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3.C. Comparison between Franson-interference recurrences for singly-filtered and doubly-

filtered biphoton frequency combs 

3.D. Franson-interference recurrences from singly-filtered biphoton frequency comb after 10 

km distribution 

Note 4. Binned Schmidt-mode decompositions of the singly-filtered biphoton frequency 

comb in the time- and frequency-domains 

Note 5. Low-jitter SNSPDs for temporal correlation measurements 

Note 6. Franson-interference recurrences for frequency-bin pairs 
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Supplementary Note 1. Theory for the singly-filtered biphoton frequency comb’s signal-idler 

cross- correlation function 

        In this section we derive and evaluate the signal-idler cross-correlation function for the singly-

filtered biphoton frequency comb (BFC) under the assumption of near-pure-state SPDC biphoton 

generation. Before doing so, however, we will replace the approximate result for that BFC’s 

frequency-domain (unnormalized) biphoton wave function,  

                                                  𝜓(Ω) =  ∑
sinc(𝐴Ω)

∆𝜔 + 𝑖(Ω − 𝑚∆Ω)

𝑁

𝑚=−𝑁

 ,                                                       (1) 

from the main text’s Eq. (1), with the exact result [S1], 

                            𝜓(Ω) =
sinc(Ω𝑡coh/2)𝑒−4Ω2ln(2)/∆𝜔𝑐

2
𝑒−𝑖Ω𝑡coh/2

1+𝑖
∆Ω

𝜋∆𝜔
sin(𝜋Ω/∆Ω)𝑒−𝑖𝜋Ω/∆Ω

,                                            (2) 

where tcoh = 2A = 2.78/𝜋𝐵PM = 3.61 ps is the coherence time associated with the BPM = 245 GHz 

full-width half-maximum (FWHM) phase-matching bandwidth, ∆Ω = 45.32  GHz is the fiber 

Fabry-Pérot cavity’s (FFPC’s) free spectral range (FSR), ∆𝜔/𝜋 = 1.56 GHz is the FFPC’s 

FWHM linewidth, and ∆𝜔𝑐/𝜋 = 225 GHz is the FWHM bandwidth of the 1.3 nm bandpass filter 

(BPF) used to clean the signal and idler spectra produced by spontaneous parametric down-

conversion (SPDC) in our periodically-poled KTiOPO4 (ppKTP) waveguide.   

The exact result from Eq. (2) differs in three ways from the main text’s approximate form 

shown above in Eq. (1): 

1. Equation (1) assumes a brickwall bandpass filter, 
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𝐻BPF(Ω) = {
1, |Ω| ≤ ∆𝜔𝑐,
0, otherwise,

 

whereas the actual bandpass filter used had the Gaussian frequency response, 

𝐻BPF(Ω) =  𝑒
−

4Ω2 ln(2)

∆𝜔𝑐
2

, 

of the same FWHM bandwidth.  

2. Equation (1) treats the FFPC’s filtering action as the sum of Lorentzian lineshapes, each 

with FWHM bandwidth 2∆𝜔, that are centered at integer multiples of the cavity’s FSR, 

whereas Eq. (2) uses the cavity’s exact frequency response, 

𝐻FFPC(Ω) =  
1

1 + 𝑖
∆Ω

𝜋∆𝜔 sin(𝜋Ω/∆Ω)𝑒−𝑖𝜋Ω/∆Ω
 . 

3. Equation (2) includes the phase-delay term, 𝑒−𝑖Ω𝑡coh//2, associated with the SPDC source’s 

idler beam having a higher group velocity, in the ppKTP waveguide, than that source’s 

signal beam.   

Armed with the singly-filtered BFC’s biphoton exact wave function from Eq. (2), we are now 

ready to evaluate its coincidence-counting (second-order) signal-idler cross-correlation function.  

