of 8
Measurements of branching fractions, polarizations, and direct
CP
-violation asymmetries
in
B
þ
!

0
K
and
B
þ
!
f
0
ð
980
Þ
K
decays
P. del Amo Sanchez,
1
J. P. Lees,
1
V. Poireau,
1
E. Prencipe,
1
V. Tisserand,
1
J. Garra Tico,
2
E. Grauges,
2
M. Martinelli,
3a,3b
D. A. Milanes,
3a
A. Palano,
3a,3b
M. Pappagallo,
3a,3b
G. Eigen,
4
B. Stugu,
4
L. Sun,
4
D. N. Brown,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
G. Lynch,
5
I. L. Osipenkov,
5
H. Koch,
6
T. Schroeder,
6
D. J. Asgeirsson,
7
C. Hearty,
7
T. S. Mattison,
7
J. A. McKenna,
7
A. Khan,
8
V. E. Blinov,
9
A. R. Buzykaev,
9
V. P. Druzhinin,
9
V. B. Golubev,
9
E. A. Kravchenko,
9
A. P. Onuchin,
9
S. I. Serednyakov,
9
Yu. I. Skovpen,
9
E. P. Solodov,
9
K. Yu. Todyshev,
9
A. N. Yushkov,
9
M. Bondioli,
10
S. Curry,
10
D. Kirkby,
10
A. J. Lankford,
10
M. Mandelkern,
10
E. C. Martin,
10
D. P. Stoker,
10
H. Atmacan,
11
J. W. Gary,
11
F. Liu,
11
O. Long,
11
G. M. Vitug,
11
C. Campagnari,
12
T. M. Hong,
12
D. Kovalskyi,
12
J. D. Richman,
12
C. West,
12
A. M. Eisner,
13
C. A. Heusch,
13
J. Kroseberg,
13
W. S. Lockman,
13
A. J. Martinez,
13
T. Schalk,
13
B. A. Schumm,
13
A. Seiden,
13
L. O. Winstrom,
13
C. H. Cheng,
14
D. A. Doll,
14
B. Echenard,
14
D. G. Hitlin,
14
P. Ongmongkolkul,
14
F. C. Porter,
14
A. Y. Rakitin,
14
R. Andreassen,
15
M. S. Dubrovin,
15
G. Mancinelli,
15
B. T. Meadows,
15
M. D. Sokoloff,
15
P. C. Bloom,
16
W. T. Ford,
16
A. Gaz,
16
M. Nagel,
16
U. Nauenberg,
16
J. G. Smith,
16
S. R. Wagner,
16
R. Ayad,
17,
*
W. H. Toki,
17
H. Jasper,
18
T. M. Karbach,
18
A. Petzold,
18
B. Spaan,
18
M. J. Kobel,
19
K. R. Schubert,
19
R. Schwierz,
19
D. Bernard,
20
M. Verderi,
20
P. J. Clark,
21
S. Playfer,
21
J. E. Watson,
21
M. Andreotti,
22a,22b
D. Bettoni,
22a
C. Bozzi,
22a
R. Calabrese,
22a,22b
A. Cecchi,
22a,22b
G. Cibinetto,
22a,22b
E. Fioravanti,
22a,22b
P. Franchini,
22a,22b
I. Garzia,
22a,22b
E. Luppi,
22a,22b
M. Munerato,
22a,22b
M. Negrini,
22a,22b
A. Petrella,
22a,22b
L. Piemontese,
22a
R. Baldini-Ferroli,
23
A. Calcaterra,
23
R. de Sangro,
23
G. Finocchiaro,
23
M. Nicolaci,
23
S. Pacetti,
23
P. Patteri,
23
I. M. Peruzzi,
23,
M. Piccolo,
23
M. Rama,
23
A. Zallo,
23
R. Contri,
24a,24b
E. Guido,
24a,24b
M. Lo Vetere,
24a,24b
M. R. Monge,
24a,24b
S. Passaggio,
24a
C. Patrignani,
24a,24b
E. Robutti,
24a
S. Tosi,
24a,24b
B. Bhuyan,
25
V. Prasad,
25
C. L. Lee,
26
M. Morii,
26
A. J. Edwards,
27
A. Adametz,
28
J. Marks,
28
U. Uwer,
28
F. U. Bernlochner,
29
M. Ebert,
29
H. M. Lacker,
29
T. Lueck,
29
A. Volk,
29
P. D. Dauncey,
30
M. Tibbetts,
30
P. K. Behera,
31
U. Mallik,
31
C. Chen,
32
J. Cochran,
32
H. B. Crawley,
32
L. Dong,
32
W. T. Meyer,
32
S. Prell,
32
E. I. Rosenberg,
32
A. E. Rubin,
32
A. V. Gritsan,
33
Z. J. Guo,
33
N. Arnaud,
34
M. Davier,
34
D. Derkach,
34
J. Firmino da Costa,
34
G. Grosdidier,
34
F. Le Diberder,
34
A. M. Lutz,
34
B. Malaescu,
34
A. Perez,
34
P. Roudeau,
34
M. H. Schune,
34
J. Serrano,
34
V. Sordini,
34,
A. Stocchi,
34
L. Wang,
34
G. Wormser,
34
D. J. Lange,
35
D. M. Wright,
35
I. Bingham,
36
C. A. Chavez,
36
J. P. Coleman,
36
J. R. Fry,
36
E. Gabathuler,
36
R. Gamet,
36
D. E. Hutchcroft,
36
D. J. Payne,
36
C. Touramanis,
36
A. J. Bevan,
37
F. Di Lodovico,
37
R. Sacco,
37
M. Sigamani,
37
G. Cowan,
38
S. Paramesvaran,
38
A. C. Wren,
38
D. N. Brown,
39
C. L. Davis,
39
A. G. Denig,
40
M. Fritsch,
40
W. Gradl,
40
A. Hafner,
40
K. E. Alwyn,
41
D. Bailey,
41
R. J. Barlow,
41
G. Jackson,
41
G. D. Lafferty,
41
J. Anderson,
42
R. Cenci,
42
A. Jawahery,
42
D. A. Roberts,
42
G. Simi,
42
J. M. Tuggle,
42
C. Dallapiccola,
43
E. Salvati,
43
R. Cowan,
44
D. Dujmic,
44
G. Sciolla,
44
M. Zhao,
44
D. Lindemann,
45
P. M. Patel,
45
S. H. Robertson,
45
M. Schram,
45
P. Biassoni,
46a,46b
A. Lazzaro,
46a,46b
V. Lombardo,
46a
F. Palombo,
46a,46b
S. Stracka,
46a,46b
L. Cremaldi,
47
R. Godang,
47,
x
R. Kroeger,
47
P. Sonnek,
47
D. J. Summers,
47
X. Nguyen,
48
M. Simard,
48
P. Taras,
48
G. De Nardo,
49a,49b
D. Monorchio,
49a,49b
G. Onorato,
49a,49b
C. Sciacca,
49a,49b
G. Raven,
50
H. L. Snoek,
50
C. P. Jessop,
51
K. J. Knoepfel,
51
J. M. LoSecco,
51
W. F. Wang,
51
L. A. Corwin,
52
K. Honscheid,
52
R. Kass,
52
J. P. Morris,
52
N. L. Blount,
53
J. Brau,
53
R. Frey,
53
O. Igonkina,
53
J. A. Kolb,
53
R. Rahmat,
53
N. B. Sinev,
53
D. Strom,
53
J. Strube,
53
E. Torrence,
53
G. Castelli,
54a,54b
E. Feltresi,
54a,54b
N. Gagliardi,
54a,54b
M. Margoni,
54a,54b
M. Morandin,
54a
M. Posocco,
54a
M. Rotondo,
54a
F. Simonetto,
54a,54b
R. Stroili,
