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Abstract
Brain metastases can occur in nearly half of patients with early and locally advanced (stage I–III) non-small cell lung
cancer (NSCLC). There are no reliable histopathologic or molecular means to identify those who are likely to develop
brain metastases. We sought to determine if deep learning (DL) could be applied to routine H&E-stained primary
tumor tissue sections from stage I–III NSCLC patients to predict the development of brain metastasis. Diagnostic
slides from 158 patients with stage I–III NSCLC followed for at least 5 years for the development of brain metastases
(Met+, 65 patients) versus no progression (Met�, 93 patients) were subjected to whole-slide imaging. Three separate
iterations were performed by first selecting 118 cases (45 Met+, 73 Met�) to train and validate the DL algorithm,
while 40 separate cases (20 Met+, 20 Met�) were used as the test set. The DL algorithm results were compared to a
blinded review by four expert pathologists. The DL-based algorithmwas able to distinguish the eventual development
of brain metastases with an accuracy of 87% (p < 0.0001) compared with an average of 57.3% by the four
pathologists and appears to be particularly useful in predicting brain metastases in stage I patients. The DL algorithm
appears to focus on a complex set of histologic features. DL-based algorithms using routine H&E-stained slides may
identify patients who are likely to develop brain metastases from those who will remain disease free over extended
(>5 year) follow-up and may thus be spared systemic therapy.
© 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

Non-small cell lung cancer (NSCLC) remains a leading
cause of cancer death globally. Despite potentially
curative surgery, nearly a third of early-stage (stage I–III)
cases will recur with distant metastases [1]. Major
advances in the treatment of primary NSCLC with
therapeutic agents targeted to specific protein coding
(‘actionable’) mutations and immune checkpoint blockade
therapy targeting programmed death-1 (PD-1) or PD-1
ligands have dramatically improved primary outcomes
in NSCLC. However, innate and acquired resistance to
therapies and disease progression to distant metastatic
sites remain a significant cause ofmorbidity. An increased
understanding of tumor biology has suggested that the
tumor microenvironment of primary NSCLC may dictate
future metastatic behavior [2–4]. Brain metastases, in

particular, are a common cause ofmorbidity andmortality
in NSCLC [5]. The stage of the disease is the most
commonly used predictor of outcome for NSCLC
(and other cancers). However, although stage provides
a general risk assessment for a population of patients
with similar characteristics, staging is unable to predict
which individual patients will or will not progress to metas-
tasis. Histopathologic analysis, even when supplemented
by genomic or molecular biomarkers, cannot accurately
predict the metastatic potential of NSCLC, particularly
in early-stage patients, where risk assessment may lead
to impactful treatment decisions [6].
The growing discipline of artificial intelligence (AI),

especially in the form of deep learning (DL) networks
applied to image analysis, has the potential to identify
subtle and complex histopathologic features that may
not be appreciated by even the most experienced pathol-
ogist, and to correlate these patterns with biologic and
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clinical behavior, such as tumor metastatic potential.
DL algorithms have been trained to automatically and
accurately identify known diagnostic histopathologic
features that recapitulate the abilities of pathologists to
identify these features (e.g. for the diagnosis of prostate
cancer) [7–10]. However, the use of weakly/unsupervised
DL to identify features that cannot be recognized by
pathologists, such as progression and survival potential
based on routine histologic preparations, has been less
well explored [11,12]. Attention-based learning has also
been utilized to identify subregions of histopathology to
identify patterns of highest diagnostic value [13].
Here we demonstrate how a DL network can be

effectively trained on digital images from routine
H&E-stained NSCLC tumor tissue slides to predict
brain metastatic progression within 5 years of the initial
diagnosis and, importantly, accurately identify those
cases that do not progress after 5 or more years of
follow-up. Furthermore, based on the regions of interest
(ROI) that most strongly contribute to the DL algorithm’s
ability to predict progression versus no progression, it
appears that the basis of prediction relies on subtle and
complex histologic features of tumor cells, non-tumor
cells, and the tumor microenvironment.

Materials and methods

Ethics statement
All procedures related to this study were conducted under
an Institutional Review Board-approved protocol, which
allowed for the selection of tissue blocks and slides from
pre-existing institutional diagnostic material, linkage to
non-identifying, limited clinical datasets (where available),
and de-identification of all images through an ‘honest
broker’ mechanism.