The frequency-domain biphoton wave function produced by continuous-wave (cw) SPDC, after 

filtering by the BPF and FFPC, is proportional to the phase-sensitive cross-spectrum of the post-

filtered signal and idler’s photon-units baseband field operators in the exact, Gaussian-state theory 

of cw SPDC, viz. [S1],  

                                       𝜓(Ω)  ∝  𝑆𝑆𝐼
(𝑝)(Ω) ≡  ∫ 𝑑𝜏 ⟨𝐸̂𝑆(𝑡 + 𝜏) 𝐸̂𝐼(𝑡)⟩𝑒−𝑖Ω𝜏 ,                          (3)                           

where angle brackets denote quantum average. In the absence of detector timing jitter, it then 

follows – see, e.g., [S2] for an example of Gaussian-state coincidence-counting analysis – that the 

cross-correlation function we are seeking satisfies 

                                      𝑅𝑆𝐼(𝜏) ∝ |Ψ(𝜏)|2,                                                           (4) 

where Ψ(𝑡) is the singly-filtered BFC’s (unnormalized) time-domain biphoton wave function, i.e., 

the inverse Fourier transform of 𝜓(Ω). Because our detectors do have timing jitter, the observed 

cross-correlation becomes  

                                   𝑅𝑆𝐼
obs(𝜏) =  ∫ 𝑑𝜇 𝑅𝑆𝐼(𝜇)

exp[−(𝜏 − 𝜇)2/2𝑡𝑗
2]

√2𝜋𝑡𝑗
2

,                                             (5) 
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where we have assumed a zero-mean, variance 𝑡𝑗
2, Gaussian-distributed combined timing jitter 

from the two detectors.    

From Eqs. (2) and (4) it can be shown that 𝑅𝑆𝐼(𝜏) has recurring peaks at 𝜏 =  𝑡coh/2 + 𝑛∆𝑇 

for n = 0, 1, 2, …, where ∆𝑇 = 2𝜋/∆Ω = 22.1 ps is the cavity round-trip time, but going forward 

we will suppress their 𝑡coh/2 offset from 𝑛∆𝑇. These peaks are increasingly blurred by detector 

timing jitter as tj increases, and can easily be washed out. To quantify this behavior, we used the 

results presented above to numerically evaluate 

                                                                 𝑅̃𝑆𝐼(𝜏) ≡
𝑅𝑆𝐼

𝑜bs(𝜏−𝜏max)

𝑅𝑆𝐼
𝑜bs(𝜏max)

,                                                    (6),                                                  

where 𝜏max is the time at which 𝑅𝑆𝐼
𝑜bs(𝜏) takes on its maximum value. This form of the correlation 

function achieves its peak value, maxτ𝑅̃𝑆𝐼(𝜏) = 1, at 𝜏 = 0, regardless of root-mean-square (rms) 

timing jitter tj, thus making it well suited to display the impact of timing jitter on the observed 

signal and idler’s coincidence-counting cross-correlation, as seen in the main text’s Figure 1b.   

In Supplementary Figure 1, we plot three examples of 𝑅̃𝑆𝐼(𝜏) versus 𝜏 in ns for the source 

parameters of our 45.32 GHz singly-filtered BFC:  𝑡𝑗 = 0.78 ps (blue curve), 𝑡𝑗 =  7.8  ps (red 

curve), and 𝑡𝑗 = 74 ps (black curve). In the main text’s Figure 1b, we show good agreement 

between our experiment and the theoretical result when  𝑡𝑗 = 74 ps. Although the temporal 

oscillation signature of the singly-filtered BFC is completely blurred out by the timing jitter in our 

measurements, our modeling clearly shows that as tj/∆𝑇 decreases the comb structure can be 

resolved [S3]. For example, when 𝑡𝑗 = 7.8 ps, the singly-filtered BFC’s structure produced by our 

45.32 GHz FSR, 1.56 GHz FWHM bandwidth FFPC can be seen in 𝑅̃𝑆𝐼(𝜏). Moreover, with 𝑡𝑗 =

0.78 ps, near-perfect cavity resonances appear in 𝑅̃𝑆𝐼(𝜏), and we note that such low-jitter SNSPDs 

have been demonstrated recently [S4].  
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Supplementary Figure 1 | Effect of timing jitter on the normalized coincidence-counting (second-

order) signal-idler cross-correlation function 𝑅̃𝑆𝐼(𝜏) plotted versus signal-idler delay 𝜏 in ns – for 

the source parameters of our 45.32 GHz singly-filtered BFC. The three cases shown are:  𝑡𝑗 = 0.78 

ps (blue curve), 𝑡𝑗 = 7.8 ps (red curve), and 𝑡𝑗 = 74 ps (black curve).  