54a,54b
E. Ben-Haim,
55
G. R. Bonneaud,
55
H. Briand,
55
G. Calderini,
55
J. Chauveau,
55
O. Hamon,
55
Ph. Leruste,
55
G. Marchiori,
55
J. Ocariz,
55
J. Prendki,
55
S. Sitt,
55
M. Biasini,
56a,56b
E. Manoni,
56a,56b
A. Rossi,
56a,56b
C. Angelini,
57a,57b
G. Batignani,
57a,57b
S. Bettarini,
57a,57b
M. Carpinelli,
57a,57b,
k
G. Casarosa,
57a,57b
A. Cervelli,
57a,57b
F. Forti,
57a,57b
M. A. Giorgi,
57a,57b
A. Lusiani,
57a,57c
N. Neri,
57a,57b
E. Paoloni,
57a,57b
G. Rizzo,
57a,57b
J. J. Walsh,
57a
D. Lopes Pegna,
58
C. Lu,
58
J. Olsen,
58
A. J. S. Smith,
58
A. V. Telnov,
58
F. Anulli,
59a
E. Baracchini,
59a,59b
G. Cavoto,
59a
R. Faccini,
59a,59b
F. Ferrarotto,
59a
F. Ferroni,
59a,59b
M. Gaspero,
59a,59b
L. Li Gioi,
59a
M. A. Mazzoni,
59a
G. Piredda,
59a
F. Renga,
59a,59b
T. Hartmann,
60
T. Leddig,
60
H. Schro
̈
der,
60
R. Waldi,
60
T. Adye,
61
B. Franek,
61
E. O. Olaiya,
61
F. F. Wilson,
61
S. Emery,
62
G. Hamel de Monchenault,
62
G. Vasseur,
62
Ch. Ye
`
che,
62
M. Zito,
62
M. T. Allen,
63
D. Aston,
63
D. J. Bard,
63
R. Bartoldus,
63
J. F. Benitez,
63
C. Cartaro,
63
M. R. Convery,
63
J. Dorfan,
63
G. P. Dubois-Felsmann,
63
W. Dunwoodie,
63
R. C. Field,
63
M. Franco Sevilla,
63
B. G. Fulsom,
63
A. M. Gabareen,
63
M. T. Graham,
63
P. Grenier,
63
C. Hast,
63
W. R. Innes,
63
M. H. Kelsey,
63
H. Kim,
63
P. Kim,
63
M. L. Kocian,
63
D. W. G. S. Leith,
63
S. Li,
63
B. Lindquist,
63
S. Luitz,
63
V. Luth,
63
H. L. Lynch,
63
D. B. MacFarlane,
63
H. Marsiske,
63
D. R. Muller,
63
H. Neal,
63
S. Nelson,
63
C. P. O’Grady,
63
I. Ofte,
63
M. Perl,
63
T. Pulliam,
63
B. N. Ratcliff,
63
A. Roodman,
63
A. A. Salnikov,
63
V. Santoro,
63
R. H. Schindler,
63
J. Schwiening,
63
PHYSICAL REVIEW D
83,
051101(R) (2011)
RAPID COMMUNICATIONS
1550-7998
=
2011
=
83(5)
=
051101(8)
051101-1
Ó
2011 American Physical Society
A. Snyder,
63
D. Su,
63
M. K. Sullivan,
63
S. Sun,
63
K. Suzuki,
63
J. M. Thompson,
63
J. Va’vra,
63
A. P. Wagner,
63
M. Weaver,
63
W. J. Wisniewski,
63
M. Wittgen,
63
D. H. Wright,
63
H. W. Wulsin,
63
A. K. Yarritu,
63
C. C. Young,
63
V. Ziegler,
63
X. R. Chen,
64
W. Park,
64
M. V. Purohit,
64
R. M. White,
64
J. R. Wilson,
64
A. Randle-Conde,
65
S. J. Sekula,
65
M. Bellis,
66
P. R. Burchat,
66
T. S. Miyashita,
66
S. Ahmed,
67
M. S. Alam,
67
J. A. Ernst,
67
B. Pan,
67
M. A. Saeed,
67
S. B. Zain,
67
N. Guttman,
68
A. Soffer,
68
P. Lund,
69
S. M. Spanier,
69
R. Eckmann,
70
J. L. Ritchie,
70
A. M. Ruland,
70
C. J. Schilling,
70
R. F. Schwitters,
70
B. C. Wray,
70
J. M. Izen,
71
X. C. Lou,
71
F. Bianchi,
72a,72b
D. Gamba,
72a,72b
M. Pelliccioni,
72a,72b
M. Bomben,
73a,73b
L. Lanceri,
73a,73b
L. Vitale,
73a,73b
N. Lopez-March,
74
F. Martinez-Vidal,
74
A. Oyanguren,
74
J. Albert,
75
Sw. Banerjee,
75
H. H. F. Choi,
75
K. Hamano,
75
G. J. King,
75
R. Kowalewski,
75
M. J. Lewczuk,
75
C. Lindsay,
75
I. M. Nugent,
75
J. M. Roney,
75
R. J. Sobie,
75
T. J. Gershon,
76
P. F. Harrison,
76
T. E. Latham,
76
E. M. T. Puccio,
76
H. R. Band,
77
S. Dasu,
77
K. T. Flood,
77
Y. Pan,
77
R. Prepost,
77
C. O. Vuosalo,
77
and S. L. Wu
77
(The
B
A
B
AR
Collaboration)
1
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universite
́
de Savoie,
CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy
3b
Dipartimento di Fisica, Universita
`
di Bari, I-70126 Bari, Italy
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
Ruhr Universita
̈
t Bochum, Institut fu
̈
r Experimentalphysik 1, D-44780 Bochum, Germany
7
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
10
University of California at Irvine, Irvine, California 92697, USA
11
University of California at Riverside, Riverside, California 92521, USA
12
University of California at Santa Barbara, Santa Barbara, California 93106, USA
13
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
14
California Institute of Technology, Pasadena, California 91125, USA
15
University of Cincinnati, Cincinnati, Ohio 45221, USA
16
University of Colorado, Boulder, Colorado 80309, USA
17
Colorado State University, Fort Collins, Colorado 80523, USA
18
Technische Universita
̈
t Dortmund, Fakulta
̈
t Physik, D-44221 Dortmund, Germany
19
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern- und Teilchenphysik, D-01062 Dresden, Germany
20
Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
21
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
22a
INFN Sezione di Ferrara, I-44100 Ferrara, Italy
22b
Dipartimento di Fisica, Universita
`
di Ferrara, I-44100 Ferrara, Italy
23