Patient cohort and whole-slide imaging
This study was based on a cohort of patients with stage
I–III NSCLC diagnosed and treated at Washington
University School of Medicine with long-term follow-
up (>5 years or until metastasis). Of the patients
included in the study, 113 had stage I and 41 had higher
stage disease (see Table 1 for patient and tumor charac-
teristics). One representative block of tumor tissue from
a registry cohort of 198 treatment-naïve NSCLC patients
was used to create a fresh H&E slide, which was then
scanned at 40�magnification with an Aperio/Leica AT2
slide scanner (Leica Biosystems, Deer Park, IL, USA).
All cases were initially subject to blind review to assess
tumor adequacy and annotated for ROI by circling an
approximate contour of the primary tumor, including the
entirety of the tumor microenvironment. Forty cases
were initially disqualified as being non-representative
or insufficient for adequate evaluation. The clinical char-
acteristics of the remaining 158 cases that were used for
this study [65 with known CNS progression (Met+) and
93 with no recurrence (Met�)] are summarized in

Table 1 and represented diagrammatically in Figure 2.
The median time to progression or the follow-up time
of these cohorts was 12.2 and 106 months, respec-
tively. To retrieve an adequate number of cases, some
heterogeneity in stage and histology features was per-
mitted, although these were generally well represented in
both Met+ and Met� cases. All cases were coded, and
clinical parameters (stage and histology) were unknown
to the DL team. Case outcomes were correlated with DL
predictions only after training/validation and subsequent
testing processes were complete. To compare the abil-
ity of expert pathologic assessment of the histopathol-
ogy to predict progression directly against the DL
model, pathologist reviewers were also blinded to out-
come and stage data, although they were obviously
privy to histologic subtype.

Data and image preprocessing
Figure 1 outlines the image processing algorithm employed
for this study. The Otsu thresholding method [14] was
implemented to exclude regions of plain glass from
the annotated regions in each whole-slide image
(WSI); 1,000 image tiles were randomly sampled from
the ROI in each WSI, each with 256 � 256 pixels or
130 � 130 μm2 under 20� magnification, down-sampled
from a 512 � 512 pixels 40� image. On average, the
sampled image tiles accounted for about 10% of the total
ROI in each slide scan. Image tile colors in both the
training/validation set and the testing set were normalized
to the color statistics of one reference image [15]. For
the training sets, data augmentation, including a
random crop to a size of 224 � 224 pixels, random
flips, and random rotations were performed on the

Table 1. Clinical characteristics of the study population.
Met� Met+

(n = 93) (n = 65)

Gender
Male 47 27
Female 46 38

Average age at diagnosis (years) 60 (47–78) 57 (25–73)
Histology

Adenocarcinoma 48 44
Squamous cell 32 11
Large cell 3 0
Bronchial alveolar carcinoma 4 0
Poorly differentiated 1 5
Mixed 5 5

Grade
I 12 4
II 48 26
III 25 27
IV 0 1
No data available 8 7

Stage
I 85 32
II 3 12
III 0 9
IV 0 7
No data available 5 5

Median follow-up time (months) 106 12.2
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Figure 1. Data processing pipeline. (A) A single, representative H&E-stained slide of a surgically resected primary NSCLC tumor block was
obtained from 158 patient cases and scanned at 40�magnification. Each scan file was coded and linked to outcome and pathology data, but
blinded to both the DL team and the review pathologists until predictions were finalized. From each whole-slide scan, regions of high tumor
cellularity and surrounding tumor microenvironment were annotated by one reviewing pathologist. Regions outside the tumor bed as well as
areas of blank glass were masked. (B) One thousand non-overlapping image tiles from the ROI of each scan file were selected at random. Tiles
were subjected to color normalization and randomized in cropping and orientation to create a data augmentation step. (C) All tiles in the
training set were shuffled and fed to the convolution neural network with the ResNet-18 backbone pretrained on ImageNet, with a linear
layer and sigmoid activation for model optimization. In the testing process, the weights in the model were all frozen. A median-pooling
function was used to compute the final risk assessment from the collective image tiles of each patient.
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color-normalized images before using them as input to
the DL model. For the validation and testing sets, the
color-normalization process was mandatory, but the
data augmentation was not needed.

DL study design
TheDLmodel was based on the ResNet-18 convolutional
neural network pretrained on the ImageNet dataset [16].
The pretrained weights were taken as the initialization for

our model training and all model weights were unfrozen
during the training process. A linear layer, attached with a
sigmoid activation layer, was used as the classifier and the
output was a ‘prediction score’ for an individual image
tile; that is, tiles that the DL assessed as associated with
Met+ versus tiles that the DL assessed as associated with
Met�. The prediction scores of all individual image tiles
from each WSI were subjected to a median-pooling layer
to produce the final overall progression risk assessment
for each slide (case).

