′ =

ˆ π

−π

dk

2π
Gα (k)e

−ik(j−j ′), j,j ′ = 1, . . . ,ℓ, (19)

with symbol

Gα (k) =

(
eiα cos∆k −ie−iα sin∆k

ieiα sin∆k −e−iα cos∆k

)
. (20)

Therefore, in equation (18), we have the product ΓαΓ−α of two block Toeplitz matrices,
which in general is not block Toeplitz, and the well-known results on the determinant
of this kind of matrices cannot in principle be applied. However, in [22], we found the
following result for the asymptotic behavior of determinants that contain a product of
block Toeplitz matrices like the one in equation (18). If we denote as Tℓ[g] the (ℓd)× (ℓd)
dimensional block Toeplitz matrix with symbol the d × d matrix g, then for large ℓ

det

I +
n∏

j=1

Tℓ [gj]

∼ eℓA, (21)

where the coefficient A is given by

A=

ˆ 2π

0

dk

2π
logdet

I + n∏
j=1

gj (k)

 . (22)

If we apply equation (21) in equation (18), then we obtain that the n =2 charged
moments behave for large subsystem size ℓ as

Z2 (α)∼ Z2 (0)e
A2(α)ℓ, (23)

and

A2 (α) =

ˆ π

−π

dk

4π
log
(
1− sin2αsin2∆k

)
. (24)

In figure 1, we numerically test this result. We plot the logarithm of the ground state
charged moment Z2(α)/Z2(0) as a function of the angle α for a fixed subsystem of
length ℓ= 40 and two different sets of values for h and γ; in the left panel, we consider
h= γ = 0.5 while in the right one we take h =2 and γ=0.5. The dots are the exact value
of Z2(α) calculated using equation (18) and the solid lines correspond to the asymptotic
analytic prediction of equation (23). As evident in the plot, for |h|⩽ 1, log(Z2(α)/Z2(0))
presents a cusp at α=±π/2 while, for |h|> 1, this non-analiticity disappears. In the
inset of the right panel, we check that the discrepancy between the analytic prediction
and the exact points around α= π/2 is due to subleading corrections in ℓ, see the
caption for details.
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Figure 1. Logarithm of the n =2 charged moment Z2(α)/Z2(0) in the ground state
of the XY spin chain as a function of α for different values of h and γ and subsystem
size ℓ= 40. The solid lines correspond to the analytic prediction of equation (27)
while the points are the exact values obtained using directly equation (18). The
bottom panel represents the extrapolated data with extrapolation form a+ b/ℓ to
check that the discrepancy observed in the right panel is only a finite-size effect.
To extrapolate the data, we have taken into account the numerical data for ℓ=
40,50,60. Interestingly, the extrapolated points are exactly equal to our analytical
prediction of the linear growth of logZ2(α) in equation (27) (solid curve).

The result of equation (23) for n =2 can be rewritten in a more appealing form that
straightforwardly suggests its generalization to any integer n⩾ 2. In fact, observe that
the coefficient A2(α) of equation (24) can be recast in the following factorized expression

A2 (α) =

ˆ π

−π

dk

4π
log(f (cos∆k,α)f (cos∆k,−α)) (25)

where

f (λ,α) = iλsin(α)+ cos(α) . (26)
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As we show in appendix A, this result can be extended to any integer n⩾ 2. The charged
moments behave for large ℓ similarly to the case n =2, cf equation (23),

Zn (α)∼ Zn (0)e
ℓAn(α), (27)

where the coefficient An(α) admits the following factorization in the replica space,

An (α) =

ˆ 2π

0

dk

4π
log

n∏
j=1

f (cos∆k,αj,j+1) . (28)

In figure 2, we check numerically equation (27) for the case n =3.
We consider the ratio Z3(α1,α2,α3)/Z3(0,0,0) as a function of α2 for given values of

α1 and α3. Its real and imaginary parts are plotted respectively in the upper and lower
panels for two different sets of couplings h and γ: h =0.2, γ=0.5 on the left and h =1.2
and γ=0.5 on the right. We obtain an excellent agreement. As in the case n =2, the
logarithm of Z3(α1,α2,α3)/Z3(0,0,0) presents cusps when |h|⩽ 1 that disappear in the
phase |h|> 1.

It is important to remark that, along the critical lines |h|= 1, we have numerically
observed that the expression (8) for the charged moments Zn(α) includes an additional
subleading term Zn(α)∼ Zn(0)e

An(α)ℓℓmn(α). Unfortunately, the explicit form of mn(α)
cannot be obtained with the methods employed in this manuscript. However, since the
factor ℓmn(α) produces a subleading term in the entanglement asymmetry, we can safely
neglect it in the rest of the paper.

3.2. Asymptotic behavior of the entanglement asymmetry

As we explain in section 2, once we have the charged moments (8), the Rényi entangle-

ment asymmetry ∆S
(n)
A can be determined by plugging them into the the n-dimensional

integral of equation (7) and then using equation (2). In general, this integral can only
be calculated by numerical means but, employing a saddle point approximation, we can

derive analytically the asymptotic behavior of ∆S
(n)
A for large subsystems.

To do so, we can follow the same strategy applied in [22]. By taking into account
that the phases αjj+1 satisfy

∑n
j=1αjj+1 = 0, we can reduce the n-fold integral (7) to

an (n− 1)-fold one after the change of variables α̃j = αjj+1,

Tr
(
ρnA,Q

)
=

ˆ π

−π

dα̃1 . . .dα̃n−1

(2π)n−1 Tr
(
ρAe

iα̃1QAρAe
iα̃2QA · · · ρAe−i

∑n−1
j=1 α̃jQA

)
. (29)

If we insert in this expression the prediction of equation (27) for the charged moments
at large ℓ, the integral takes the form

Tr
(
ρnA,Q

)
Tr(ρnA)

∼
ˆ π

−π

dα̃1 · · ·dα̃n−1

(2π)n−1 eℓ[
∑n−1

j=1 A1(α̃j)+A1(−
∑n−1

j=1 α̃j)], (30)
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Figure 2. Logarithm of the n =3 charged moment Z3(α1,α2,α3)/Z3(0,0,0) in the
ground state of the XY spin chain as a function of α2 for α1 and α3 constant, differ-
ent values of the couplings h and γ and subsystem size ℓ= 40. In the upper panels,
we take its real part while the corresponding imaginary part is represented in the
plots of the lower row. The points correspond to the exact numerical values calcu-
lated using equation (17). The solid lines correspond to the asymptotic expression
of equation (27) employing as coefficient A3(α) the prediction of equation (28).