 

Supplementary Note 2. Heralded single-photon second-order auto-correlation 

measurements for the singly-filtered biphoton frequency comb 

In this section we present additional information about the heralded g(2)(0) auto-correlation 

measurements of the singly-filtered BFC. The BFC was obtained by passing the signal and idler 

beams from our SPDC waveguide through the 1.3 nm FWHM bandwidth BPF and then passing 

the signal beam through the 45.32 GHz FSR, 1.56 GHz FWHM linewidth FFPC. The heralded 

g(2)(0) was measured as follows: (1) the idler beam was split in two by a 50-50 beam splitter whose 

outputs were directed to superconducting nanowire single-photon detectors (SNSPDs); (2) SNSPD 

detection of a signal photon was used as a herald; and (3) a heralded g(2)(0) event was recorded 

when there was a triple (signal-idler-idler) coincidence with no time offset. At 0.2 mW pump 

power we measured g(2)(0)  0.154. Exchanging the roles of signal and idler, so that the idler 

illuminated the heralding detector while the signal beam illuminated the 50-50 beam splitter, we 

obtained g(2)(0)  0.130 at 0.6 mW pump power. Both results are well below the classical threshold 

[S5]. Moreover, because the signal beam’s singles rate is considerably lower than the idler’s, 

reliable idler-heralded g(2)(0) measurements could not be obtained at as low a pump power as 

signal-heralded measurements could. Supplementary Figure 2 shows the expected effect on g(2)(0) 
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of increased pump power, viz., g(2)(0) increases because of increased presence of multi-pair 

emissions from the SPDC source. We note that the non-zero values of heralded g(2)(0) are primarily 

due to multi-pair SPDC emissions. Also, the idler-heralded g(2)(0) is lower than the signal-heralded 

g(2)(0) because it is less likely that two signal photons could survive the higher losses in the signal 

channel to produce a coincidence. 
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Supplementary Figure 2 | Measured heralded g(2)(0) values versus the pump power for the 45.32 

GHz singly-filtered BFC: signal-heralded measurements (black points), idler-heralded 

measurements (red points).  

 

Supplementary Note 3. Franson-interference recurrences of the singly-filtered biphoton 

frequency comb 

3.A. Theory for the Franson-interference recurrences 

In this section we present the theory for the singly-filtered BFC’s Franson-interference 

recurrences. With accidentals subtracted, Ref. [S2]’s results – with its dispersive terms suppressed 

– lead to the following expression for the normalized (time-average value = 1) envelope of the 

(accidentals subtracted) Franson-interference recurrences as a function of the idler-signal (arm 1 – 

arm 2 in the main text’s Figure 1a) relative delay, 𝛿𝜏: 

                             𝐶±(𝛿𝜏) =  1 ±
2 ∫ 𝑑𝜏 Re[

𝑇𝑔
0 𝐾𝑆𝐼

(𝑝)
(𝜏)𝐾𝑆𝐼

(𝑝)∗(𝜏+𝛿𝜏)]

∫ 𝑑𝜏
𝑇𝑔

0 [|𝐾𝑆𝐼
(𝑝)

(𝜏)|
2

+|𝐾𝑆𝐼
(𝑝)

(𝜏+𝛿𝜏)|
2

]
 .                                          (7) 
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Here, Tg is the duration of the coincidence gate, and 𝐾𝑆𝐼
(𝑝)(𝜏) is the phase-sensitive cross correlation 

of the singly-filtered BFC’s photon-units, baseband field operators,  

                                     𝐾𝑆𝐼
(𝑝)(𝜏) ≡ ⟨𝐸̂𝑆(𝑡 + 𝜏)𝐸̂𝐼(𝑡)⟩ =  ∫

𝑑Ω

2𝜋
 𝑆𝑆𝐼

(𝑝)(Ω)𝑒𝑖Ω𝜏.                                 (8) 

So, because the singly-filtered BFC’s frequency-domain biphoton wave function, 𝜓(Ω),  is 

proportional to the phase-sensitive cross spectrum, 𝑆𝑆𝐼
(𝑝)(Ω), from Gaussian-state theory, Eq. (7) 

can be evaluated numerically from using 𝜓(Ω) from Eq. (2) in lieu of 𝑆𝑆𝐼
(𝑝)(Ω) in Eq. (8) to obtain 

a result proportional to 𝐾𝑆𝐼
(𝑝)(𝜏). Using that result in numerically evaluating Eq. (7) then yields the 

desired envelope function for the (accidentals subtracted) Franson-interference recurrences.   

Using the source parameters for our 45.32 GHz singly-filtered BFC and 𝑇𝑔 = 2 ns, we obtained 

the results shown in main text’s Figure 2b for -340 ps  𝛿𝜏   340 ps. As shown in main text’s 

Figure 2, our measured (accidentals subtracted) visibility peaks for 0  𝛿𝜏   340 ps are in excellent 

agreement with our theoretical predictions; with our equipment setup we could not access negative 

𝛿𝜏 values. 