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
24a
INFN Sezione di Genova, I-16146 Genova, Italy
24b
Dipartimento di Fisica, Universita
`
di Genova, I-16146 Genova, Italy
25
Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India
26
Harvard University, Cambridge, Massachusetts 02138, USA
27
Harvey Mudd College, Claremont, California 91711
28
Universita
̈
t Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
29
Humboldt-Universita
̈
t zu Berlin, Institut fu
̈
r Physik, Newtonstraße 15, D-12489 Berlin, Germany
30
Imperial College London, London, SW7 2AZ, United Kingdom
31
University of Iowa, Iowa City, Iowa 52242, USA
32
Iowa State University, Ames, Iowa 50011-3160, USA
33
Johns Hopkins University, Baltimore, Maryland 21218, USA
34
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN2P3/CNRS et Universite
́
Paris-Sud
11, Centre Scientifique d’Orsay, Boı
ˆ
te Postale 34, F-91898 Orsay Cedex, France
35
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
36
University of Liverpool, Liverpool L69 7ZE, United Kingdom
37
Queen Mary, University of London, London E1 4NS, United Kingdom
38
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
39
University of Louisville, Louisville, Kentucky 40292, USA
40
Johannes Gutenberg-Universita
̈
t Mainz, Institut fu
̈
r Kernphysik, D-55099 Mainz, Germany
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
83,
051101(R) (2011)
RAPID COMMUNICATIONS
051101-2
41
University of Manchester, Manchester M13 9PL, United Kingdom
42
University of Maryland, College Park, Maryland 20742, USA
43
University of Massachusetts, Amherst, Massachusetts 01003, USA
44
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
45
McGill University, Montre
́
al, Que
́
bec Canada H3A 2T8
46a
INFN Sezione di Milano, I-20133 Milano, Italy
46b
Dipartimento di Fisica, Universita
`
di Milano, I-20133 Milano, Italy
47
University of Mississippi, University, Mississippi 38677, USA
48
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
49a
INFN Sezione di Napoli, I-80126 Napoli, Italy
49b
Dipartimento di Scienze Fisiche, Universita
`
di Napoli Federico II, I-80126 Napoli, Italy
50
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
51
University of Notre Dame, Notre Dame, Indiana 46556, USA
52
Ohio State University, Columbus, Ohio 43210, USA
53
University of Oregon, Eugene, Oregon 97403, USA
54a
INFN Sezione di Padova, I-35131 Padova, Italy
54b
Universita
`
di Padova, I-35131 Padova, Italy
55
Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS, Universite
́
Pierre et Marie Curie-Paris6,
Universite
́
Denis Diderot-Paris7, F-75252 Paris, France
56a
INFN Sezione di Perugia, I-06100 Perugia, Italy
56b
Dipartimento di Fisica, Universita
`
di Perugia, I-06100 Perugia, Italy
57a
INFN Sezione di Pisa, I-56127 Pisa, Italy
57b
Dipartimento di Fisica, Universita
`
di Pisa, I-56127 Pisa, Italy
57c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
58
Princeton University, Princeton, New Jersey 08544, USA
59a
INFN Sezione di Roma, I-00185 Roma, Italy
59b
Dipartimento di Fisica, Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
60
Universita
̈
t Rostock, D-18051 Rostock, Germany
61
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
62
CEA, IRFU, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
63
SLAC National Accelerator Laboratory, Stanford, California 94309 USA
64
University of South Carolina, Columbia, South Carolina 29208, USA
65
Southern Methodist University, Dallas, Texas 75275, USA
66
Stanford University, Stanford, California 94305-4060, USA
67
State University of New York, Albany, New York 12222, USA
68
Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel
69
University of Tennessee, Knoxville, Tennessee 37996, USA
70
University of Texas at Austin, Austin, Texas 78712, USA
71
University of Texas at Dallas, Richardson, Texas 75083, USA
72a
INFN Sezione di Torino, I-10125 Torino, Italy
72b
Dipartimento di Fisica Sperimentale, Universita
`
di Torino, I-10125 Torino, Italy
73a
INFN Sezione di Trieste, I-34127 Trieste, Italy
73b
Dipartimento di Fisica, Universita
`
di Trieste, I-34127 Trieste, Italy
74
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
75
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
76
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
77
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 22 December 2010; published 8 March 2011)
We present measurements of the branching fractions, longitudinal polarization, and direct
CP
-violation
asymmetries for the decays
B
þ
!