where we have explicitly used the factorization in the replica space found in
equation (28) for the coefficient An(α). One can check that there are 2n−1 points in
the region of integration [−π,π]×(n−1) that satisfy the saddle point condition

∂α̃i

n−1∑
j=1

A1 (α̃j)+A1

−
n−1∑
j=1

α̃j

= 0. (31)

Around all the saddle points, the integrand of equation (30) has the same behavior
at quadratic order in α̃j and, therefore, their leading contribution to the integral is
the same. Hence, if we expand the exponent in equation (30) around α̃j = 0 and we
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properly count the number of saddle points, then equation (30) can be approximated
by the Gaussian integral

Tr
(
ρnA,Q

)
Tr(ρnA)

∼ 2n−1

ˆ ∞

−∞

dα̃1 · · ·dα̃n−1

(2π)n−1 e−
ℓg(γ,h)

2 (
∑n−1

j=1 α̃
2
j+

∑
j<j ′ α̃j α̃j ′), (32)

with

g (γ,h) =

ˆ 2π

0

dk

2π
sin2∆k. (33)

The integral of equation (32) is solvable using the standard formulae,

Tr
(
ρnA,Q

)
Tr(ρnA)

=
2n−1

(πℓg (γ,h))(n−1)/2n1/2
+O

(
ℓ−(n+1)/2

)
. (34)

Finally, plugging this result in equation (2), we obtain that for the ground state of the
XY spin chain, the Rényi entanglement asymmetry behaves as

∆S
(n)
A =

1

2
logℓ+

1

2
log

πg (γ,h)n1/(n−1)

4
+O

(
ℓ−1
)
. (35)

The integral of equation (33) that gives the term g(γ,h) can be computed explicitly.
In fact, if we perform the change of variables z = eik, it can be rewritten as a contour
integral in the complex z -plane. Using then the residue theorem, we find

g (γ,h) =


γ

γ+1 , |h|⩽ 1,

γ2

1−γ2

(
|h|√

h2+γ2−1
− 1

)
, |h|> 1.

(36)

In figures 3 and 4, we investigate the validity of equation (35) for n =2 and n =3
respectively. In these plots, we represent the ground state entanglement asymmetry as
a function of the subsystem size taking different couplings h and γ. The points are

the exact numerical values of ∆S
(n)
A calculated with equation (17). The dashed lines

correspond to assume the prediction of equation (27) for the charged moments and

then calculate numerically its exact Fourier transform (7) to get ∆S
(n)
A . In this case,

we obtain a good agreement with the numerical points for all the values of h and γ
considered. The solid lines represent the asymptotic behavior obtained in equation (34)
using the saddle point approximation. Observe that, for the range of subsystem sizes
considered, equation (35) describes well the exact numerical results for |h|⩽ 1 and any
γ, both at n =2 and n =3. The same occurs for |h|> 1 and γ > 1. However, for |h|> 1
and γ < 1, the saddle point approximation requires to consider larger subsystems.

In figure 5, we plot the saddle point approximation of equation (35) for ∆SA as a
function of γ and several fixed values of h (left panel) and viceversa (right panel) taking
as susbsystem size ℓ = 1000 in both cases. Observe in the left panel that ∆SA grows
monotonically with the anisotropy parameter γ. Therefore, by varying γ, we can tune
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Figure 3. Rényi entanglement asymmetry ∆S
(2)
A as a function of the subsystem

length ℓ for different values of h and γ. The dots are the exact numerical values
of the asymmetry computed using equation (17). The solid lines correspond to
the asymptotic result of equation (35) while the dashed ones correspond to the

evaluation of ∆S
(2)
A without the saddle point approximation in the Fourier trans-

formation (7) of the charged moments (27).

how much the U (1) symmetry generated by Q is broken. In particular, as we already
pointed out, at γ=0, the Hamiltonian (3) corresponds to the XX spin chain which com-
mutes with Q. Hence the ground state respects the corresponding U (1) symmetry and
the entanglement asymmetry is expected to vanish. However, according to the asymp-
totic expression (35), ∆SA →−∞ when γ→ 0. The reason of this apparent discrepancy
is that the limits ℓ→∞ and γ→ 0 do not commute. The other remarkable property of
the ground state entanglement asymmetry can be seen in the right panel. As evident
also from equation (36), for large ℓ, the entanglement asymmetry is independent of the
transverse magnetic field h in the ferromagnetic phase (|h|< 1) while, in the paramag-
netic phase (|h|> 1), it monotonically decreases with h. In fact, at h→±∞, the ground
state of the XY spin chain is |↑↑ · · · ↑⟩ and |↓↓ · · · ↓⟩ respectively, which are eigenstates

of Q, and ∆S
(n)
A = 0. When we take this limit in the asymptotic expression (35), the

entanglement asymmetry diverges ∆S
(n)
A →−∞ since the limits ℓ→∞ and h→±∞

do not commute, similarly to the case γ→ 0.
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Figure 4. Rényi entanglement asymmetry ∆S
(3)
A for the ground state of the XY

spin chain as a function of ℓ for different values of h and γ. The points represent the
exact numerical value obtained with equation (17). The solid lines are the result of
equation (35) for large subsystem sizes while the dashed ones have been obtained
calculating exactly the Fourier transformation (7) of the charged moments Zn(α)
using their analytic expression (27).

Finally, it is interesting to note that the asymptotic result (35) for ∆S
(n)
A admits an

interpretation in terms of the density of Cooper pairs in the ground state |0⟩. Observe
that the factor g(γ,h) that enters in equation (35) only depends, as an integral in
momentum space, on the quantity sin2∆k, see equation (33). Using the two-point cor-
relation matrix Γ of equation (15), it is easy to see that sin∆k is related to the correlator

⟨d†π−kd
†
k⟩ by the equality ⟨d†π−kd

†
k⟩= i sin∆k/2. The modulus |⟨d†π−kd

†
k⟩| can be thought

as the density of Cooper pairs of momentum k that the state |0⟩ contains. Therefore,

since ∆S
(n)
A is proportional to the logarithm of ℓg(γ,h) according to equation (35), it

monotonically increases with the density of Cooper pairs present in the state |0⟩ and
the U (1) symmetry associated to particle conservation is more broken. In fact, this

symmetry is respected if and only if the correlations ⟨d†π−kd
†
k⟩ vanish, i.e. in the absence

of Cooper pairs. This interpretation of Cooper pairs as the excitations responsible of
how much the particle number symmetry is broken will be further supported in the next
section, where we elaborate a quasi-particle picture for the entanglement asymmetry
after a quench in terms of them.