Figure 2. DL study design. The cases (slide images) were arbitrarily coded from 1 to 158 (shown in the top grayscale bar). The cases
were randomized (shown in randomized grayscale bars) and split into three different partitions to create experiments 1–3. Each experiment
utilized a different training set of 30 Met+ (orange) and 58 Met� (purple) tumor images and a validation set of 15 Met+ and 15 Met� images.
The training/validation was performed using a three-fold cross-validation. Each subsequent set-aside testing set was composed of
20 Met+ and 20 Met� case images. The testing sets for experiments 1–3 in total represented �75% of the entire 158-case cohort.
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To avoid potential bias in the testing set selection
from a single experiment, we designed three individual
experiments with different training–testing splits
(Figure 2). The entire cohort of patients was arbitrarily
numbered from 1 to 158 and then randomized. The
randomized patient sequence was used to divide the
cohort into a training/validation set (n = 118; Met+

n = 45, Met� n = 73) and a testing set (n = 40; Met+

n = 20, Met� n = 20) in each experiment, where dif-
ferent (overlapping) subsets of patients were selected
for the training/validation set and completely different
(non-overlapping) patients were selected for the testing
set in each experiment (Figure 2).

To perform three rounds of cross-validation training
for each experiment, the entire training/validation set
(118 patients) was divided into an 88-patient training
set (Met+ n = 30, Met� = 58) and a 30-patient valida-
tion set (Met+ n = 15, Met� n = 15). In each round, the
model was trained on 88,000 image tiles derived from
the 88 training cases and validated on 30,000 image
tiles derived from the 30 validation cases, with progres-
sion outcomes as training and validation labels. The
training/validation process was iterated three times,
using a different set of 88 cases for training and 30 cases
for validation. During the process, validation accuracy
was optimized by altering the model hyperparameters
(learning rate, batch size, weight decay, number of epochs,
and learning scheduler) and themodelwas then retrained on
the entire set using the optimized parameters, before testing
the model for progression risk in the independent 40 case
test set. The thresholds for converting prediction risk scores
to binary outcomes were determined in the validation
process (see supplementary material, Figure S1). This same
procedure was repeated for the three independent experi-
ments. The preprocessed dataset is publicly available at
CaltechData (https://doi.org/10.22002/dw66e-mbs82). The
codes are publicly available at GitHub (https://github.com/
hwzhou2020/NSCLC_ResNet).

Statistical analysis
To assess the effectiveness of our DL-based classifier
in predicting progression risk, we plotted the receiver
operating characteristic (ROC) curve; the area under the
ROC curve (AUC) was calculated to provide a measure
of the overall performance of the model. To compare
the model outputs with clinical progression outcomes,
we binarized the model prediction scores and reported
the accuracy metric. p values were calculated to show
the performances of the model compared with those of
the pathologists and a random classifier assuming the
null-hypothesis of the random classifier.

Results

Pathologist versus DL-based risk prediction
As brain metastasis is a frequent progression event in
NSCLC and no clinically useful histologic characteristics

or biomarkers exist to predict this behavior, particularly
in earlier stage disease, our analyses were focused on a
relatively homogenous patient cohort with well-defined
and clinically relevant endpoints (Met+ versus Met�).
The predictive performance of a DL-based classifier was
evaluated in three rounds using non-overlapping/separate/
distinct patients in the testing set for each round, as
described in Materials and methods. The resulting AUC
after each training and validation session that utilized
different cases was 0.96, 0.98, and 0.95, respectively
(Figure 3A) with optimal sensitivities of 80%, 90%, and
95% and specificities of 90%, 95%, and 70%, respec-
tively (see supplementary material, Figure S2 and
Table S1). In contrast, a similar training and validation
session that employed a random assignment of progres-
sion phenotype labels yielded an AUC of 0.51, as might
be expected. When the optimal cut-off was chosen from
each training and validation session and applied to the
separate set of test cases, an average accuracy of 87%was
achieved (p < 0.00001, compared with accuracy based
on random classifier training). Although there are no
reliable histopathologic features that can be routinely used
to predict metastatic risk progression in NSCLC, we
tested the ability of four independent expert lung pathol-
ogists to provide a similar binary diagnosis from the
identical, blinded set of H&E-stained slide images.
Pathologists were provided with WSIs, divided into the
same three testing sets as implemented for the DL testing.
Compared with the trained DL model, the average accu-
racy across the three test sets among four pathologists was
55.0%, 60.8%, 54.2%, and 59.2%, respectively, with an
average accuracy of 57.3%, not significantly different
compared with prediction accuracy based on random
classifier training (p > 0.05). The individual sensitivity
and specificity of prediction from the four pathologists
were 57%, 93%, 75%, 75% and 53%, 28%, 33%, 43%,
respectively (see supplementary material, Figure S2 and
Table S1), suggesting that the DL model identified
features that were not readily discernable by a trained
pathologist (such as tumor grade, necrosis, lymphocytic
infiltration, spread to airway spaces [17]) and that the
DL model outperformed careful histologic review by
experienced pathologists (p < 0.001).
The majority of the patients included in this study had