0
K
and
B
þ
!
f
0
ð
980
Þ
K
with a sample of
ð
467

5
Þ
10
6
B

B
pairs collected with the
BABAR
detector at the PEP-II asymmetric-energy
e
þ
e

collider at the SLAC
National Accelerator Laboratory. We observe
B
þ
!

0
K
with a significance of
5
:
3

and measure
the branching fraction
B
ð
B
þ
!

0
K
Þ¼ð
4
:
6

1
:
0

0
:
4
Þ
10

6
, the longitudinal polarization
*
Now at Temple University, Philadelphia, Pennsylvania 19122, USA
Also with Universita
`
di Perugia, Dipartimento di Fisica, Perugia, Italy
Also with Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
x
Now at University of South Alabama, Mobile, Alabama 36688, USA
k
Also with Universita
`
di Sassari, Sassari, Italy
MEASUREMENTS OF BRANCHING FRACTIONS,
...
PHYSICAL REVIEW D
83,
051101(R) (2011)
RAPID COMMUNICATIONS
051101-3
f
L
¼
0
:
78

0
:
12

0
:
03
, and the
CP
-violation asymmetry
A
CP
¼
0
:
31

0
:
13

0
:
03
. We observe
B
þ
!
f
0
ð
980
Þ
K
and measure the branching fraction
B
ð
B
þ
!
f
0
ð
980
Þ
K
Þ
B
ð
f
0
ð
980
Þ!

þ


Þ¼ð
4
:
2

0
:
6

0
:
3
Þ
10

6
and the
CP
-violation asymmetry
A
CP
¼
0
:
15

0
:
12

0
:
03
.
The first uncertainty quoted is statistical and the second is systematic.
DOI:
10.1103/PhysRevD.83.051101
PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh
The study of the branching fractions and angular distri-
butions of
B
meson decays to hadronic final states without
a charm quark probes the dynamics of both the weak and
strong interactions. It also plays an important role in under-
standing
CP
violation in the quark sector, constraining the
Cabibbo-Kobayashi-Maskawa matrix parameters [
1
] and
searching for evidence for physics beyond the standard
model [
2
,
3
].
The charmless decays
B
!
K

proceed through pen-
guin loops and tree processes (
B
þ
!

þ
K

0
is a pure
penguin process) to two vector particles (VV). QCD facto-
rization models predict a large longitudinal polarization
fraction
f
L
[of order
ð
1

4
m
2
V
=m
2
B
Þ
0
:
9
] for VV decays
[
4
]. However, measurements of penguin-dominated VV
decays give
f
L
as low as

0
:
5
[
5
]. Several attempts to
understand the values of
f
L
within or beyond the standard
model have been made [
6
].
For the
B
þ
!

0
K
branching fraction, Beneke,
Rohrer and Yang [
2
] predict the
CP
-averaged branching
fraction to be
ð
4
:
5
þ
1
:
5
þ
3
:
0

1
:
3

1
:
4
Þ
10

6
, while Cheng and Yang
[
3
] quote
ð
5
:
5
þ
0
:
6
þ
1
:
3

0
:
5

2
:
5
Þ
10

6
, both based on QCD facto-
rization. The 90% C.L. upper limit
B
þ
!

0
K
branch-
ing fraction has been measured to be
<
6
:
1

10

6
[
7
].
We report measurements of branching fractions, longi-
tudinal polarizations, and direct
CP
-violating asymmetries
for the decay modes
B
þ
!

0
K
and
B
þ
!
f
0
ð
980
Þ
K
,
where

0
and
K
refer to the

0
ð
770
Þ
and
K
ð
892
Þ
resonances, respectively. The analysis is based on a data
sample of
ð
467

5
Þ
10
6
B

B
pairs, equivalent to an
integrated luminosity of
426 fb

1
, collected with the
BABAR
detector at the PEP-II asymmetric-energy
e
þ
e

collider operated at the SLAC National Accelerator
Laboratory. The
e
þ
e

center-of-mass (c.m.) energy is
ffiffiffi
s
p
¼
10
:
58 GeV
, corresponding to the

ð
4
S
Þ
resonance
mass (on-resonance data). In addition,
44
:
4fb

1
of data
collected 40 MeV below the

ð
4
S
Þ
resonance (off-
resonance data) are used for background studies. We as-
sume equal production rates of
B
þ
B

and
B
0

B
0
mesons,
and charge-conjugate modes are implied throughout [
8
].
The
BABAR
detector is described in detail in Ref. [
9
].
The
B
þ
!

0
K
and
B
þ
!
f
0
ð
980
Þ
K
candidates
are reconstructed through the decays of

0
or
f
0
ð
980
Þ!

þ


,
K
!
K
0
S

þ
or
K
!
K
þ

0
, with
K
0
S
!

þ


and

0
!

. The differential decay rate for
B
þ
!

0
K
, after integrating over the angle between
the decay planes of the vector mesons, for which the
acceptance is nearly uniform, is proportional to
1

f
L
4
sin
2

K
sin
2


0
þ
f
L
cos
2

K
cos
2


0
;
(1)
where

K
(


0
) is the helicity angle of the
K
(

0
),
defined as the angle between the daughter
K
(

þ
) momen-
tum and the direction opposite to the
B
meson momentum
in the
K
(

0
) rest frame [
10
]. The direct
CP
-violating
asymmetry
A
CP
is defined as
A
CP
¼ð




þ
Þ
=
ð


þ

þ
Þ
, where


¼

ð
B

!
f

Þ
is the decay width for a
given charged final state
f

.
We apply the same selection criteria for

0
and
f
0
ð
980
Þ
candidates. The charged particles from the
K
and

0
decays are required to have a transverse momentum rela-
tive to the beam axis greater than
0
:
05 GeV
=c
. The parti-
cles are identified as either charged pions or kaons by
measurement of the energy loss in the tracking detectors,
the number of photons recorded by the ring-imaging
Cherenkov detector and the corresponding Cherenkov
angle. These measurements are combined with information
from the electromagnetic calorimeter and the instrumented
magnetic-flux return detector, where appropriate, to reject
electrons, muons, and protons.
The
K
0
S
candidates are required to have a mass within
0
:
01 GeV
=c
2
of the nominal
K
0
S
mass [
8
], a decay vertex
separated from the
B
meson decay vertex by at least 20
times the uncertainty in the measurement of the separation
of the vertex positions, a flight distance in the direction
transverse to the beam axis of at least 0.3 cm, and the
cosine of the angle between the line joining the
B
and
K
0
S
decay vertices and the
K
0
S
momentum greater than 0.999.
In the laboratory frame, the energy of each photon from
the

0
candidate must be greater than 0.03 GeV, the

0
energy must exceed 0.25 GeV, and the reconstructed

0
invariant mass is required to be in the range
0
:
12

m


0
:
15 GeV
=c
2
. After selection, the

0
candidate’s mass is
constrained to its nominal value [
8
].
We require the invariant mass of the
K
and