4. Entanglement asymmetry out-of-equilibrium

In this section, we study the global quantum quench from the ground state of the
XY spin chain (3) with γ ̸=0, |Ψ(0)⟩= |0⟩, which breaks the particle number symmetry
generated by Q, to the XX spin chain HamiltonianHXX, which corresponds to take γ=0
and h =0 in equation (3) and, therefore, it commutes with Q and the U (1) symmetry
is expected to be dynamically restored in the subsystem A, i.e. limt→∞[ρA(t),QA] = 0.
Thus the time-evolved state is

|Ψ(t)⟩= e−i tHXX|Ψ(0)⟩. (37)
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Figure 5. Plot of the asymptotic expression (35) in the limit n→ 1 of the entan-
glement asymmetry for the ground state of the XY spin chain as a function of
the anisotropy parameter γ and several values of the external magnetic field h
(left panel) and viceversa (right panel). In both plots we take as subsystem length
ℓ= 103.

In order to evaluate the time evolution of the entanglement asymmetry in this quench
protocol, we first derive a quasi-particle description for the dynamics of the charged
moments defined in equation (8).

4.1. Time evolution of the charged moments

In section 3, we have exploited the fact that the reduced density matrix ρA of the ground
state of the XY spin chain is Gaussian and, in virtue of Wick theorem, the charged
moments Zn(α, t= 0) are univocally determined by the two-point correlation matrix Γ of
equation (17). Since the XX Hamiltonian is quadratic in terms of the fermionic operators
cj , equation (17) also applies for the reduced density matrix ρA(t) of subsystem A
after the quench. Furthermore, given that the post-quench Hamiltonian preserves the
translational invariance of the system, the time-evolved two-point correlation matrix
Γ(t) is still block Toeplitz and reads [61]

Γjj ′ (t) =

ˆ π

−π

dk

2π
e−ik(j−j ′)G (k, t) , j,j ′ = 1, . . . ,ℓ, (38)

where the symbol G(k, t) is now

G (k, t) =

(
cos∆k −ie−2itϵXX(k) sin∆k

ie2itϵXX(k) sin∆k −cos∆k

)
, (39)

with cos∆k and sin∆k defined in equation (11) and ϵXX(k) =−cos(k) is the one-particle
dispersion relation of the post-quench Hamiltonian HXX.

In order to find the analytic expression that describes the charged moments Zn(α, t)
in the ballistic regime t,ℓ→∞ with ζ = t/ℓ fixed, we first determine their stationary
value at large times. It can be obtained by averaging the time dependent terms in the
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symbol G(k, t) of equation (39). As t→∞, the terms e±2itϵXX(k) average to zero and the
symbol reduces to

G (k, t→∞) =

(
cos∆k 0

0 −cos∆k

)
. (40)

Observe that the correlators ⟨Ψ(t)|cjcj ′|Ψ(t)⟩ and ⟨Ψ(t)|c†jc
†
j ′|Ψ(t)⟩ vanish in the sta-

tionary regime. This is the first signature of the dynamical restoration of the particle
number symmetry in the subsystem A.

For n =2, the stationary behavior of Z2(α, t) can be determined by applying the
conjecture of equation (21), as we did in equation (23) for the charged moments of the
ground state. In this case,

logZ2 (α, t→∞)∼ ℓ

2

ˆ 2π

0

dk

2π
logdet

[
I +Gα (k, t→∞)G−α (k, t→∞)

2

]
, (41)

and, using the time-averaged symbol of equation (40), we find

logZ2 (α, t→∞)∼ ℓ

ˆ 2π

0

dk

2π
h2 (n(k)) , (42)

where we have introduced

hn (x) = log [xn+(1−x)n] (43)

and n(k)≡ ⟨Ψ(0)|d†
kdk|Ψ(0)⟩= (1− cos∆k)/2 is the density of occupied modes with

momentum k. This result implies that Z2(α, t→∞)∼ Z2(0, t→∞); in fact, we recover
the result predicted in [61] for the stationary value of the entanglement entropy in this
quench protocol.

For n > 2, we cannot employ the conjecture of equation (21) to derive the stationary
value of Zn(α, t) at large times. In general, the expression (17) for the charged moments
does not simplify as for the case n =2, cf equation (18), and it contains the inverse mat-
rix (I −Γ(t))−1. Nevertheless, in equation (66) of appendix A, we report a formula that
predicts the asymptotic behavior of a determinant like the one in equation (17), with
a product of block Toeplitz matrices that also includes the inverse of block Toeplitz
matrices. Since the time-averaged symbol I −G(k, t→∞) of the matrix I −Γ(t) is
invertible, we can directly apply equation (66) to (17) in the large time limit,

logZn (α, t→∞)∼ ℓ

2

ˆ 2π

0

dk

2π
logdet

(I −G (k, t→∞)

2

)n
I +

n∏
j=1

Wj (k)

 , (44)

where Wj(k) = (I +G(k, t→∞))(I −G(k, t→∞))−1eiαj,j+1σz . Using equation (40) and
calculating directly the determinant, we find
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logZn (α, t→∞)∼ ℓ