 

3.B. Pump laser stabilization for the Franson interference measurements 

For all the sub-femtosecond-scale Franson interference measurements performed in this work, 

long-term pump laser stability is a key requirement. Therefore, we custom built a stabilized self-

injection locking pump laser with center wavelength around 658 nm. The Littman–Metcalf 

configuration allows us to stabilize and fine-tune its wavelength for optimizing SPDC photon-pair 

generation. We measured the laser’s wavelength stability with a wavelength meter (Bristol 

Instruments model 671). The wavelength drift was  50 MHz over 3.5 hours, as shown in 

Supplementary Figure 3. 
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Supplementary Figure 3 | Long-term stability of the 658 nm pump laser with self-injection 

locking. 

 

3.C. Comparison between Franson-interference recurrences for singly-filtered and doubly-

filtered biphoton frequency combs 

Here, in Supplementary Figure 4, we compare visibilities of the Franson-interference 

recurrences for singly-filtered and doubly-filtered 45.32 GHz BFCs, showing theory results for 

both as well as experimental results for the singly-filtered case. Theory for the singly-filtered BFC 

was obtained by the procedure described in Supplementary Note 3.A. Theory for the doubly-

filtered BFC was obtained by the same procedure using the doubly-filtered version of Eq. (1) for 

its (unnormalized) frequency-domain biphoton wave function, i.e., 

                                 𝜓(Ω) =  ∑
sinc(𝐴Ω)

|∆𝜔 + 𝑖(Ω − m∆Ω)|2

𝑁

𝑚=−𝑁

 ,                                                          (9) 

with the same N, A, Ω, ∆𝜔, and ∆Ω as the singly-filtered case.   

From Supplementary Figure 4, we see that the visibilities for the singly-filtered BFC’s 

recurrences decay more rapidly than those of the doubly-filtered BFC. This behavior is easily 

understood from Eqs. (1) and (9). Specifically, because the signal and idler are both FFPC filtered 

in the doubly-filtered case, its frequency-domain biphoton wave function decays more rapidly with 

increasing frequency than does that of the singly-filtered BFC, for which only the signal beam is 

FFPC filtered. Consequently, by Fourier duality, the time-domain biphoton wave function of the 

singly-filtered BFC with increasing time delay decays more rapidly than that of the doubly-filtered 
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BFC. From Eq. (7), with 𝐾𝑆𝐼
(𝑝)(𝜏)  ∝ Ψ(𝜏), we have our explanation for these sources’ behaviors 

in Supplementary Figure 4. 
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Supplementary Figure 4 | Comparison between theoretical time-bin visibilities of the 45.32 GHz 

singly-filtered and doubly-filtered BFCs Franson-interference recurrences. Also shown are the 

experimental results for the singly-filtered case. 

 

3.D. Franson-interference recurrences from singly-filtered biphoton frequency comb after 

10 km distribution 

 Here, in Supplementary Figure 5, we present the measured Franson-interference patterns, after 

the 10-km asymmetric entanglement distribution described in the main text, for all 16 time bins. 

The highest measured visibility, 98.81%, was obtained for the 0th time bin. The visibilities for bins 

0 through 3 exceeded the 70.7% value needed to violate the Bell’s inequality, and those for bins 0 

through 6 exceeded the 50% value that is the classical limit. Together, these results clearly show, 

for the first time, high-quality entanglement distribution of a singly-filtered BFC. Furthermore, 

comparing Supplementary Figure 5’s results to those in the main text’s Figure 2c, we find that the 

average reduction in Franson-interference visibility after 10 km propagation is only 1.21%, 

showing the high-quality asymmetric entanglement distribution at 10 km distance with our singly-

filtered BFC. 
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Supplementary Figure 5 | Franson interference fringes – obtained with a 2 ns duration 

coincidence gate and accidentals subtracted – for 16 time bins of a 45.32 GHz singly-filtered BFC 

after a 10 km asymmetric entanglement distribution. The highest visibility, 98.81 ± 0.61%, is 

observed for the central (0th) time bin; bins 0 through 3 have visibilities exceeding the 70.7% value 

needed to violate Bell’s inequality; and bins 0 through 6 have visibilities exceeding the 50% value 

that is the classical limit. These results clearly demonstrate high-quality 10 km asymmetric 

distribution of the singly-filtered BFC’s time-binned energy-time entanglement. The error bars 

represent one standard deviation of the mean assuming Poissonian statistics. 
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We also compared the experimental time-bin visibilities for the post-distribution Franson 

interference recurrences with Supplementary Note 3.A’s theory, which presumes perfect 

entanglement distribution. Our results are shown both in the main text’s Figure 4b and in 