0
candidates to satisfy
0
:
792
<m
K
<
0
:
992 GeV
=c
2
and
0
:
52
<m

þ


<
1
:
05 GeV
=c
2
, respectively. A
B
meson
candidate is formed from the
K
and

0
candidates,
with the condition that the
K
and

0
candidates originate
from the interaction region and the

2
of the
B
meson
vertex fit is less than 100. We require that there is at least
one additional charged track in the event and create a
vertex for a second
B
meson from all remaining charged
tracks and neutral clusters that are consistent with origi-
nating from the interaction region.
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
83,
051101(R) (2011)
RAPID COMMUNICATIONS
051101-4
The
B
meson candidates are characterized kinematically
by the energy difference

E
¼
E

B

ffiffiffi
s
p
=
2
and the
beam energy-substituted mass
m
ES
¼½ð
s=
2
þ
p

p
B
Þ
2
=
E
2

p
2
B

1
=
2
, where
ð
E;
p
Þ
and
ð
E
B
;
p
B
Þ
are the four-
momenta of the

ð
4
S
Þ
and
B
meson candidate in the
laboratory frame, respectively, and the asterisk denotes
the c.m. frame. The event sample is taken from the region
j

E
j
<
0
:
10 GeV
and
5
:
255

m
ES

5
:
289 GeV
=c
2
.
The extended
m
ES
range ensures the shape of the back-
ground distribution is properly modeled. Sideband events,
outside the region
j

E
j
0
:
07 GeV
and
5
:
270

m
ES

5
:
289 GeV
=c
2
, are used to characterize the background
and cross-check the Monte Carlo (MC) background simu-
lations [
11
].
We suppress the background from
B
mesons decaying to
charm by forming the invariant mass
m
D
from combina-
tions of two or three out of the four daughter particles’
four-momenta. The event is rejected if
1
:
835
<m
D
<
1
:
895 GeV
=c
2
and the charge and particle type of the
tracks are consistent with a known decay from a
D
meson
[
8
]. Finally, to reduce the background and to avoid the
region where the reconstruction efficiency falls off rapidly
for low momentum tracks, we require the cosines of the
helicity angles of the
K
and

0
candidates to satisfy
cos

K

0
:
92
and
j
cos


0
j
0
:
95
, respectively.
To reject the background consisting of light-quark
q

q
(
q
¼
u
,
d
,
s
,
c
) continuum events, we require
j
cos

T
j
<
0
:
85
, where

T
is the angle, in the c.m. frame,
between the thrust axis of the
B
meson and that formed
from the other tracks and neutral clusters in the event.
Signal events have an approximately uniform distribution
in
j
cos

T
j
, while
q

q
continuum events peak at 1.
After the application of the selection criteria, the average
number of

0
K
candidates per event with
K
!
K
0
S

þ
in signal MC simulations is 1.14 (1.03) for fully longitudi-
nally (transversely) polarized decays. The candidate with
the smallest fitted decay vertex

2
is chosen. Up to 2.1%
(1.0%) of longitudinally (transversely) polarized MC sig-
nal events are misreconstructed, with one or more tracks
originating from the other
B
meson in the event. For

0
K
with
K
!
K
þ

0
, the average number of candidates per
event is 1.20 (1.08) and the fraction of misreconstructed
candidates is 5.9% (2.7%) for fully longitudinally (trans-
versely) polarized decays. For
f
0
ð
980
Þ
K
, the number of
candidates per event and the fraction of misreconstructed
events are 1.02 (1.06) and 9.1% (13.8%) for decays with
K
!
K
0
S

þ
(
K
!
K
þ

0
). The

0
and
K
masses
and widths in the MC simulation are taken from Ref. [
8
],
and we use the measured
f
0
ð
980
Þ
line shape from Ref. [
12
].
A neural net discriminant is used to provide additional
separation between signal and
q

q
continuum. It is con-
structed from six variables calculated in the c.m. frame: the
polar angles of the
B
meson momentum vector and the
B
meson thrust axis with respect to the beam axis, the angle
between the
B
meson thrust axis and the thrust axis of the
rest of the event, the ratio of the second- and zeroth-order
momentum-weighted polynomial moments of the energy
flow around the
B
meson thrust axis [
13
], the flavor of the
other
B
meson as reported by a multivariate tagging algo-
rithm [
14
], and the boost-corrected proper-time difference
between the decays of the two
B
mesons divided by its
variance. The discriminant is trained using MC for the
signal, and
q

q
continuum MC and off-resonance data for
the background.
We define an extended likelihood function to be used in
an unbinned maximum likelihood (ML) fit as
L
¼
1
N
!
exp


X
j
n
j

Y
N
i
¼
1

X
j
n
j
P
j
ð
~
x
i
;
~

j
Þ

;
(2)
where the likelihood
L
i
for each event candidate
i
is the
sum of
n
j
P
j
ð
~
x
i
;
~

j
Þ
over hypotheses
j
: two signal modes

0
K
and
f
0
ð
980
Þ
K
(including misreconstructed signal
candidates);
q

q
continuum background; and nine
B

B
back-
grounds as discussed below.
P
j
ð
~
x
i
;
~

j
Þ
is the product of the
probability density functions (PDFs) for hypothesis
j
eval-
uated for the
i
-th event’s measured variables
~
x
i
. The num-
ber of events for hypothesis
j
is denoted by
n
j
, and
N
is the
total number of events in the sample. The quantities
~

j
represent parameters to describe the expected distributions
of the measured variables for each hypothesis
j
. Each
discriminating variable
~
x
i
in the likelihood function is
modeled with a PDF, where the parameters
~

j
are ex-
tracted from MC simulation, off-resonance data, or (
m
ES
,

E
) sideband data. The seven variables
~
x
i
used in the fit are
m
ES
,

E
, the neural net output,
m

þ


,
m
K
, the absolute
cosine of the helicity angle of the

0
=f
0
ð
980
Þ
candidate,
and the cosine of the helicity of the
K
candidate. Since
most of the linear correlations among the fit variable dis-
tributions are found to be about 1%, with a maximum of
11%, we take each
P
j
to be the product of the PDFs for the
separate variables.
The decays
B
þ
!

D
0
ð!
K
0
S

þ


Þ

þ
and
B
þ
!