ˆ 2π

0

dk

2π
hn (n(k)) , (45)

that is, Zn(α, t→∞)∼ Zn(0, t→∞).
At this point, we know both the charged moments Zn(α, t) at the initial time from

equation (27) and its asymptotic behavior at t→∞ in equation (45). These two ingredi-
ents are enough to reconstruct the dynamics of Zn(α, t) for any finite time t by exploiting
the quasi-particle picture of entanglement. The underlying idea is that the pre-quench
initial state has very high energy with respect to the ground state of the Hamiltonian
governing the post-quench dynamics; hence, it can be seen as a source of quasi-particle
excitations at t =0. We assume that quasi-particles are uniformly created in pairs with
momenta ±k and velocity v(k) = dϵXX(k)/dk. At a generic time t, the entanglement
between a subsystem A and B is proportional to the total number of quasi-particles
that were created at the same spatial point and are shared between A and B at that
moment, which is given by the function min(2t|v(k)|,ℓ). This idea has been firstly pro-
posed to compute the entanglement dynamics after a global quantum quench in [64–
66]. However, we can also apply it here to determine the time evolution of the charged
moments Zn(α, t), in the same way as it was done in [21, 22] for the tilted ferromagnetic
and Néel states respectively. If we subtract from the stationary value (45) of Zn(α, t)
its initial asymptotic behavior, obtained in equation (27), we get the contribution to
Zn(α, t) at t→∞ of the pairs of entangled quasi-particle generated in the quench and
shared between A and B,

log

(
Zn(α, t→∞)

Zn(α, t= 0)

)
∼ logZn(0, t→∞)− ℓ

ˆ 2π

0

dk

2π
log

n∏
j=1

fk(αj,j+1). (46)

This expression can be extended to finite times by properly counting the number of
entangled excitations that A and B share at each moment. This can be done by simply
inserting the function min(2ζ|v(k)|,1) in the momentum integrals of the right hand
side of equation (46). We then obtain the exact time evolution after the quench of the
charged moments (8) in the scaling limit t,ℓ→∞ with ζ = t/ℓ fixed,

Zn (α, t) = Zn (0, t)e
ℓ(An(α)+Bn(α,ζ)), (47)

where Zn(0, t) and Bn(α,ζ) read respectively

logZn (0, t) = ℓ

ˆ 2π

0

dk

2π
min(2ζ|v (k) |,1)hn (n(k)) (48)

and

Bn (α,ζ) =−
ˆ 2π

0

dk

4π
min(2ζ|v (k) |,1) log

n∏
j=1

fk (αj,j+1) . (49)

The coefficient An(α) is given in equation (28). The expression (47) is the main result
of this section, and we benchmark it against exact numerical calculations in figure 6
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Figure 6. Time evolution of Zn(α,0) after the quench (37) for n =2 (left panel)
and n =3 (right panel). We plot it as a function of t/ℓ taking several initial ground
states with different couplings γ,h and various values of the subsystem size ℓ and
the phases αj,j+1. The symbols were obtained numerically using equation (17) and
the continuous lines correspond to the analytic prediction of equation (47).

taking as initial configuration the ground state of the XY spin chain for different values
of the couplings γ and h: the symbols have been obtained using equation (17), while
the solid lines are equation (47). This expression is valid in the limit ℓ→∞, and we
observe that the agreement improves as ℓ increases.

4.2. Time evolution of the entanglement asymmetry

We can now explicitly compute the time evolution of the entanglement asymmetry using
the analytic result of the previous section. By plugging equation (47) into equation (7),

we obtain ∆S
(n)
A (t) in the scaling limit t,ℓ→∞ with ζ fixed. We show the result in

figure 7 for n =2 (left top panel) and n =3 (left bottom panel) and different choices
of the parameters γ and h for the initial state. The agreement between our analytical
prediction (solid lines) and the exact numerical computations (symbols) is overall very
good in both cases, especially in the top panel, because the system size ℓ is bigger
and also larger values of n involve the computation of n − 1-fold integral (according to
equation (7)), so bigger accuracy and precision. Beyond the good matching, we remark

that ∆S
(n)
A (t) tends to zero for large time (i.e. large ζ). This is consistent with the fact

that when we take the limit t→∞ in equation (47), the coefficient Bn(α)→−An(α)

and, as we already saw, Zn(α, t→∞)→ Zn(0, t→∞). This implies that ∆S
(n)
A (t→

∞)→ 0 and the U (1) symmetry is restored in subsystem A in the stationary regime.
This restoration was already observed in [21], see also [67, 68], for the quench from the
tilted ferromagnetic state, which is the ground state of the XY spin chain along the
curve γ2+h2 = 1. Another intriguing effect that we observe in figure 7 is that for some
pairs of initial parameters, e.g. γ=0.6, h =0.5 and γ=0.5, h =0.2, the curves that the

https://doi.org/10.1088/1742-5468/ad17b4 19

https://doi.org/10.1088/1742-5468/ad17b4


Entanglement asymmetry and quantum Mpemba effect in the XY spin chain

J.S
tat.

M
ech.(2024)

013103

Figure 7. Left panels: time evolution of the Rényi entanglement asymmetry

∆S
(n)
A (t) after the quench (37). The symbols are the exact numerical results for

a subsystem of length ℓ= 100 (n =2) and ℓ= 80 (n =3), and different initial con-
ditions for γ,h. The continuous lines are our prediction obtained by plugging the
charged moments reported in equation (47) into equations (2) and (7). Right panels:
square of the density of the Cooper pairs at time t =0 in equation (11). The cross-
ing of two densities is a necessary condition for the presence of quantum Mpemba
effect, according to the criterion explained in the main text.

corresponding asymmetry ∆S
(n)
A (t) describes in time cross such that, for the state that

initially breaks more the symmetry, the quench restores it earlier. This phenomenon
was dubbed quantum Mpemba effect in [21], which states that the more the system is
initally out of equilibrium, the faster it relaxes. However, in the left panels of figure 7,
we can also see that this effect does not always occur. We can find pairs of initial
couplings, e.g. γ = 0.6,h = 0.5 and γ = 1.6,h = 1.2, for which there is not a crossing
between the curves and the symmetry is restored faster when the symmetry is less
broken, i.e. for the smaller value of γ, γ=0.6. Let us investigate this phenomenon
better to derive a condition under which we expect to observe the quantum Mpemba
effect in the quenches (37).

Starting from equation (47), we aim to derive an effective closed-form approximation

of ∆S
(n)
A (t) when the exponent in the charged moments Zn(α, t), An(α)+Bn(α,ζ) is
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small, i.e. for large values of time t. By using the Taylor expansion of an exponential
function ef(x) when f(x)→ 0, the Fourier transform in equation (7) can be performed
analytically in that limit and we find

∆S
(n)
A (t)≃ nℓ

1−n
b(ζ,γ,h) ,

b(ζ,γ,h) =

ˆ π

−π

dk

4π
[1−min(2ζ|v (k) |,1)] log 1+

√
1− sin2∆k

2
.