stage I NSCLC (Table 1) and it is in these patients that
AI/DL may have the most impact. An analysis of
the stage I cases revealed that the specificity of the
DL model in predicting Met� was 95.7% and the
negative predictive value was 92.9% (Table 2). That is,
of the 47 cases the model predictedMet�, only two cases
resulted in metastasis. The AI was less accurate in
predicting Met+ patients, with a sensitivity of 74.3%,
but a positive predictive value of 83.3% (Table 2).

Model understanding
The complexity of DL models can make model interpre-
tation difficult, but the framework employed in this
study allowed investigation of the model’s attention at
tile-level resolution over the WSI. Although the model
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was trained and tested on 1,000 image tiles in annotated
regions of primary tumor and the immediately surround-
ing tumor microenvironment in each case to determine
the prediction score for each tile, the prediction scores

were aggregated over the entire image to make a slide-
level prediction. Figure 4 demonstrates several examples
of such ‘prediction/attentionmaps’ showing the areas that
DL determined as significant for determining outcome for

Figure 3. DL versus pathologist prediction of progression. (A) ROC curves generated from three experimental rounds of training and validation
using three-fold cross-validation. For comparison, the ROC curve generated from the identical process using random phenotype assignment is
shown by the dotted green line. The threshold for calculating testing set prediction accuracies in each experimental session is indicated with
a star. For comparison, the sensitivity and specificity for prediction by four independent pathologists are shown as points. (B) The bar
plot shows testing accuracies for the DL model, four independent pathologist reviews (PA, PB, PC, PD, and average-AP), and the random
classifier (RC) across three experiments. For each pathologist, the predictions were performed using the same slides in three testing sets
implemented in the DL model, resulting in three accuracy scores. The error bars represent one standard deviation from the mean value. ns, not
significant; ***, p < 0.0001; ****, p < 0.00001. (C) Confusion matrix of DL model performance combined over three experiments. (D) Confusion
matrix of averaged pathologists’ evaluations on the three testing sets.
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each case, created from cases correctly identified as
Met+ or Met� by the DL model. Surprisingly, the tumor
regions identified by the model as high or low risk had
little in the way of discernable histologic differences, and
both showed tumor cells, tumor microenvironment, and
acellular stromal components. This suggests that the
DL training considered a broad and perhaps unappreciated
set of histologic features and not (at least not only) the
characteristic nuclear or cellular characteristics that are
used in traditional tumor grading methods. Moreover,
cases correctly identified by the DL model as Met+ and

Table 2. AI prediction of the development of progression (Met+)
versus no progression (Met�) for stage I patients: AI was able to
accurately predict which patients do not progress to brain
metastasis, with a specificity of 95.7% and a negative predictive
value of 92.9%. The AI was less accurate at predicting those
patients that develop metastases, with a sensitivity of 74.3% and a
positive predictive value of 83.3%.
Stage I Low risk High risk Row totals

Met� 45 9 54
Met+ 2 26 28
Column totals 47 35 82

Figure 4.Model prediction maps. (A and C) Prediction maps of non-progression cases (Met�); (B and D) prediction maps of progression cases
(Met+). Dark orange pixels in the prediction maps indicate image features scored with a high progression risk; deep purple pixels represent
features scored as a low progression risk. (A1–A3), (B1–B3), (C1–C3), and (D1–D3) are corresponding high-power images of the H&E-stained
regions indicated within each prediction map. (A1), (C1), and (D2) show high-power H&E-stained images of regions with an incorrectly
predicted risk.
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Met� did not necessarily demonstrate uniform scores
across the individual tiles in the entire tissue section.
That is, many cases correctly called as Met� nonetheless
contained elements (tiles) predicted as high risk, and
vice versa. It is possible that such incorrect calls were a
deficit of the DL model or perhaps, more intriguingly,
reflect known tumor heterogeneity with respect to
molecular phenotype and metastatic potential.