Supplementary Figure 6. The average deviation of experiment from theory is  4.25%, indicating 

efficient distribution of our singly-filtered BFC’s time-binned energy-time entanglement. 
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Supplementary Figure 6 | Comparison between experimental visibilities of Franson-interference 

recurrences for time bins 0 through 15 after 10 km asymmetric distribution of our 45.32 GHz 

singly-filtered BFC with theory that assumes perfect distribution.  

 

Supplementary Note 4. Binned Schmidt-mode decompositions of the singly-filtered biphoton 

frequency comb in the time- and frequency-domains 

In this section we report the Schmidt eigenvalues and Schmidt numbers for the frequency-

binned and time-binned 45.32 GHz singly-filtered BFC. Supplementary Table 1 presents the 

frequency-binned Schmidt eigenvalues extracted from the frequency-bin correlation 

measurements in the main text’s Figure 1c. These eigenvalues were obtained from performing a 

Schmidt decomposition of the frequency-correlation matrix [S6-S9] under the assumption that the 

BFC’s joint spectral amplitude equals the square-root of its joint spectral intensity. 
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Supplementary Table 1 | Measured frequency-bin Schmidt eigenvalues and Schmidt number for 

the 45.32 GHz singly-filtered BFC. 

Frequency-bin number Schmidt eigenvalues Schmidt number

2 0.119

4.17

1 0.228

0 0.355

-1 0.191

-2 0.106
 

As explained in the main text’s Methods section, the Schmidt mode decomposition for the 

time-binned 45.32 GHz singly-filtered BFC is derived from the visibilities of the Franson-

interference recurrences. Evaluating the main text’s approximate (unnormalized) time-domain 

biphoton wave function at the Franson-interference recurrence times we get, 

                                  Ψ(𝑛∆𝑇) = exp(−𝑛∆𝜔∆𝑇) ∑ sinc(𝐴𝑚∆Ω),                                      (10)

𝑛

𝑚=−𝑁

 

from which it readily follows that the nth bin’s visibility is 𝑉𝑛 = exp(−𝑛∆𝜔∆𝑇), as stated in the 

main text. Equation (10) then leads to the main text’s theoretical expressions for the time-binned 

Schmidt eigenvalues {𝜆𝑛}, and its Schmidt number KT: 

                                                            𝜆𝑛 =
e−𝜋𝑛/𝐹

∑ e−𝜋𝑚/𝐹𝑀
𝑚=0

, for 0 ≤ 𝑛 ≤ 𝑀,                                     (11) 

and 

                                    𝐾𝑇 =
sinh2[𝜋(𝑀 + 1)/2𝐹]sinh(𝜋/𝐹)

sinh2(𝜋/2𝐹)sinh[𝜋(𝑀 + 1)/𝐹]
 ,                                                (12) 

where M+1 is the number of time bins and F is the FFPC’s finesse. Assuming, as discussed in the 

main text, that the time-binned singly-filtered BFC’s joint temporal amplitude equals the square 

root of its joint temporal intensity, the experimental time-binned Schmidt eigenvalues and Schmidt 

number are 

                                                            𝜆𝑛 =
𝑉𝑛

∑ 𝑉𝑛
𝑀
𝑚=0

, for 0 ≤ 𝑛 ≤ 𝑀,                                            (13) 

and 

                                                    𝐾𝑇 =
(∑ 𝑉𝑛)2𝑀

𝑛=0

∑ 𝑉𝑛
2𝑀

𝑛=0

 .                                                                     (14) 
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We do not, however, expect the approximate time-binned biphoton wave function to be as accurate 

for the singly-filtered BFC as it is for the doubly-filtered BFC, because the slower frequency-

domain fall off with only the signal being FFPC filtered leads to greater overlap between the 

contributions from adjacent and near-adjacent cavity resonances that are not properly accounted 

for in Eq. (1). So, to test the validity of using the experimental visibilities in Eqs. (13) and (14) to 

obtain the time-binned singly-filtered BFC’s Schmidt eigenvalues and Schmidt number we 

compared two theoretical approaches to obtaining those Schmidt eigenvalues. The first approach 

used the exact frequency-domain biphoton wave function from Eq. (2) to calculate the Franson 

visibilities, as described in Supplementary Note 3.A, and used those visibilities in Eq. (13) to 

obtain the time-binned Schmidt eigenvalues. The second approach took the numerical inverse 