(50)

This result represents the quasi-particle picture for the entanglement asymmetry in
terms of Cooper pairs. As we discussed in section 3, the term sin2∆k is identified with
the density of Cooper pairs in the initial state, i.e. sin2∆k = |⟨Ψ(0)|d†

π−kd
†
k|Ψ(0)⟩|2.

Therefore, according to equation (50), the entanglement asymmetry vanishes at large
times as the number of Cooper pairs in the subsystem A reduces ballistically to zero.
This means that the rate at which the symmetry is restored is governed by the modes
with the lowest group velocity v(k). This observation is crucial to understand the occur-
rence of the quantum Mpemba effect.

If we consider two different sets of couplings h1, γ1 and h2, γ2 for the initial ground
state such that

∆S
(n)
A (t= 0,γ1,h1)<∆S

(n)
A (t= 0,γ2,h2) . (51)

Then the quantum Mpemba effect occurs when there is a time, that we denote as tI,
after which the initial relation is inverted, i.e.

∆S
(n)
A (t,γ1,h1)>∆S

(n)
A (t,γ2,h2) ∀t > tI . (52)

We can observe the quantum Mpemba effect if an only if conditions (51) and (52) are
satisfied.

Using the asymptotic expression (35) for the ground state of the XY Hamiltonian,
the condition (51) at t =0 can be rewritten in terms of the density of Cooper pairs of
the two initial configurations as

ˆ π

−π

dk sin2∆k (γ1,h1)<

ˆ π

−π

dk sin2∆k (γ2,h2) . (53)

On the other hand, according to equation (50), the inequality (52) is satisfied if and
only if b(ζ,γ1,h1)> b(ζ,γ2,h2), for all ζ > ζI = tI/ℓ. It is clear that it is sufficient to
enforce this second condition only for large times. Let us then study more carefully the
behavior of the function b(ζ,γ1,h1) in the limit t→∞ or, equivalently, the limit ζ →∞.
In this case, it is useful to apply the identity,

1−min(2ζ|v (k) |,1) = (1− 2ζ|v (k) |)Θ(1− 2ζ|v (k) |) , (54)
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where Θ is the Heaviside Theta function, such that Θ(x) = 1 when x > 0. Plugging this
result in equation (50), we firstly observe that

b(ζ,γ,h) =

ˆ π

−π

dk

4π
(1− 2ζ|v (k) |)Θ(1− 2ζ|v (k) |) log 1+

√
1− sin2∆k

2
, (55)

is non-vanishing for the modes −ζ−1 < 2v(k)< ζ−1. At large times, since |v(k)|=
|sin(k)|, this condition is satisfied if k*(ζ) = arcsin(1/(2ζ)) exists such that

b(ζ,γ,h) =

ˆ k*(ζ)

−k*(ζ)

dk

4π
(1− 2ζ|v (k) |) log 1+

√
1− sin2∆k

2

+

ˆ π+k*(ζ)

π−k*(ζ)

dk

4π
(1− 2ζ|v (k) |) log 1+

√
1− sin2∆k

2
. (56)

Outside the critical lines |h| ̸= 1, sin2∆k vanishes around k =0 and π and, therefore, we
can take the approximation log[(1+

√
1−x)/2]∼−x/4,

b(ζ,γ,h)≃−
ˆ k*(ζ)

−k*(ζ)

dk

16π
(1− 2ζ|v (k) |)sin2∆k −

ˆ π+k*(ζ)

π−k*(ζ)

dk

16π
(1− 2ζ|v (k) |)sin2∆k. (57)

If we perform the change of variables k ′ = k−π in the second integral of the expression
above, we then find

b(ζ,γ,h)≃−
ˆ k*(ζ)

−k*(ζ)

dk

16π
(1− 2ζ|v(k)|)Υk(γ,h), (58)

where Υk(γ,h) = sin2∆k(γ,h)+ sin2∆k(γ,−h).
Therefore, the condition (52), i.e. b(ζ,h1,γ1)> b(ζ,h2,γ2) for large ζ, to observe the

quantum Mpemba effect can be re-expressed in terms of the densities of Cooper pairs
in the initial states as

ˆ k*(ζ)

−k*(ζ)

dkΥk (γ1,h1)>

ˆ k*(ζ)

−k*(ζ)

dkΥk (γ2,h2) for ζ > ζI . (59)

Given the form of sin2∆k, Υk(γ,h) is a definite positive, even function of k that vanishes
at k =0 for any value of γ > 0 and |h| ̸= 1. Therefore, there always exists a large enough
time tI for which the integral condition of equation (59) can be replaced by

Υk (γ1,h1)>Υk (γ2,h2) , k ∈
[
−arcsin

(
ℓ

2tI

)
,arcsin

(
ℓ

2tI

)]
. (60)

Equations (53) and (60) are the necessary and sufficient microscopic conditions to
observe the quantum Mpemba effect between a pair of ground states of the XY spin
chain after a quench to the XX spin chain. According to them, the quantum Mpemba
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effect occurs when the state that initially breaks less the symmetry, and therefore con-
tains a smaller net number of Cooper pairs (condition (53)), has instead a larger density
of Cooper pairs around the modes with the slowest velocity v(k) (condition (60)), which
correspond to the momenta k =0 and k = π. This is a very natural condition since the
entanglement asymmetry satisfies the quasi-particle picture of equation (50) and, there-
fore, its leading behavior at large times is determined by the slowest excitations. In the
right panels of figure 7, we plot the function Υk(γ,h) that enters in the condition (60) for
some of the initial states studied in the left panels of that figure: observe that, whenever
the inequality (60) is met for a pair of couplings (γ,h) that also satisfy (53), the curves
that describe their asymmetries intersect at certain time and equation (52) is fulfilled.
Notice that the simultaneous validity of equations (51) and (52) then requires that the
density of Cooper pairs corresponding to two different quenches should cross, as made
explicit in figure 7. In addition, we observe that the conditions (53) and (59) are valid
for any value of the Rényi index n. For the condition at t =0, the reason is that all the
dependence on γ and h in equation (35) is in the term g(γ,h), which is independent of
n. For the large time condition, the starting point (50) from which it is derived does
not depend on n.