Discussion

An increasing number of targeted therapies are extending
the survival of NSCLC patients. However, the cost and
potential adverse effects of such therapies are creating an
ever-increasing need for strategies that can stratify the risk
of disease progression for optimal patient management,
particularly in early-stage patients with no other defined
risk factors, the majority of whom are likely cured by
surgery alone and may not need to suffer the toxicity
and expense of systemic therapy. Routine histopatho-
logic analysis of primary NSCLC cannot provide an
accurate assessment of progression risk (as also
demonstrated in this study), while mutation analysis
and other biomarkers have proven equally unreliable
in risk assessment [18].
There have been very few efforts to predict the future

development of brain metastases outside of standard
clinical and pathologic stage and grade prognosis. A recent
example studied 395 patients with all stages of NSCLC
who were followed for the subsequent development of
brain metastases. A predictive model that included
radiomics, histology, lymph node involvement, and
tumor grade was shown to have a maximal sensitivity
of �70% and specificity of �60% for the prediction of
subsequent brain metastases, far below our results [19].
Most studies have focused on detecting brain metastases
at the earliest possible time through sensitive blood
or imaging tests [20–23]. However, these studies
do not address the prediction of the development of
subsequent brain metastases at the time of initial diag-
nosis. Ours is the first study to our knowledge that has
explored the prediction of future brain metastases based
on the histology of the primary tumor in early-stage
NSCLC.
In this study, we evaluated the ability of a DL-based

analysis of high-quality digital images of routinely
stained histological slides of primary NSCLC to predict
clinically significant events – the development of brain
metastasis versus remaining disease free over a long
follow-up (Met+: median = 12.2 months, Met�:
median = 106 months). Although the cohort in this
study was relatively small, we consistently achieved an
accuracy to predict progression of 87% using separate
validation and testing sets. Importantly, this was
improved over routine assessment by surgical patholo-
gists (87% versus 57% average, p < 0.001). Although
focused mainly on stage I disease, our cohort had an
unavoidable heterogeneity of stages and histologic

types. Nonetheless, the algorithm was trained and accu-
rately predicted progression risk regardless of histologic
subtype and stage. High performance among mixed
histologic tumor types is concordant with the observa-
tion that the prediction ‘attention map’ is not specific to
tumor cell elements themselves, but rather is focused on
multiple features of the tumor landscape.

In the management of early-stage (I, II, and III)
NSCLC, the most difficult decisions are for stage I
patients, as these patients have the highest chance of
remaining disease free with no or minimal systemic
therapy, with 5-year survival rates of 90% to 73%
depending on substage [24]. Nevertheless, contemporary
management of stage I patients recommends systemic
treatment, as studies have shown benefit overall for this
group [24–26], which has been enhanced with the advent
of targeted and immunotherapies [27–29]. The patients
included in the present study were of mixed early-stage
NSCLC, but the majority were stage I. Analysis of this
group showed that the DL model was highly specific in
identifying the patients who do not develop brain
(or any other) metastases. On the other hand, the DL
model was less effective in identifying patients who
develop brain metastases; 25% of such patients predicted
to develop brain metastases by the model did not develop
metastases of any kind during the course of the follow-up.
From a practical point of view, it will be much more
important to correctly specify which patients with stage
I NSCLCwill not develop metastases with high accuracy,
as this is the group that might be spared harmful and
expensive systemic therapy. A study utilizing a larger
cohort restricted to only stage I disease will further estab-
lish the importance of this clinically relevant observation.
As a retrospective, standard of care patient cohort, it is
also recognized that some degree of adjuvant therapeutic
diversity existed in this study, which makes the accuracy
of metastatic progression prediction in the absence of
knowledge of treatment effect even more impressive,
and actually may explain why model performance
was limited to 87% accuracy. It is likely that, when
combined with other relevant clinical data (such as
treatment data or other molecular biomarkers) in
a multimodal model, our DL algorithm will achieve
even higher accuracy.

An important aspect of this study was to explore the
potential of DL to elucidate features in histologic images
that predict progression; that is, to ‘see’ features that a
human pathologist cannot see or interpret based on
conventional training. In this regard, we are beginning
to leverage the attention maps generated by our algorithm
to understand better the molecular and cellular neighbor-
hood features associated with metastatic progression. We
expect that the existing DL model will require iterative
refinement with larger, independent cohorts from our own
institution, and then from patients treated at multiple sites;
we are currently working toward that goal. In addition, we
plan to expand this study to represent a wider range of
clinically relevant outcomes (e.g. metastasis to other dis-
tant organs). Nonetheless, these results demonstrate the
potential for AI-guided histopathologic image analysis to
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augment and/or exceed traditional histopathology review
for risk assessment and improvedmedical management of
early-stage NSCLC patients.
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