D
0
ð!
K
þ

0


Þ

þ
have large branching fractions and a
topology similar to the decays under consideration. They
are used as calibration channels. We apply the same selec-
tion criteria as described above except that the neural net
is trained on the MC simulated data for the calibration
channel under consideration; the

E
range is reduced to
j

E
j
<
0
:
08 GeV
; the
m
K
and
m

þ


mass criteria
are replaced with a mass range
1
:
8445
<m

D
0
<
1
:
8845 GeV
=c
2
; and no
D
meson veto is applied. We use
the selected data to verify that the ML fit is performing
correctly and that the MC is simulating the neural net,

E
,
and
m
ES
distributions.
Backgrounds from
B

B
decays involving charmed me-
sons are effectively suppressed by applying the veto on
the
D
meson mass described above. The
B

B
backgrounds
that remain after the event selection criteria have been
applied are identified and modeled using MC simulation.
MEASUREMENTS OF BRANCHING FRACTIONS,
...
PHYSICAL REVIEW D
83,
051101(R) (2011)
RAPID COMMUNICATIONS
051101-5
We categorize the
B

B
backgrounds in the ML fit into nine
main groups. Two groups represent decays where either a
K
or a

0
=f
0
ð
980
Þ
is falsely reconstructed. Four groups
represent nonresonant final states

þ


K
,

0
ð
K
Þ
þ
,

þ


ð
K
Þ
þ
, and
f
0
ð
980
Þð
K
Þ
þ
, where
ð
K
Þ
þ
stands for
K
0
S

þ
or
K
þ

0
. The decays
B
0
!

0
K
0
S
and
B
þ
!

0
K
þ
peak at high
cos

K
and are assigned their own category.
We allow for decays from higher mass
K

0
ð
1430
Þ
states.
All remaining
B

B
background decays that are not ac-
counted for by the above groups are assigned to a dominant
remainder group.
The invariant mass distributions in the ML fit are mod-
eled with relativistic Breit-Wigner functions for the
K
and
f
0
ð
980
Þ
, together with a polynomial of order up to four
for the smoothly varying distribution of misreconstructed
candidates. Following Ref. [
15
], a modified relativistic
Breit-Wigner function is used for the

0
meson. The
K

0
ð
1430
Þ
is modeled with the LASS parametrization,
which consists of the
K

0
ð
1430
Þ
resonance together with
an effective-range nonresonant component [
16
]. For the
signal, the distributions of the cosine of the helicity angles
are described by Eq. (
1
) multiplied by a polynomial ac-
ceptance function that corrects for changes in efficiency as
a function of helicity angle. The correction also accounts
for the reduction in efficiency at helicity near 0.78 intro-
duced indirectly by the criteria used to veto
D
mesons.
For backgrounds, the cosine of the helicity angle distribu-
tion is modeled with a polynomial. The neural net
distributions are modeled using either an empirical non-
parametric function [
17
] or a histogram. For
m
ES
,an
asymmetric Gaussian is used for the signal; the function
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x
2
p
exp
½
ð
1

x
2
Þ
with
x
¼
m
ES
=E

B
and
a free
parameter [
18
] is used for
q

q
continuum and
B

B
back-
grounds; and a combination of an asymmetric Gaussian
with a polynomial is used for all other hypotheses. For

E
,
two Gaussians are used for signal and polynomials for all
other hypotheses.
We simultaneously fit for the branching fractions
B
,
A
CP
, and
f
L
(for
B
þ
!

0
K
only). We allow the
yields for all hypotheses to float except for

0
ð
K
Þ
þ
and
f
0
ð
980
Þð
K
Þ
þ
which are fixed to their predicted MC
yields, assuming a branching fraction of
1

10

6
. The
predicted yields for the fixed modes are less than one event.
The PDF parameters
for
m
ES
, the slope of the

E
distribution, and the polynomial coefficients and normal-
izations describing the mass and helicity angle distribu-
tions are allowed to vary for the
q

q
continuum and
B

B
remainder groups. We validate the fitting procedure and
obtain the sizes of potential biases on the fit results by
applying the fit to ensembles of simulated experiments
using the extracted fitted yields from data. The observed
fit biases in the MC samples are subtracted from the fitted
yields measured in the data.
The results of the ML fits are summarized in Table
I
,
where we assume a branching fraction of 100% for
f
0
ð
980
Þ!

þ


. For decays with
K
!
K
0
S

þ
(
K
!
K
þ

0
), the event sample is 7444 (
12 867
), with
5959

96
(
10 727

122
) fitted
q

q
continuum events and
1266

81
(
1451

129
) events in the
B

B
background remainder
group. The signal significance
S
is defined as
S
¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln
L
p
, where
ln
L
is the change in log-likelihood
from the maximum value to the value when the number
of signal events is set to zero, corrected for systematic
errors by convolving the likelihood function with a
Gaussian distribution with a variance equal to the total
systematic error defined below. The linear correlation co-
efficient between the

0
K
and
f
0
ð
980
Þ
K
branching
fractions is 0.25.
Figures
1
and
2
show the projections of the fits onto
m
ES
,

E
, the masses, and the cosines of the helicity angles
for decays with
K
!
K
0
S

þ
and
K
!
K
þ

0
, respec-
tively. The candidates in the figures are subject to a require-
ment on the probability ratio
P
sig
=
ð
P
sig
þ
P
bkg
Þ
>
0
:
9
,
where
P
sig
and
P
bkg
are the signal and total background
probabilities, respectively, computed without the use of the
variable plotted.
The systematic errors on the yields and branching frac-
tions arise from the PDFs, fit biases,
f
0
ð
980
Þ
parameters,
interference,
B

B
background yields, and efficiencies. The
PDF uncertainties are calculated by varying the PDF pa-
rameters that are held fixed in the original fit by their
errors, taking into account correlations. The uncertainty
from the fit bias includes its statistical uncertainty from the
simulated experiments and half of the correction itself,
TABLE I. Results for the measured
B
decays: signal yield
Y
(corrected for fit bias) and its statistical uncertainty, reconstruction
efficiency (%), daughter branching fraction product
II
B
i
ð
%
Þ
[
8
], significance
S
(with statistical and systematic uncertainties included),
branching fraction
B
, 90% C.L. upper limit (for modes with
S<
6

), longitudinal polarization
f
L
and
CP
-violating asymmetry
A
CP
.
Mode
Y
ð
%
Þ

B
i
ð
%
Þ
S
ð

Þ
B
ð
10

6
Þ
UL
ð
10

6
Þ
f
L
A
CP
B
þ
!

