Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2010 | Published
Book Section - Chapter Open

Mixing Bayesian Techniques for Effective Real-time Classification of Astronomical Transients


With the recent advent of time domain astronomy through various surveys several approaches at classification of transient s are being tried. Choosing relatively interesting and rarer transients for follow-up is important since following all transients being detected per night is not possible given the limited resources available. In addition, the classification needs to be carried out using minimal number of observations available in order to catch some of the more interesting objects. We present details on two such classification methods: (1) using Bayesian networks with colors and contextual information, and (2) using Gaussian Process Regression and light-curves. Both can be carried out in real-time and from a very small number of epochs. In order to improve classification i.e. narrow down number of competing classes, it is important to combine as many different classifiers as possible. We mention how this can be accomplished using a higher order fusion network.

Additional Information

© 2010 Astronomical Society of the Pacific. This work has been supported in part by the NSF grants AST-0407448, AST-0909182, NASA AISRP grant 08-AISR08-0085, and by the Fishbein family foundation.

Attached Files

Published - Mahabal2010p13938Astonomical_Data_Analysis_Software_And_Systems_Xix.pdf


Files (258.1 kB)

Additional details

August 19, 2023
January 13, 2024