Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates
- Creators
- Bravyi, Sergey
- Gosset, David
Abstract
We present a new algorithm for classical simulation of quantum circuits over the Clifford+T gate set. The runtime of the algorithm is polynomial in the number of qubits and the number of Clifford gates in the circuit but exponential in the number of T gates. The exponential scaling is sufficiently mild that the algorithm can be used in practice to simulate medium-sized quantum circuits dominated by Clifford gates. The first demonstrations of fault-tolerant quantum circuits based on 2D topological codes are likely to be dominated by Clifford gates due to a high implementation cost associated with logical T gates. Thus our algorithm may serve as a verification tool for near-term quantum computers which cannot in practice be simulated by other means. To demonstrate the power of the new method, we performed a classical simulation of a hidden shift quantum algorithm with 40 qubits, a few hundred Clifford gates, and nearly 50 T gates.
Additional Information
© 2016 American Physical Society. Received 9 March 2016; published 20 June 2016. D. G. acknowledges funding provided by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (NFS Grant No. PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-12500028). S. B. thanks Alexei Kitaev for helpful discussions and comments.Attached Files
Published - PhysRevLett.116.250501.pdf
Submitted - 1601.07601v1.pdf
Supplemental Material - supp_material_prl.pdf
Files
Additional details
- Eprint ID
- 68527
- Resolver ID
- CaltechAUTHORS:20160620-110726584
- Institute for Quantum Information and Matter (IQIM)
- NSF
- PHY-1125565
- Gordon and Betty Moore Foundation
- GBMF-12500028
- Created
-
2016-06-20Created from EPrint's datestamp field
- Updated
-
2021-11-11Created from EPrint's last_modified field
- Caltech groups
- Institute for Quantum Information and Matter, Walter Burke Institute for Theoretical Physics