0
K
5.3
4
:
6

1
:
0

0
:
4
6.0
0
:
78

0
:
12

0
:
03 0
:
31

0
:
13

0
:
03
K
!
K
0
S

þ
85

24
17.1
23.1
4.1
4
:
6

1
:
2

0
:
5
6.4
0
:
74

0
:
13

0
:
03 0
:
25

0
:
14

0
:
03
K
!
K
þ

0
67

31
9.9
33.3
3.3
4
:
4

2
:
0

0
:
5
7.1
0
:
94

0
:
27

0
:
03 0
:
59

0
:
31

0
:
03
B
þ
!
f
0
ð
980
Þ
K
9.0
4
:
2

0
:
6

0
:
3

0
:
15

0
:
12

0
:
03
K
!
K
0
S

þ
69

14
17.9
23.1
6.0
3
:
6

0
:
7

0
:
3

0
:
34

0
:
16

0
:
03
K
!
K
þ

0
91

20
11.3
33.3
6.8
5
:
2

1
:
0

0
:
30
:
14

0
:
12

0
:
03
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
83,
051101(R) (2011)
RAPID COMMUNICATIONS
051101-6
added in quadrature. We allow for uncertainties in the
f
0
ð
980
Þ
line shape by performing a separate fit with the
f
0
ð
980
Þ
mean and width as additional free parameters.
The effect of possible interference between the
f
0
ð
980
Þ
and

0
is estimated by adding the
f
0
ð
980
Þ
and

0
ampli-
tudes together with a varying phase difference and using
half the maximum change in the yield as an uncertainty.
We test for the presence of a scalar
f
0
ð
600
Þ
(or

)by
adding it to our model, using the mass and width reported
in Ref. [
19
]. The contribution of the
B

B
backgrounds to the
error is calculated by performing an ensemble of fits to the
data where backgrounds are either removed from the fit
(for those categories with a fitted number of events con-
sistent with zero), allowed to float (for the fixed back-
grounds) or fixed to the expected number of events
calculated from MC. The error is calculated as half the
difference between the default fit and the maximum devia-
tion seen in the ensemble of fits. Finally, the uncertainty on
the longitudinal polarization affects the calculated yield
efficiency. All these errors are additive in nature and affect
the significance of the branching fraction results. We as-
sume the sources of the uncertainties that contribute to the
additive errors are uncorrelated when combined to form the
overall branching fractions. The PDF parameter uncer-
tainty contributes up to 0.4 signal events to the systematic
error and the fit bias between 2.4 and 0.8 events, depending
on the signal mode. We see no evidence for the
f
0
ð
600
Þ
state. The
f
0
ð
980
Þ
line shape and interference account
for up to 0.8 and 2.0 events, respectively. The overall
systematic error is dominated by the uncertainty in the
B

B
backgrounds and, for

0
K
, the systematic error on
f
L
. The total additive systematic error on the
B
þ
!

0
K
signal yield is 9.4 and 6.7 events for
K
!
K
0
S

þ
and
K
!
K
þ

0
, respectively, and for
B
þ
!
f
0
ð
980
Þ
K
it
is 4.4 and 1.3 events, respectively.
Multiplicative uncertainties include reconstruction effi-
ciency uncertainties from tracking (0.8% per track added
linearly), charged particle identification (1.1% per track
added linearly),

0
identification (3.0%),
K
0
S
identification
(1.0%), track multiplicity (1.0%), the number of
B

B
pairs
(1.1%), and MC signal statistics (0.2%). The total multi-
plicative branching fraction systematic error is 4.5% and
5.3% for decays with
K
!
K
0
S

þ
and
K
!
K
þ

0
,
respectively. The multiplicative uncertainties for both
submodes are correlated. The majority of the systematic
uncertainties on
f
L
and
A
CP
cancel, and the error is
dominated by the uncertainty on the PDF parameters
(0.02). The uncertainty due to the dependence of the re-
construction efficiency on the charge of the kaon is esti-
mated from MC to be 0.005. The total systematic is
calculated to be

0
:
03
for all modes.
In summary, we observe
B
þ
!

0
K
with a signifi-
cance of
5
:
3

. We measure the branching fraction
B
ð
B
þ
!

0
K
Þ¼ð
4
:
6

1
:
0

0
:
4
Þ
10

6
, the longi-
tudinal polarization
f
L
¼
0
:
78

0
:
12

0
:
03
, and the
)
2
(GeV/c
ES
m
5.26
5.27
5.28
)
2
Events / ( 0.0017 GeV/c
10
20
30
40
50
)
2
(GeV/c
ES
m
5.26
5.27
5.28
)
2
Events / ( 0.0017 GeV/c
10
20
30
40
50
a)
b)
c)
d)
e)
f)
E (GeV)
-0.1
-0.05
0
0.05
0.1
Events / ( 0.01 GeV )
10
20
30
40
50
E (GeV)
-0.1
-0.05
0
0.05
0.1
Events / ( 0.01 GeV )
10
20
30
40
50
)
2
invariant mass (GeV/c
-
π
+
π
0.6
0.8
1
)
2
Events / ( 0.0265 GeV/c
10
20
30
40
50
)
2
invariant mass (GeV/c
-
π
+
π
0.6
0.8
1
)
2
Events / ( 0.0265 GeV/c
10
20
30
40
50
)
2
invariant mass (GeV/c
0
π
+
K
0.8
0.85
0.9
0.95
)
2
Events / ( 0.01 GeV/c
10
20
30
40
50
)
2
invariant mass (GeV/c
0
π
+
K
0.8
0.85
0.9
0.95
)
2
Events / ( 0.01 GeV/c
10
20
30
40
50
)|
-
π
+
π
θ
|cos(
0
0.2
0.4
0.6
0.8
Events / ( 0.0475 )
20
40
60
)|
-
π
+
π
θ
|cos(
0
0.2
0.4
0.6
0.8
Events / ( 0.0475 )
20
40
60
)
0
π
+
K
θ
cos(
-1
-0.5
0
0.5
Events / ( 0.096 )
20
40
60
)
0
π
+
K
θ
cos(
-1
-0.5
0
0.5
Events / ( 0.096 )
20
40
60
FIG. 2 (color online). Projections of the multidimensional fit
onto (a)
m
ES
, (b)

E
, (c)