Fourier transform of Eq. (2) to obtain the (unnormalized) time-domain biphoton wave function, 

Ψ(𝑛∆𝑇), at the recurrence times, and used that in Eq. (13) in place of the Vn to get the Schmidt 

eigenvalues. Both calculations used the source parameters for our 45.32 GHz single-resonant BFC. 

The results of these calculations – which are compared in Supplementary Figure 7 – are nearly 

identical, with a maximum normalized error of 0.38% for any of the 16 time bins. 
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Supplementary Figure 7 | Theoretical time-binned Schmidt eigenvalues for the 45.32 GHz 

singly-filtered BFC calculated by: (1) using the Franson-interference visibilities, obtained as 

described in Supplementary Note 3.A, in Eq. (13) to get the Schmidt eigenvalues (blue open 

circles); and (2) using the (unnormalized) joint temporal amplitude, found by numerical inverse 
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Fourier transformation of Eq. (3), in place of Vn in Eq. (13) to get the Schmidt eigenvalues (orange 

open triangles). The two approaches yield eigenvalues that are nearly identical, with a maximum 

of 0.38% normalized error for any of the 16 bins. 

 

Supplementary Table 2 shows the measured time-bin Schmidt eigenvalues and Schmidt 

number for the 45.32 GHz singly-filtered BFC before and after the 10 km entanglement 

distribution. Its 13.11 Schmidt number is in excellent agreement with the 13.19 theoretical value 

obtained using the exact theory based on Eq. (2). After the 10 km distribution, we obtained the 

Schmidt number of 12.99, showing only a 0.92% degradation. 

 

Supplementary Table 2 | Measured time-bin Schmidt eigenvalues and Schmidt number for the 

45.32 GHz singly-filtered BFC before and after 10 km distribution. 

 

 

Time-bin 

number

Singly-resonant BFC After 10 km distribution

Franson

Visibilities

Schmidt 

eigenvalues

Schmidt 

number

Franson

Visibilities

Schmidt 

eigenvalues

Schmidt 

number

0 0.9946 0.122

13.11

0.9881 0.123

12.99

1 0.9017 0.110 0.8928 0.111

2 0.8103 0.099 0.8054 0.101

3 0.7282 0.089 0.7128 0.089

4 0.656 0.080 0.6481 0.081

5 0.5957 0.073 0.5854 0.073

6 0.5403 0.066 0.5257 0.066

7 0.4868 0.059 0.4752 0.059

8 0.4354 0.053 0.4203 0.052

9 0.3879 0.047 0.3718 0.046

10 0.3371 0.041 0.335 0.042

11 0.3147 0.038 0.2946 0.037

12 0.2912 0.036 0.279 0.035

13 0.2593 0.032 0.2493 0.031

14 0.2379 0.029 0.2279 0.028

15 0.2058 0.025 0.1983 0.025
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Supplementary Note 5. Low-jitter SNSPDs for temporal correlation measurements 

         Impedance-matched differential SNSPDs have recently been developed in order to 

simultaneously achieve a practical active area for efficient coupling to a single mode fiber and 

low-jitter operation [S10]. The two detectors used in this work had optical stacks based on a double 

anti-reflection coating above the nanowire, optimized for 1550 nm, resulting in an efficiency of  

80% at this wavelength with  13.1 ps. In the O-band, the efficiency is expected to be on the order 

of the 10%. By redesigning the optical stack, it would be possible to achieve 80% efficiency at 

1310 nm in the future. The impedance-matching in SNSPDs significantly improves the signal-to-

noise ratio of the readout, thus even though cryogenic amplifiers were not used in this work, the 

system timing jitter, including the time tagger (Swabian Time Tagger X) was on the order of 15 

ps. To characterize the effective timing-jitter of the experiment, we measured the cross-correlation 

between signal and idler photons of our O-Band SPDC source in Supplementary Figure 8 and 

obtained 21.6 ps. This matches the expected summation in quadrature of the two detectors with 15 

ps jitter. Excluding the electronic jitter from the time tagger system ( 4.7 ps, Time Tagger X), we 

estimate the intrinsic timing jitter of the SNSPDs to be  14.5 ps in the O band. We expect that in 

the future it will be possible to improve the detector jitter further through the use of faster 

superconducing materials and improvements in nanofabrication [S4] which would resolve the 

temporal correlation of BFCs with even higher cavity free-spectral range. 
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Supplementary Figure 8. Effective timing jitter characterization of the two low-jitter SNSPDs. 