Many of the former considerations are valid generically in integrable systems [23].
Specializing on our quench, we can obtain a set of conditions for the quantum Mpemba
effect equivalent to the microscopic ones but only involving the couplings γ, h of the
initial states. For the inequality (51) at t =0, this can be straightforwardly done using
the asymptotic expression (35), together with equation (36) for the term g(γ,h). In the
case of the condition (52) at large times, we need to determine explicitly the leading

behavior of ∆S
(n)
A (t) when t→∞. For |h| ̸= 1, this can be done from equation (57) by

expanding the functions v(k) and sin2∆k around k =0 or k = π in each integral and
k*(ζ) around ζ =∞. We find that, at leading order in large ζ,

∆S
(n)
A (t) =

n

384π (n− 1)

γ2
(
h2+1

)
(h2− 1)2

ℓ

ζ3
, (61)

i.e. it vanishes for large times as t−3 for any value of γ and h. The fact that the prefactor
in equation (61) monotonically increases as a function of γ and it depends non-trivially
on h reflects that it is not enough starting from a state with larger γ to reach before

∆S
(n)
A (t)→ 0, but the dependence on h is crucial to observe the Mpemba effect. Fixing

γ, we notice that, for |h|< 1, equation (61) is a monotonically increasing function of h;
since the initial asymmetry grows with γ and does not depend on h in this region, then
it is necessary that γ2 > γ1 and h2 < h1 to satisfy the Mpemba conditions (51) and (52).
In particular, they are always met by any pair of ground states with couplings belonging
to the curve h2+xγ2 = 1 for a fixed parameter x > 0, which describes an ellipse in the
(h,γ)-plane. In fact, for any initial state on this curve,

∆S
(n)
A (t) =

n

384π (n− 1)x

(
2

xγ2
− 1

)
ℓ

ζ3
. (62)
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In this case, the prefactor of the t−3 decay is a monotonously decreasing function of γ,
and, therefore, we always observe that the more the symmetry is broken, the faster it
is restored. Interestingly, for large subsystems, the spectrum of the correlation matrix
Γ is the same for all the ground states along a curve h2+xγ2 = 1 and, consequently,
they have equal entanglement entropy [69–71]. On the other hand, the discussion in the
region |h|> 1 is more involved because both the initial entanglement asymmetry (35)
and its large time behavior (61) are monotonic decreasing functions of h.

The replica limit n→ 1 in equation (61) is not well defined. In appendix B, we
carefully perform it, starting from the Fourier transform of the charged moments in
equation (7). The final result reads

∆SA (t) =−
γ2
(
h2+1

)
ℓ

384π (h2− 1)2 ζ3
log

[
γ2
(
h2+1

)
ℓ

384π (h2− 1)2 ζ3

]
. (63)

Observe that, while the Rényi entanglement asymmetry in equation (61) decays to zero
at large times as ℓ4/t3, in the limit n→ 1 it behaves as ℓ4 log(t)/t3, being the logarithmic
correction log(t) a particular feature of this case. This also happens for the von Neumann
entanglement entropy, as it has been found in [61].

When |h|= 1, we can find an expression similar to equation (61). In this case,
sin2∆k ̸= 0 at k =0 and the approximation of equation (57) is not valid. If we take
equation (56) instead and we expand at leading order the integrands around the modes
k =0 and k = π respectively and the function k*(ζ) around ζ =∞, then we obtain

∆S
(n)
A (t) =

n

n− 1

log2

8π

ℓ

ζ
. (64)

We observe that the behavior of the entanglement asymmetry as a function of ζ is
different if the initial configuration is the ground state of a critical Hamiltonian or not:
in the former case, it decreases as 1/ζ, while if we start outside the critical line the
decay to zero is algebraically faster, as 1/ζ3. Therefore, if we consider a critical state
and a non-critical one that breaks more the symmetry, the symmetry is always restored
faster in the latter. This can be seen as a strong quantum Mpemba effect. In fact, in the
classical Mpemba effect, the system relaxes exponentially to the equilibrium state, but
in certain particular situations, the decay is exponentially faster, a phenomenon dubbed
as strong Mpemba effect [9]. By analogy, in our quantum setup, the asymmetry reaches
the equilibrium always following a power law but with a smaller exponent in the case
of critical states, so in a much slower fashion. In addition, note that the prefactor of
equation (64) does not depend on γ, while the initial entanglement asymmetry along
the lines |h|= 1 grows monotonically with γ according to equation (35). This means
that, independently of how much the symmetry is initially broken, for critical states, it is
restored (almost) at the same time, as we show in figure 8. We can call this phenomenon
weak quantum Mpemba effect.
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Figure 8. Time evolution of the Rényi entanglement asymmetry ∆S
(2)
A (t) after the

quench (37) from a critical state, h =1 and different γ’s. The symbols are the exact
numerical results for a subsystem of length ℓ= 80. The continuous lines are our
prediction obtained by plugging the charged moments reported in equation (47)
into equations (2) and (7). As explained in the main text, whatever is the initial
value of γ, for large time t the lines collapse and, eventually, the symmetry is
restored almost simultaneously, a weak version of Mpemba effect.

As occurs in the non-critical region, the limit n→ 1 in equation (64) is also not well
defined. Repeating the same steps as in appendix B for the gapped phase, we find

∆SA (t) =−ℓ log2

8πζ
log

[
ℓ

8πζ

]
, (65)

which differs from the result of equation (64) for the Rényi entanglement asymmetry in
the logarithmic correction log(t).

5. Conclusions

In this manuscript, we have investigated the U (1) symmetry breaking in the XY spin
chain using the entanglement asymmetry, completing the analysis initiated in [21] for
the tilted ferromagnetic state and specializing the general discussion on the quantum
Mpemba effect for integrable systems done in [23]. We have first studied the behavior of
the entanglement asymmetry in the ground state of this model, finding that, at leading
order, it grows logarithmically with the subsystem size whether (|h| ̸= 1) or not the
system is gapped. We remark that this is quite different with respect to what happens
for the total entanglement entropy, quantity from which the entanglement asymmetry
is defined: when |h| ̸= 1, the entanglement entropy saturates to a constant value for
large subsystems [72, 73], while a violation of the area law occurs only along the critical
lines, where the entropy scales logarithmically with the subsystem size [51]. Another
important result of this work is that we find that the entanglement asymmetry depends
on the density of the Cooper pairs, |⟨dπ−kdk⟩|, of the ground state. This is a natural
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result if we take into account that the breaking of the U (1) particle number symmetry
in the XY spin chain can be traced back to the presence of superconducting pairing
terms in the corresponding fermionic Hamiltonian.