þ


mass, (d)
K
þ

0
mass,
(e)
j
cos


þ


j
, and (f)
cos

K
þ

0
for modes with
K
!
K
þ

0
.
The figure uses the same projection criteria and legend as Fig.
1
.
)
2
(GeV/c
ES
m
5.26
5.27
5.28
)
2
Events / ( 0.0017 GeV/c
10
20
30
40
50
)
2
(GeV/c
ES
m
5.26
5.27
5.28
)
2
Events / ( 0.0017 GeV/c
10
20
30
40
50
a)
b)
c)
d)
e)
f)
E (GeV)
-0.1
-0.05
0
0.05
0.1
Events / ( 0.01 GeV )
10
20
30
40
50
E (GeV)
-0.1
-0.05
0
0.05
0.1
Events / ( 0.01 GeV )
10
20
30
40
50
)
2
invariant mass (GeV/c
-
π
+
π
0.6
0.8
1
)
2
Events / ( 0.0265 GeV/c
10
20
30
40
50
)
2
invariant mass (GeV/c
-
π
+
π
0.6
0.8
1
)
2
Events / ( 0.0265 GeV/c
10
20
30
40
50
)
2
invariant mass (GeV/c
+
π
0
S
K
0.8
0.85
0.9
0.95
)
2
Events / ( 0.01 GeV/c
10
20
30
40
50
)
2
invariant mass (GeV/c
+
π
0
S
K
0.8
0.85
0.9
0.95
)
2
Events / ( 0.01 GeV/c
10
20
30
40
50
)|
-
π
+
π
θ
|cos(
0
0.2
0.4
0.6
0.8
Events / ( 0.0475 )
10
20
30
40
50
)|
-
π
+
π
θ
|cos(
0
0.2
0.4
0.6
0.8
Events / ( 0.0475 )
10
20
30
40
50
)
+
π
0
S
K
θ
cos(
-1
-0.5
0
0.5
Events / ( 0.096 )
10
20
30
40
50
)
+
π
0
S
K
θ
cos(
-1
-0.5
0
0.5
Events / ( 0.096 )
10
20
30
40
50
FIG. 1 (color online). Projections of the multidimensional fit
onto (a)
m
ES
, (b)

E
, (c)

þ


mass, (d)
K
0
S

þ
mass,
(e)
j
cos


þ


j
, and (f)
cos

K
0
S

þ
for modes with
K
!
K
0
S

þ
.
The points with error bars show the data; the solid line shows
signal-plus-background; the hatched [green] area is the

0
K
signal; and the dashed [red] line is the
f
0
ð
980
Þ
K
signal.
MEASUREMENTS OF BRANCHING FRACTIONS,
...
PHYSICAL REVIEW D
83,
051101(R) (2011)
RAPID COMMUNICATIONS
051101-7
CP
-violating asymmetry
A
CP
¼
0
:
31

0
:
13

0
:
03
.We
observe
B
þ
!
f
0
ð
980
Þ
K
and measure the branching
fraction
B
ð
B
þ
!
f
0
ð
980
Þ
K
Þ
B
ð
f
0
ð
980
Þ!

þ


Þ¼
ð
4
:
2

0
:
6

0
:
3
Þ
10

6
and the
CP
-violating asym-
metry
A
CP
¼
0
:
15

0
:
12

0
:
03
. The
B
þ
!

0
K
branching fraction is compatible with theoretical predic-
tions [
2
,
3
].
We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues, and for
the substantial dedicated effort from the computing
organizations that support
BABAR
. The collaborating in-
stitutions wish to thank SLAC for its support and kind
hospitality. This work is supported by DOE and NSF
(USA), NSERC (Canada), CEA and CNRS-IN2P3
(France), BMBF and DFG (Germany), INFN (Italy),
FOM (The Netherlands), NFR (Norway), MES (Russia),
MICIIN (Spain), and STFC (United Kingdom). Individuals
have received support from the Marie Curie EIF (European
Union), the A. P. Sloan Foundation (USA) and the
Binational Science Foundation (USA-Israel).
[1] N. Cabibbo,
Phys. Rev. Lett.
10
, 531 (1963)
;M.
Kobayashi and T. Maskawa,
Prog. Theor. Phys.
49
, 652
(1973)
.
[2] M. Beneke, J. Rohrer, and D. S. Yang,
Nucl. Phys.
B774
,
64 (2007)
.
[3] H. Y. Cheng and K. C. Yang,
Phys. Rev. D
78
, 094001
(2008)
;
79
, 039903(E) (2009)
.
[4] A. Ali
et al.
,
Z. Phys. C
1
, 269 (1979)
; M. Suzuki,
Phys.
Rev. D
66
, 054018 (2002)
.
[5] K.-F. Chen
et al.
(Belle Collaboration),
Phys. Rev. Lett.
94
, 221804 (2005)
; B. Aubert
et al.
(
B
A
B
AR
Collaboration),
Phys. Rev. Lett.
98
, 051801 (2007)
;
Phys. Rev. Lett.
99
, 201802 (2007)
.
[6] A. Kagan,
Phys. Lett. B
601
, 151 (2004)
; C. Bauer
et al.
,
Phys. Rev. D
70
, 054015 (2004)
; P. Colangelo
et al.
,
Phys.
Lett. B
597
, 291 (2004)
; M. Ladisa
et al.
,
Phys. Rev. D
70
,
114025 (2004)
; H.-n. Li and S. Mishima,
Phys. Rev. D
71
,
054025 (2005)
; M. Beneke
et al.
,
Phys. Rev. Lett.
96
,
141801 (2006)
.
[7] B. Aubert
et al.
(
B
A
B
AR
Collaboration),
Phys. Rev. Lett.
97
, 201801 (2006)
.
[8] C. Amsler
et al.
(Particle Data Group)
Phys. Lett. B
667
,1
(2008)
.
[9] B. Aubert
et al.
(
B
A
B
AR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002)
.
[10] G. Kramer and W. F. Palmer,
Phys. Rev. D
45
, 193 (1992)
.
[11] S. Agostinelli
et al.
(GEANT Collaboration),
Nucl.
Instrum. Methods Phys. Res., Sect. A
506
, 250 (2003)
.
[12] E. M. Aitala
et al.
,
Phys. Rev. Lett.
86
, 765 (2001)
.
[13] B. Aubert
et al.
(
B
A
B
AR
Collaboration),
Phys. Rev. D
70
,
032006 (2004)
.
[14] B. Aubert
et al.
(
B
A
B
AR
Collaboration),
Phys. Rev. Lett.
94
, 161803 (2005)
.
[15] G. J. Gounaris and J. J. Sakurai,
Phys. Rev. Lett.
21
, 244
(1968)
.
[16] D. Aston
et al.
(LASS Collaboration),
Nucl. Phys.
B296
,
493 (1988)
.
[17] K. S. Kramer,
Comput. Phys. Commun.
136
, 198 (2001)
.
[18] H. Albrecht
et al.
(ARGUS Collaboration),
Phys. Lett. B
241
, 278 (1990)
.
[19] H. Muramatsu
et al.
(CLEO Collaboration),
Phys. Rev.
Lett.
89
, 251802 (2002)
.
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
83,
051101(R) (2011)
RAPID COMMUNICATIONS
051101-8