The full-width-half-maximum of the cross-correlation is measured to be 21.6 ps using our SPDC 

source in the O band. The intrinsic timing jitter of the SNSPDs is estimated to be  14.5 ps. 

 

Supplementary Note 6. Franson-interference recurrences for frequency-bin pairs 

        Here, in Supplementary Figure 9, we present the measured Franson-interference patterns for 

all 25 frequency-bin pairs within our source’s bandwidth. The visibilities extracted from these 

interference patterns were shown as the visibility map in main text’s Figure 3b. Due to SPDC’s 

energy conservation, only frequency-correlated photon pairs show energy-time entanglement in 

our singly-filtered BFC. Therefore, only the symmetric frequency-bin pairs exhibit high Franson 

interference visibilities in Supplementary Figure 9, with average raw visibility of 87.25%. As the 

frequency-bin pairs move away from frequency degeneracy, both their singles and coincidence 

rates decrease because of the SPDC phase-matching function. The reduced number of coincidences 

ultimately become comparable to the accidentals. Indeed, measurements on uncorrelated 

frequency-bin pairs, show no obvious fringes and their coincidence counts are almost at the noise 

floor. Thus, in Supplementary Figure 9 we did not subtract accidental coincidences, but we did do 

that subtraction in the main text’s Figure 3a because there we only showed the 5 symmetric 

frequency-bin pairs. Also, after 10 km asymmetric entanglement distribution, we chose to make 

Franson interference measurements only for the symmetric frequency-bin pairs, see the 

interference fringes shown in the main text’s Figure 4a inset. 
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Supplementary Figure 9 | Franson interference fringes for 25 frequency-bin pairs of the 45.32 

GHz singly-filtered BFC. Frequency-bin pairs and corresponding visibilities are denoted for each 

interference pattern, with high interference visibilities only occurring for symmetric frequency-bin 

pairs. The error bars represent one standard deviation of the mean assuming Poissonian statistics. 

 

Supplementary Note 7. Photon information efficiency and secret key rate of frequency-

multiplexed quantum key distribution using the singly-filtered biphoton frequency comb 

        Quantum key distribution with the singly-filtered BFC was demonstrated using high-

dimensional time-bin encoding protocol. The proof-of-principle QKD experiment was performed 

without 10 km distribution fiber due to the limited electronic delay compensation of our time 

tagging electronics (PicoHarp 300). Alice had the SPDC source and retained the FFPC-filtered 

signal photons while sending the unfiltered idler photons to Bob via single-mode fiber. Correlated 

frequency bins were selected at Alice and Bob’s terminals using demultiplexing filters. Part of 

their filtered light was then directed to SNSPDs for raw-key generation while the rest was sent to 

their halves of the Franson interferometer for the security check. For key generation, Alice and 

Bob recorded a 10-second-long time stream of photon detections for post-detection processing. 

During this post-processing, their time streams were synchronized and divided into time-bins for 

discretization with variable bin durations. The bins were grouped into frames of 2N bins, where N 

is the number of encoded bits per photon. For each frame we compared Alice and Bob’s raw 

timestamps and discarded frames in which Alice and Bob did not each record a single count. This 

procedure resulted in a raw keystream comprised of the binary numbers that Alice and Bob 

assigned to their respective symbols – i.e., the bin number of their respective counts – in each 

frame. The raw keystream has two types of symbol errors, viz., global errors, which are due to a 

combination of photon losses and dark counts, and local errors, which are due to the detectors’ 

timing jitter. Global errors result in large discrepancies between Alice and Bob’s raw-keystream 

bin numbers, whereas local errors result small bin-number errors. To achieve information 

reconciliation in the presence of these error types we use the layered low-density parity-check code 

from Refs. [S11, S12]. Using this code, we have calculated the Shannon information upper bound 

on the photon information efficiency (PIE), the bits we can send per photon under highly-erroneous 

channel conditions. We have collected keystreams and encoded them using different discretization 

bin widths and encoded number of bits. After calculating PIEs for each, we have multiplied each 

PIE with the number of photon pairs per second in the corresponding keystream to obtain the key 
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rate. So far, we have encoded PIE up to  14 bits/photon using our frequency multiplexed SR BFC 

(in main text Figure 4d), and the total key rate of  4.7 kbits/s. We expect the key rate can be 

improved either by using a higher brightness entangled photon source [S13], or by utilizing a 

cavity-enhanced SPDC configuration to generate a singly-filtered BFC [S14]. 