In addition, we have investigated the evolution of the entanglement asymmetry in a
global quantum quench, starting from the ground state of the XY spin chain and letting
the system evolve with the XX Hamiltonian that preserves the particle number such
that the symmetry is dynamically restored in the subsystem. With the help of the quasi-
particle picture of entanglement, we have derived a closed-form analytic expression for
the asymmetry at large times, from which we have deduced the necessary and sufficient
conditions to observe the quantumMpemba effect in terms of the density of Cooper pairs
of the initial states. Essentially, if the density of the slowest Cooper pairs is larger for
the state that breaks less the symmetry, then the Mpemba physics shows up, meaning
that the more the symmetry is broken, the faster it is restored. The set of microscopic
conditions that we obtain here are in agreement with the criteria derived in [23] for an
arbitrary integrable quantum system.

It would be interesting to investigate several questions in the future. The first one is
an explanation of the mechanism of the quantum Mpemba effect when the symmetry is
restored by a non-integrable Hamiltonian, or the evolution is non-unitary. This analysis
has been initiated in [21] for systems of a few sites, showing the robustness of this phe-
nomenon also if the evolution Hamiltonian is non-integrable. So far, only the breaking
of Abelian symmetries has been investigated, but we would like to use the entangle-
ment asymmetry to explore the symmetry breaking of non-Abelian groups. Finally, the
analysis done in this manuscript has revealed that the critical lines of the XY model,
|h|= 1, are peculiar since an extra term appears in the charged moments. It would be
interesting to find its exact expression and determine its (subleading) contribution to
the entanglement asymmetry, not only to have a more accurate prediction of it but also
to understand if it contains information about the underlying conformal field theory
that describes these critical lines.
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Appendix A. Derivation of the asympotic behavior of the ground state charged
moments for integer n> 2

In this appendix, we show how to obtain the expression in equation (27) for the charged
moments Zn(α) in the ground state of the XY spin chain. Observe that, in general, for
n > 2 the inverse matrix (I −Γ)−1 cannot be removed from equation (17) as we did in
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equation (18) when n =2. In general, the inverse of a block Toeplitz matrix is not block
Toeplitz and the result of equation (21) cannot be in principle applied. However, in
[22], we found a corollary of equation (21) for the determinant of a product of Toeplitz
matrices that involves as well the inverse of block Toeplitz matrices. According to it, if
we further include in the determinant of equation (21) the inverse of the block Toeplitz
matrices Tℓ[g

′
j], then for large ℓ,

det

I +
n∏

j=1

Tℓ [gj]Tℓ

[
g ′
j

]−1

∼ eℓA
′
, (66)

where

A ′ =

ˆ 2π

0

dk

2π
logdet

I + n∏
j=1

gj (k)g
′
j (k)

−1

 . (67)

However, observe that the symbol of the matrix I −Γ is I −G, with G given by
equation (16). This symbol is not invertible and equation (66) cannot be applied. We
can bypass this issue by considering the system at finite temperature 1/β and then take
the limit β →∞. In fact, the state of the spin chain at temperature 1/β is described
by the Gibbs ensemble ρβ = e−βH/Z, where Z =Tr(e−βH). The two-point correlation
function Γβ associated to ρβ is block Toeplitz with symbol

Gβ (k) = tanh

(
βϵ(k)

2

)(
cos∆k −isin∆k

isin∆k −cos∆k

)
, (68)

where ϵ(k) is the one-particle dispersion relation of the XY spin chain Hamiltonian.
Observe that, in the zero temperature limit β →∞, Gβ(k) yields the ground state symbol
G(k) reported in equation (16). The advantage of Gβ is that I −Gβ is invertible and
equation (66) can be applied to determine the asymptotic behavior of the charged
moments Zn(α,β) at finite temperature and large subsystem size ℓ. We find

Zn (α,β) = eℓAn(α,β), (69)

with

An (α,β) =

ˆ 2π

0

dk

4π
logdet

(I −Gβ (k)

2

)n
I +

n∏
j=1

Wβ,j (k)

 , (70)

where Wβ,j(k) stands for the 2× 2 matrix Wβ,j(k) = (I +Gβ(k))(I −Gβ(k))
−1eiαjj+1σz . If

we now consider the quotient

Zn (α,β)

Zn (0,β)
= eℓ[An(α,β)−An(0,β)], (71)
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and take the limit β →∞, we find equation (27) with

An (α) = lim
β→∞

[An (α,β)−An (0,β)] . (72)

By calculating explicitly the determinant in the integrand of equation (70) for different
integer values of n, one can check that this limit actually yields the factorized form of
equation (28) for the coefficient An(α).

Appendix B. Large time behavior of the von Neumann entanglement asymmetry

In equation (61), we notice that the replica limit n→ 1 is not well-defined. Therefore,
in this appendix, we carefully derive the asymptotic expression in the limit t→∞ of
the entanglement asymmetry (1). As already observed in [23], in this regime we can
explicitly compute the Fourier transform in equation (7). Indeed, by expanding the
charged moments for small values of (1−min(2ζ|v(k)|,1)) (i.e. large ζ), we find

Tr
(
ρnA,Q

)
Tr(ρnA)

=

ˆ π

−π

dα1 . . .dαn

(2π)n
exp

ℓˆ π

−π

dk

4π
(1−min(2ζ|v (k) |,1)) log

n∏
j=1

fk (αj,j+1)


≃ 1+ ℓ

ˆ π

−π

dα1 . . .dαn

(2π)n

ˆ π

−π

dk

4π
(1−min(2ζ|v (k) |,1)) log

n∏
j=1

fk (αj,j+1) .

(73)

The integral above has been done in equation [sm-54] of [23], and, by

identifying max[ϑ(k),1−ϑ(k)] = (1+
√

1− sin2∆k)/2 and min[ϑ(k),1−ϑ(k)] = (1−√
1− sin2∆k)/2, we can report here the final result in our case,

Tr
(
ρnA,Q

)
Tr(ρnA)

≃

(
1+ ℓ

ˆ π

−π

dk

4π
(1−min(2ζ|v (k) |,1)) log 1+

√
1− sin2∆k

2

)n

+
−1∑

j=−∞

(−1)j
ℓ

j

ˆ π

−π

dk

4π
(1−min(2ζ|v (k) |,1))

(
1+

√
1− sin2∆k

1−
√
1− sin2∆k

)j
n

.