The photon information efficiency and key rate is maximized by finding optimal bin width 

and frame sizes, as shown in Supplementary Figure 10a and 10b. Smallest bin width and highest 

number of encoded bits, i.e., the largest frame size, are desired for maximum key rate. However, 

the bin width is limited by the timing uncertainty between signal and idler, which is 210.2 ps for 

this experiment. This leads to a lower performance when bin width is decreased to 100 ps as shown 

in Supplementary Figure 11. Similarly, maximum frame size is limited by the biphoton coherence 

time, however a more realistic bound is the detector dead time. If the frame size is too large, it 

causes symbol errors, due to accidental coincidences, that are uniformly distributed over the frame. 

Because of this fact, the increase in PIE and key rate reduces after 6 bits encoding for the central 

bin pair, as shown in Supplementary Figure 10a and 10b. This reduction starts at a smaller frame 

size of 25 for frequency-bin pairs S2&I-2 and S-2&I2. PIE peaks at 7 bits encoding then decreases 

due to interaction of more accidental coincident frames used for erroneous symbol generation. The 

ratio of correct symbols versus all the generated frames is given in Supplementary Figure 11c. It 

reflects the fact that error increases with (a) bin width closer or lower than coincidence uncertainty 

and (b) frame sizes larger or close to detector dead time, leading to more accidental frame pairs 

possessing symbol errors.  
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Supplementary Figure 10 | a, Photon information efficiency in number of effective transmitted 

bits per coincidence for each entangled conjugate frequency-bin pair. The maximum number of 

transmitted bits per coincidence is ~ 4.1 bits/coincidence, transmitted over the S0&I0 frequency-
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bin pair. b, The key rates are obtained using the BFC generation rate when the ppKTP waveguide 

is pumped at 2.3 mW. The total key rate propagated over five channels is up to 4.7 kbits/s. 
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Supplementary Figure 11 | a, Changes in the S0&I0 channel’s PIE with frame size as determined 

by the bin width (discretization duration) and number of encoded bits. b, Changes in the S0&I0 

channel’s key rate with frame size as determined by the bin width (discretization duration) and 

number of encoded bits. c, The ratio of correctly propagated symbols versus all the transmitted 

frames, for channel S0&I0 as an example. 

 

To check the security of the frequency-multiplexed channel, the measured degradation of the 

Franson-interference visibility V from its theoretical value Vth was used as a signature of 

eavesdropping to terminate the communication if the degradation was too strong. Otherwise, Vth-

V was used to determine the frequency anti-correlation between signal and idler by [S15]: 

Δ〈Δ𝜔𝑆̂
2 − 2Δ𝜔𝑆̂Δ𝜔𝐼̂〉 ≤ 2(𝑉𝑡ℎ − 𝑉 ) Δ⁄ 𝑇𝐹

2,                                    (17) 

where ΔTF is the relative delay between arm 1 and arm 2 of the Franson interferometer, Δ𝜔𝑆̂ (Δ𝜔𝐼̂) 

is the frequency operator measuring the zero-mean frequency detuning from degeneracy of the 

signal (idler) photon. The frequency anti-correlation information was then used to construct a time-

frequency covariance matrix to compute an upper bound on Eve’s Holevo information from which 

the secret-key rate can be found for the chosen frequency-bin pair [S15, S16]. This upper bound 

represents the worst case of Eve’s Holevo information and is then used to calculate the most 

pessimistic secure PIE. Supplementary Table 3 summarizes the calculated Eve’s Holevo 

information upper bound for each frequency-bin pair. Comparing with the highest PIE shown in 

Supplementary Figure 10, we obtain secure key rate over three correlated frequency-bin pairs with 

positive secure PIE. A total secure key rate of ~1.1 kbits/s is achieved over S1&I-1, S0&I0 and S-

1&I1, as shown in main text’s Figure 4e.  
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Supplementary Table 3 | Eve’s Holevo information upper-bounded by measured Franson 

visibility for each frequency-bin pair. 
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