(74)

We can deduce the replica limit n→ 1 after doing an analytic continuation of the result
above to any complex value of n and, in the large time regime, we find

∆SA (t) =− lim
n→1

∂n
Tr
(
ρnA,Q

)
Tr(ρnA)

≃−
−1∑

j=−∞

(−1)j

 ℓ
j

ˆ π

−π

dk

4π
(1−min(2ζ|v (k) |,1))

(
1+

√
1− sin2∆k

1−
√
1− sin2∆k

)j

× log

(−1)j
ℓ

j

ˆ π

−π

dk

4π
(1−min(2ζ|v (k) |,1))

(
1+

√
1− sin2∆k

1−
√
1− sin2∆k

)j
 .

(75)
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If t is sufficiently large, then (1−min(2ζ|v(k)|,1)) becomes zero everywhere, except
for a finite interval around the points k = 0,π where the magnitude of the velocity is
minimal. Therefore, since we are interested in the leading order behavior in ζ, we can
restrict the sum in equation (75) to j =−1. Moreover, by expanding k*(ζ)∼ 1/(2ζ) for
large ζ and sin2∆k around k = 0,π, we obtain for |h| ̸= 1

ˆ k*(ζ)

−k*(ζ)

dk

16π
(1− 2|k|ζ)Υk≃0(γ,h) =

γ2
(
h2+1

)
384π (h2− 1)2 ζ3

, (76)

and, finally, we get equation (63) of the main text.
Along the critical lines |h|= 1, close to k =0, we find

1+
√
1− sin2∆k

1−
√
1− sin2∆k

= 1+O (k) . (77)

Therefore, the main difference with respect to the non-critical case is that the leading
term at large ζ in the series of equation (75) is not j =−1 but we have now to consider

all of them. By taking into account that
∑−1

j=−∞(−1)j/j = log2, we obtain at leading
order in ζ

∆SA (t)≃−ℓ log(2)

[ˆ k*(ζ)

−k*(ζ)

dk

4π
(1− 2|k|ζ)

]
× log

[
ℓ

ˆ k*(ζ)

−k*(ζ)

dk

4π
(1− 2|k|ζ)

]
, (78)

from which equation (65) is derived.

Appendix C. Comparison between the charged moments Zn(α) and the full
counting statistics (FCS)

The expression for the charged moments in equation (8) when n =1 is also known as
FCS, χ(α) = Tr(ρAeiαQA), see [74–78] for different studies of it in the XY spin chain.
Given the result for generic n in equation (27) for the ground state, one might be
tempted to deduce that, if the U (1) symmetry is broken, the charged moments Zn(α)
factorize into the product of the FCS with different phases αj,j+1. However, using the
results for the FCS obtained in [74, 78], we will show in the following that this is not
always true.

The FCS can be cast as the determinant of a Toeplitz matrix with symbol
f(ei∆k ,α/2) [74, 78], where the function f is given in equation (26). Thus one can
use the theorems on the asymptotic behavior of Toeplitz determinants to analyze χ(α)
for ℓ≫ 1. For |h|> 1 and any value of α or when h < 1 and α ∈ (−π/2,π/2), the symbol
f(ei∆k ,α/2) is a non-zero continuous function in k and the Szeg ő theorem holds,

logχ(α)∼ ℓ

ˆ 2π

0

dk

2π
logf

(
ei∆k ,

α

2

)
. (79)
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We observe that the integral satisfies the following equality

ˆ 2π

0

dk

2π
logf

(
ei∆k ,

α

2

)
=

ˆ 2π

0

dk

4π
logf (cos(i∆k) ,α) , (80)

which implies that, in this regime of the parameters, the result in equation (27) is a
factorization of the charged moments into the FCS. However, when |h|< 1 and α ∈
[−π,−π/2]∪ [π/2,π], the symbol f(ei∆k ,α) acquires winding number +1. In this case,
the prediction in equation (79) is not valid and it must be modified as

logχ(α)∼ ℓ

(ˆ 2π

0

dk

2π
log
[
e−ikf

(
ei∆k ,

α

2

)]
+ log(−z0)

)
. (81)

If we consider the analytic continuation of f(ei∆k ,α) from the unit circle z = eik to the
complex plane, then z 0 denotes the zero of such analytic continuation with |z0|< 1 and
closest to the unit circle z = eik. This point can be either

z0 =
h+

√
h2+ γ2− 1

1+ γ
, or z0 =

h+
√
h2+ γ2 cos2 (α)− 1

1− γ cos(α)
. (82)

The presence of this winding number is the responsible that the charged moments Zn(α)
do not exactly factorize when ℓ→∞ into the FCS Tr(ρAeiαj,j+1QA). In other words, if
we compare equation (27) with (79) and (81), the factorization only works in principle
when αj,j+1 ∈ (−π/2,π/2) for all j. But taking into account the periodicity properties in
αj,j+1 of the charged moments, it can be extended to αj,j+1 ∈ [−π,π] by introducing the
parameter σj , which vanishes if |αj,j+1|⩽ π/2 and σj = π otherwise, i.e. we can write

Zn (α)∼ Zn (0)
n∏

j=1

eiσj/2Tr
(
ρAe

i(αj,j+1−σj)QA

)
. (83)

The term σj = π ensures that we are always in the regime where equation (79) is valid.
The Fourier transform of the FCS yields the probability distribution p(q) for the

transverse magnetization QA (or particle number) to take the value q. We can make a
comparison between our final result in equation (35) and the Rényi-Shannon entropy
for the distribution p(q), or Rényi number entropy,

Hn =
1

1−n
log
∑
q

p(q)n , (84)

where p(q) is the probability for the observable QA to take the value q. The result for
Hn reads

Hn =
1

2
logℓ+O (1) , (85)

where the O(1) term does depend on (γ,h) and, in general, it is different with respect
to what we find in equation (35). In fact, it is clear from that expression that the
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entanglement asymmetry only takes into account the number of Cooper pairs as the
O(1) term only depends on sin∆k, and not on the total number of fermions which
contribute to Hn.
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